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Compressive sensing (CS) is a technique that enables the recovery of sparse signals using fewer measurements than traditional
sampling methods. To address the computational challenges of CS reconstruction, our objective is to develop an interpretable and
concise neural network model for reconstructing natural images using CS. We achieve this by mapping one step of the iterative
shrinkage thresholding algorithm (ISTA) to a deep network block, representing one iteration of ISTA. To enhance learning ability
and incorporate structural diversity, we integrate aggregated residual transformations (ResNeXt) and squeeze-and-excitation
mechanisms into the ISTA block. This block serves as a deep equilibrium layer connected to a semi-tensor product network
for convenient sampling and providing an initial reconstruction. The resulting model, called MsDC-DEQ-Net, exhibits competi-
tive performance compared to state-of-the-art network-based methods. It significantly reduces storage requirements compared to
deep unrolling methods, using only one iteration block instead of multiple iterations. Unlike deep unrolling models, MsDC-DEQ-
Net can be iteratively used, gradually improving reconstruction accuracy while considering computation tradeoffs. Additionally,
the model benefits from multiscale dilated convolutions, further enhancing performance.

1. Introduction

Compressive sensing (CS) is a signal processing technique
used to efficiently acquire signals that exhibit sparsity or
compressibility in a sparse domain, and this information
can then be reconstructed back to the original domain with
high probability [1, 2]. In CS, a signal is measured through a
small number of linear projections obtained by multiplying
the signal with a sensing matrix, typically a random matrix.
For images, CS allows fewer measurements to be acquired
than the number of pixels in an image, making it particularly
advantageous as it can significantly reduce storage require-
ments. Reconstruction of the image is usually obtained using
algorithms that leverage the sparsity of the signal, such as
sparse optimization or convex optimization techniques, but
these techniques are often computationally expensive and
slow to converge. CS finds applications in various fields,
including magnetic resonance imaging [3], radar signal

sampling [4], cryptosystems [5], snapshot imaging [6], and
video sensing [7, 8]. It proves especially useful when dealing
with large amounts of data, as it can lead to significant
reductions in storage and processing requirements.

A multitude of optimization-based CS reconstruction
methods have been developed. One such method is basis
pursuit, an algorithm that tackles the underdetermined linear
system by finding the sparsest solution [9]. It assumes signal
sparsity on a specific basis and solves a convex optimization
problem to determine the sparsest representation. Another
iterative algorithm, iterative hard thresholding, updates the
signal estimate by applying thresholding at each iteration
[10]. The algorithm computes a gradient descent step and
enforces sparsity through thresholding, where only the k larg-
est coefficients (k being the desired sparsity level) are retained,
while the rest are set to zero. Compressive sampling matching
pursuit (CoSaMP), another iterative algorithm, iteratively
refines the signal estimate by selecting the support that best
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aligns with the measurements [11]. At each iteration,
CoSaMP identifies the k largest entries in the product of the
sensing matrix Φ and the current residual. It then solves a
least-squares problem to obtain the coefficients of the selected
atoms. Approximate Message Passing (AMP), an iterative
algorithm utilizing a message-passing framework, estimates
the signal by combining the current estimate with the noisy
measurements and applying a soft thresholding operator [12].
The result undergoes linear combination and soft threshold-
ing at each iteration. An optimization algorithm frequently
employed in sparse signal recovery and regression problems is
the iterative shrinkage thresholding algorithm (ISTA). It is a
variant of the proximal gradient descent algorithm [13]. ISTA
iteratively updates the estimate of the sparse signal by taking a
gradient step and subsequently applying thresholding to pro-
mote sparsity. The thresholding operation sets small entries to
zero, and the degree of sparsity is controlled by the threshold
value. These methods, while effective, suffer from high compu-
tational complexity due to the necessity ofmultiple iterations to
achieve convergence. Additionally, some parameters require
careful tuning for optimal performance.

In recent years, neural network-based CS reconstruction
methods have gained popularity. These methods leverage the
ability of neural networks to learn complex, nonlinear map-
pings between compressed measurements and reconstructed
signals. Unlike traditional methods mentioned earlier, these
noniterative network-based approaches significantly reduce
computational requirements while achieving impressive
reconstruction performance [14]. Most network-based meth-
ods are trained as black boxes, harnessing the powerful learn-
ing capacity of deep networks but lacking insights from a CS
perspective. On the other hand, optimizationmethods involve
iterating over parameters to minimize a loss function. Deep
unrolling methods (DUM) inmachine learning can be seen as
incorporating insights from iterations in optimization meth-
ods [14]. In deep unrolling, a fixed number of architecturally
identical blocks are utilized, where the output of each block
serves as input to the next. This can be interpreted as a form of
iteration, where the block is applied iteratively (typically 5–10
times) to capture longer-term dependencies [15]. While more
iteration blocks often yield improved performance, training
such models consumes substantial memory, potentially lead-
ing to out-of-memory issues [16]. Deep equilibrium models
(DEQs) belong to a class of deep learning models that employ
fixed-point iteration schemes to learn stable equilibrium points
corresponding to optimal solutions for given optimization pro-
blems [17]. DEQ has been applied to CS reconstruction by
formulating the problem as an optimization task solvable
through fixed-point iteration schemes [15, 16, 18]. By utilizing
a neural network to learn the fixed-point iteration scheme, DEQ
demonstrates the ability to reconstruct images accurately and
efficiently from compressive measurements.

This paper presents the design of a DEQl, named MsDC-
DEQ-Net, for image CS, incorporating multiscale dilated
convolutions. The model consists of two key components.
First, we utilize the semi-tensor product (STP) theory to
enable direct compressed measurement and initial recon-
struction without the need for image block processing.

This approach avoids block artifacts in reconstruction and
employs a learnable measurement matrix to capture essential
signal information. Second, we construct a deep equilibrium
layer based on one iteration of the ISTA algorithm, mapping l1
norm optimization for CS reconstruction into a deep network.
We incorporate aggregated residual transformations (ResNeXt)
[19] to enhance performance and employ the squeeze-and-exci-
tation network (SENet) [20] to remove redundancy and enhance
valuable information. Compared toDUM, our proposedMsDC-
DEQ-Net possesses fewer learnable parameters and offers a
tradeoff between accuracy and computation.

The main contributions of this work can be summarized
as follows: (1) By leveraging STP without image block parti-
tioning, we achieve image sampling and initial reconstruction,
mitigating block artifacts and using a learnable measurement
matrix that captures critical signal information. (2) We map
one iteration of the ISTA algorithm into a network layer,
referred to as the ISTA block, and enhance its performance
by incorporating the ResNeXt and SENet structures. Addi-
tionally, we apply multiscale dilated convolutional layers to
further improve performance. (3) To address the issue of large
model size associated with DUM, we employ the ISTA block
to construct a DEQ. This allows for multiple applications of
the trained model, enabling multiple ISTA iterations and a
continuous improvement in reconstruction performance.

2. Related Work

Network-based CS image reconstruction methods can be
broadly classified into two categories: deep non-unfolding
networks and deep unfolding networks [21]. Each category
encompasses specific methods that vary in terms of network
architectures, loss functions, regularization techniques, and
other details. The following section provides a concise over-
view of both reconstruction methods. Subsequently, we delve
into the exploration of the DEQ, focusing on its relevance to
our own research.

2.1. Network-Based CS Image Reconstruction Methods

2.1.1. Deep Non-Unfolding Networks. Deep non-unfolding
networks are deep neural networks trained to directly recon-
struct under-sampled images from compressed measure-
ments, without explicitly modeling the image acquisition
process. These methods typically involve training a deep
neural network using large-scale datasets of natural images
to learn a mapping from under-sampled measurements to
the fully sampled image domain.

Usually, these reconstructed images often lack fine details,
particularly at low measurement rates. To address this issue,
the dual-path attention network (DPA-Net) [22] employs two
paths. The structure path focuses on reconstructing the dom-
inant structural components, while the texture path recovers
the remaining texture details. An attention module is utilized
to transmit structure information to the texture path. To
reduce the number of parameters, block-based compressed
sensing (BCS) is often employed for sampling and recon-
structing small image blocks. The sampling and initial recon-
struction are achieved using a sampling and whole image
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denoising network based on a generative adversarial network
(SWDGAN) [23]. Nonoverlapping blocks are segmented
from the original images, and a fully connected layer is uti-
lized for sampling and initial reconstruction. A whole image-
dense residual denoising module is then applied to improve
the reconstruction quality further. The generator and discrim-
inator are trained alternately to obtain an optimal model.
Similar to DPA-Net, the parallel enhanced network (PE-
Net) [24] consists of two reconstruction networks. The basic
network produces the initial reconstruction, while the
enhanced network progressively refines details by utilizing
information from submodules of the basic network. The final
reconstruction is the cumulative result of the two parallel
networks.

These models all employ BCS methods, where large-scale
images are processed in a block-by-block manner. In con-
trast, the semi-tensor product network (STP-Net) [25] treats
the image as a whole without segmentation. Leveraging STP,
an image can be directly sampled using a small-sized mea-
surement matrix through matrix multiplication. The initial
reconstruction can also be obtained in a similar manner. It is
worth noting that these models are trained as black boxes,
lacking insights from the CS domain.

2.1.2. Deep Unfolding Networks. Deep unfolding networks
aim to unfold the iterative optimization process of traditional
CS reconstruction algorithms, such as ISTA, into a single
end-to-end trainable deep neural network. These networks
explicitly model the physics of the image acquisition process
and learn a mapping from under-sampled measurements to
the original image by iteratively updating the reconstructed
image estimate.

The ISTA-Net [14] approach solves CS reconstruction
using the ISTA algorithm by casting it into a deep network
form. This allows it to benefit from the structural insights of
traditional optimization-based methods while maintaining the
fast solution speed of neural networks. Nonlinear convolu-
tional layers are employed to solve the proximal mapping asso-
ciated with the sparsity-inducing regularizer. ISTA-Net’s
network design is well-defined, providing interpretability and
allowing for structural diversity originating from the CS
domain. In contrast to ISTA-Net, the optimization-inspired
explicable deep network (OPINE-Net) [26] utilizes a data-
driven adaptively learnedmatrix instead of generating the sam-
pling matrix with a fixed random Gaussian matrix. Although
the sensing matrix can take other forms, such as noiselets coef-
ficients without additional memory storage or multiplications,
as shown in [27–29], data-drivenmethods are expected to have
better performance for learnable classes of data. OPINE-Net
adopts the framework of ISTA-Net, with each of its nine blocks
corresponding to one iteration in the traditional ISTA algo-
rithm. Notably, all blocks share the same weights without
affecting the final reconstruction performance. AMP-Net
[30] unfolds the iterative denoising process of the AMP algo-
rithm. Similar to OPINE-Net, AMP-Net consists of 9 AMP
denoising iteration blocks, and the samplingmatrix is trainable.
Additionally, AMP-Net integrates deblockingmodules to elim-
inate blocking artifacts. STP-ISTA-Net, introduced in [16],

combines STP-Net and ISTA-Net by connecting the output
of the former as a better initial reconstruction for the latter.
This model uses five iteration blocks, fewer than the aforemen-
tioned models, while still achieving competitive performance.

2.2. DEQ. Bai et al. [31] observed that the hidden layers of
many existing sequence models converge to a fixed point. To
address this, they propose the DEQ, which allows for finding
the equilibrium point directly via root-finding. This method is
equivalent to running an infinite-depth (weight-tied) net-
work, and the equilibrium point can be backpropagated using
implicit differentiation. The DEQ model requires only con-
stant memory.

While DUMs like ISTA-Net, OPINE-Net, and AMP-Net
achieve good performance by simulating a fixed number of
iterations of an optimization method in their architectures,
the number of iterations must be limited due to the difficulty
of training large-sized networks. Additionally, significant
errors arise when expecting more optimization iterations
through multiple applications of the trained model [15]. In
contrast, the DEQ model can be executed for more optimi-
zation iterations, leading to consistent improvements in
reconstruction quality while requiring only constant mem-
ory in both training and testing [15]. There exists a tradeoff
between reconstruction quality and computation.

The DEQ model has been applied to inverse problems in
imaging [15, 16] and video snapshot compressive imaging
(SCI) reconstruction [18]. Although the DEQ model simpli-
fies the structure compared to DUM, a bottleneck arises with
single-scale convolutions, limiting the ability to extract and
propagate useful information. Dilated convolutions are
widely used in various domains, such as image denoising
[32], feature detection [33], image super-resolution [34],
and CS reconstruction [35]. Dilated convolutions expand
the receptive field without increasing the number of param-
eters, thereby maintaining the same amount of computation.
This inspires us to extract features of different scales using a
model that incorporates multiple convolution channels in
parallel, with each channel having different dilation factors.

In comparison to deep non-unfolding networks, the
architecture of MsDC-DEQ-Net offers good interpretability
as it borrows insights from traditional optimization methods.
MsDC-DEQ-Net also allows for structural diversity in its
model design, providing ample room for optimizing network
structures. Compared to deep unfolding networks, MsDC-
DEQ-Net only requires one iteration block, significantly
reducing memory requirements and addressing computation
issues in large-scale models [15]. Extensive experiments
demonstrate that MsDC-DEQ-Net achieves competitive per-
formance compared to existing network-based CS image
reconstruction methods.

3. Proposed MsDC-DEQ-Net for Image CS

In this section, we will first introduce the relevant concepts
that we have utilized and then provide a detailed explanation
of the design of the proposed MsDC-DEQ-Net.
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3.1. ISTA Optimization for CS. Suppose the original signal
x2RN is CS measured by a linear random projection Φ2
RM×N giving measurements y2RM as follows:

y ¼ Φx; ð1Þ

were M ≪ N and the CS ratio is given as M=N . The purpose
of CS reconstruction is to infer x from y. Traditionally, we
obtain the reconstruction by solving the optimization prob-
lem as follows:

min
x

1
2

Φx − yk k22 þ λ Ψxk k1
� �

; ð2Þ

where Ψ is some sparse transform and the result of Ψx is the
coefficients of x in a sparse domain. The sparsity of Ψx is
encouraged by the l1 norm with regularization parameter λ.

The problem in Equation (1) can be solved using various
optimization algorithms, such as the ISTA [13], alternative
direction method of multipliers (ADMM) [36], and AMP
[12]. In this paper, we adopt the ISTA algorithm for simplic-
ity. ISTA is a widely used first-order proximal method and is
particularly suitable for solving linear inverse problems [14].
Each iteration of the ISTA algorithm consists of the two steps
as follows:

r kð Þ ¼ x k−1ð Þ
− ρΦT Φx k−1ð Þ

− y
À Á

; ð3Þ

x kð Þ ¼ Ψ−1 Ψ r kð Þ�� �� − λ
À Á

þsgn Ψ r kð ÞÀ Án o
; ð4Þ

where r is the immediate reconstruction, and ρ is the step size
[13, 14]. The subscript+ in Equation (4) takes the positive
part, setting any negative part to zero. In Equation (3) is the
gradient descent step where the estimate of the reconstructed
signal x is updated by taking a step in the direction of the
negative gradient of the objective function using the data
fidelity term 1

2 kΦx − yjj22 from Equation (2). This step is
essentially a gradient descent update, where the step size is
chosen based on the Lipschitz constant of the gradient of the
objective function [13]. Equation (4) is the soft-threshold
step, where the soft-thresholding operator is applied to the
current estimate of the signal in its sparse domain. To be
specific, the operator first sets the elements whose absolute
values are below a certain threshold to zero and then shrinks
the nonzero coefficients toward zero by the threshold. These
two steps are repeated iteratively until convergence is
achieved or a maximum number of iterations is reached.
The ISTA algorithm is commonly used for solving sparse
linear regression and compressed sensing problems [13].

3.2. STP. According to STP theory, a small matrix Φ can be
multiplied with a tall vector x as follows:

y ¼ Φ tð Þ⋉ x; ð5Þ

where ΦðtÞ : 2RM
t ×

N
t , ⋉ is the left product operator for STP,

and t is a shrinkage factor chosen as a common divisor of M
andN [37–39]. The operation in Equation (5) is equivalent to
the following:

y ¼ Φ tð Þ⨂ Itf gx; ð6Þ

where ⨂ is the Kronecker product of matrices and It 2Rt×t

is an identity matrix. When t¼ ffiffiffiffi
N

p
, Equation (6) can be

written in matrix form [25] as follows:

Y ¼ X ⋅ Φ tð ÞT ; ð7Þ

where X 2R
ffiffiffi
N

p
×

ffiffiffi
N

p
, Y 2R

ffiffiffi
N

p
× Mffiffi

N
p
, and ΦðtÞ : 2R

Mffiffi
N

p ×
ffiffiffi
N

p
. Here,

we reshape the vectors x and y to be matrices maintaining
column-wise order. The square matrix X is easy to associate
with a square image.

If ΦðtÞ : satisfies the restricted isometry property (RIP)
[40], it can be used as a measurement matrix since mutual
coherence of ΦðtÞ: ⋉Ψ still satisfies the RIP [41]. The appli-
cation of STP brings significant convenience to CS. In [41],
the authors perform column-wise measurements of an image,
reducing the dimensions of the measurement matrix to 1/t2

compared to conventional CS. This reduction greatly reduces
the memory footprint.

If we consider an image with a size of 256 × 256 and
directly apply CS measurements at a ratio of 10%, the size of
the measurement matrix Φð1Þ : would be 6,554 × 65,536.
However, to conserve memory, BCS is commonly employed.
In approaches such as [14, 26, 30, 42–44], the image is divided
into smaller blocks, typically with a size of 33 × 33. These
blocks are then vectorized and measured individually. In the
case of a 10% CS ratio, this means a measurement matrix with
a size of 109× 1,089 would be required, but at the disad-
vantage of creating blocking artifacts when these blocks are
reassembled. As shown in [27], block-based sensing is less
efficient compared with global sensing in recovery perfor-
mance because a measurement in the block-based approach
has information only about the block, while a measurement
in the global approach has information about the whole
image.

Using the same 256 × 256 image, if the image is vector-
ized directly without breaking it into smaller blocks and STP
is applied, when t is chosen as 256, the measurement matrix
Φð256Þ : only has size 26 × 256. So, the measurement matrix
size is smaller than the block-based method that used blocks
of size 33 × 33 instead of the full image of size 256 × 256.

There can be fluctuations in the resulting mutual coher-
ence of different generated measurement matrices, especially
when the value of t is large, resulting in a decreased proba-
bility of satisfying the RIP [41]. This compels us to adopt a
larger-sized measurement matrix from a smaller value of t. In
accordance with [25], an image can be measured using two
steps with two larger measurement matrices as follows:
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Y ¼ Φ1 tð Þ ⋅ X ⋅ Φ2 tð ÞT ; ð8Þ

where the combined steps result in fewer resulting measure-
ments in Y . For instance, to achieve a CS ratio equal to 10%,
the size of the two measurement matrices Φ1ð256Þ : and
Φ2ð256Þ : are set to 81 × 256, since ð81=256Þ2 ≈ 10%. The
memory footprint they occupy is still smaller than a 33 ×
33 block-based method. Here, Φ1ðtÞ : and Φ2ðtÞ : can even be
selected to be the same. Based on Equation (8), we build STP-
Net as shown in Figure 1 [25], which can measure an image
directly without segmenting it into blocks and provides an
initial reconstruction. Mea1 and Mea2 correspond to Φ1ðtÞ :

and Φ2ðtÞ :, showing the two measurement steps. Rec1 and
Rec2 are the inverse operations of Mea1 and Mea2 for a total
of four matrices for the measurement and initial reconstruc-
tion phases.

3.3. Structure of ISTA Iteration Block. To implement
Equation (3), we build the immediate reconstruction block,
as shown in Figure 2, by means of STP-Net.

The residuals of an image are known to exhibit higher com-
pressibility [14], and incorporating residual learning can facili-
tate the training of deeper networks [45]. Let’s assume that xðkÞ
comprises three components: the immediate reconstruction
result rðkÞ, the high-frequency components hðkÞ missing in rðkÞ
found using an appropriate operator, and any remaining noise
nðkÞ embedded in xðkÞ [14]. We can express xðkÞ as follows:

x kð Þ ¼ r kð Þ þ h kð Þ þ n kð Þ: ð9Þ

Then, Equation (4) can be reformulated as follows:

x kð Þ ¼ r kð Þ þH Ψ−1 Ψ D r kð ÞÀ ÁÀ Á�� �� − λ
À Á

þsgn Ψ D r kð ÞÀ ÁÀ ÁÀ Á� �n o
þ n kð Þ;

ð10Þ

where D represents a denoising operation and H represents
a high-pass filter [14].

Since network-based methods allow for structural diversity
originating from the CS domain [14], we construct the ISTA
block, as shown in Figure 3, which implements Equations (3)

Data in Mea 1 Mea 2 Rec 1 Rec 2 Data out

N1 × N2 N1 × M2 N1 × M2M1 × M2 N1 × N2

STP-Net

Measure Reconstruct

Measurement Y

FIGURE 1: STP-Net [25].

x(k–1) Mea 1 Mea 2 Rec 1 Rec 2 r(k)

N1 × N2 N1 × M2 M1 × M2 N1 × M2

STP-Net

Measure Reconstruct

y

+

Immediate reconstruction block
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FIGURE 2: Immediate reconstruction block (IRB).
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and (10). All “Conv” layers represent convolutional layers with
a filter size of 3 × 3. The top line in Figure 3 represents the
output feature sizes, while the second line represents the num-
ber of features. The blocks Fk and F̃k correspond to Ψ and
Ψ−1, respectively, implementing the sparse transform and its
inverse operation [14]. The second output of Figure 3 is
enforced to be zero, indicating that a signal passes through
Fk and F̃k without any changes.

MsDC (multiscale dilated convolution) is illustrated in
Figure 4, which consists of multiple branches with different
dilation factors ranging from 1 to 7. This enables the extrac-
tion of both structural and detailed information from natural
images, as different dilation factors capture different levels of
information [32].

The denoise layer D and high-pass filter layer H,
depicted in Figures 5(a) and 5(b), respectively, are inspired
by the aggregated residual transformations for deep neural
networks (ResNeXt) [19] and the SENet [20]. ResNeXt
increases the number of branches in a residual block while
the SE network adaptively recalibrates channel-wise feature
responses. Since MsDC extracts multifeatures from r(k), the
structure of the SE network is expected to enhance important
features, while the structure of ResNeXt is expected to
improve the performance of the denoise layer and high-
pass filter.

3.4. Proposed MsDC-DEQ-Net. From Figure 3, an ISTA iter-
ation can be described as follows:

x kð Þ ¼ f x k−1ð Þ; y
À Á

; ð11Þ

where f ð⋅Þ : represents the operations of all the layers in
Figure 3. Equation (11) merges (3) and (10) into one
equation. According to the ISTA algorithm, after a certain
number of iterations xðk−1Þ will approach xðkÞ, converging to
an equilibrium point. This observation aligns with the con-
cept of an equilibrium model, which has a fixed point x∗

represented as follows:

x∗ ¼ f x∗; yð Þ; ð12Þ

where y serves as the input injection, playing a crucial role in
ensuring that the equilibrium point aligns with the original
signal [17]. Therefore, we can consider the ISTA block as an
equilibrium layer within the model.

The proposedMsDC-DEQ-Net for image CS is illustrated
in Figure 6. Both the STP-Net and the equilibrium layer are
jointly trained. The STP-Net provides the measurement y as
the input injection for the equilibrium layer, along with the
initial reconstruction z0, which serves as a suitable starting
point for the iterative solution within the equilibrium layer.
Figure 6 shows three outputs: (1) Output1 aims to approach
the original images. (2) Output2 ensures the reversibility of
the sparse transform, meaning that the signal remains
unchanged as it passes through Fk and F̃k. Therefore, Out-
put2 should equal zero, as depicted in Figure 3. (3) Output3
focuses on the initial reconstruction, striving to approach the
original image, as it significantly contributes to solving the
equilibrium point efficiently. The parameters of the MsDC-
DEQ-Net are optimized by minimizing the half mean square
error between the outputs and the expected signals.

4. Experimental Results

The ILSVRC2014 ImageNet dataset consists of 1.2 million
images with 1,000 object categories and is commonly used in
computer vision competitions [46]. For our experiments, we
randomly selected 20,000 natural images from this dataset,
with 14,000 images used for training, 3,000 for validation,
and 3,000 for testing. Each image was cropped to a central
256 × 256 region and converted to an 8-bit grayscale. Dur-
ing training, we employed the Adam solver with a learning
rate of 1e−5 and a minibatch size of 16. To evaluate the
performance of our model, we used two widely used bench-
mark datasets: Set11 [42] and BSD68 [47]. Set11 contains 11
grayscale images, while BSD68 contains 68 grayscale images.
The reconstruction results were reported for compression
ratios of 1%, 4%, 10%, and 25%. The peak signal-to-noise
ratio (PSNR) and structural similarity index (SSIM) were
used as evaluation criteria.

All experiments were conducted on MATLAB R2019a,
running on a computer with an Intel i7-8700K CPU operat-
ing at 3.7 GHz, a GeForce GTX 1,080GPU, and 16GB RAM.
To find the fixed point of the DEQ model, we employed the
Anderson acceleration method to improve convergence and
prevent divergence. This method determines the promising
direction for iterations by updating the input of the deep
equilibrium layer with a linear combination of previous out-
puts. During test time, we set the number of iterations to 50
for the Anderson acceleration method.

4.1. Performance Comparison. We conducted a comparison
between our proposed MsDC-DEQ-Net and nine recent
state-of-the-art image CS methods, namely STP-Net [25],
DPA-Net [22], SWDGAN [23], PE-Net [24], ISTA-Net+

[26], OPINE-Net [26], AMP-Net [30], STP-ISTA-Net [16],
and STP-DEQ-Net [16]. The first four are deep non-
unfolding networks, while the next four are deep unfolding
networks. We evaluated the average PSNR and SSIM
reconstruction performance on the Set11 dataset across four
CS ratios, as summarized in Table 1. The results for the other
methods were obtained from their respective papers.

We anticipate that the proposed technique will perform
well compared to the listed competing techniques. For the

r(k)

Conv, 3 × 3, df = 1

Conv, 3 × 3, df = 2

Conv, 3 × 3, df = 7

…

A
dd

iti
on

FIGURE 4: Multiscale dilated convolution layer (df: dilation factor).
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proposed technique, Figures 5(a) and 5(b) show that we have
incorporated aspects of ResNeXt [19] and the SENet [20]
into our model. These two networks have good performance,
so incorporating these into our proposed network is expected
to perform well compared with techniques like ISTA-NET+.
From Table 1, it is evident that our proposed model outper-
forms the other methods with higher PSNR and SSIM scores,
particularly at the extremely low CS ratio of 1%. Even at CS

ratios of 4% and 10%, our model still achieves superior
PSNR. Although our proposed model has slightly lower per-
formance at a CS ratio of 25%, it remains competitive. By
increasing the number of iterations in the Anderson acceler-
ation method, we can obtain even better results.

To assess the generalizability of our model, we also com-
pared it with other methods on the larger BSD68 dataset. As
shown in Table 2, our proposed model achieves the best
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performance at CS ratios of 10% and 25%. It achieves
the second-best performance at a CS ratio of 4%. At the
extremely low CS ratio of 1%, our proposed model exhibits
higher PSNR but slightly inferior SSIM compared to
SWDGAN and AMP-Net.

For visualization purposes, Figure 7 shows an original
image of a parrot. Figure 8 shows the CS reconstruction
with different techniques. By zooming in on the local area
around the parrot’s eye, it is seen that the proposed method
has a more realistic reconstruction than the other methods
shown. For instance, the stripes around the eye appear to be
better reconstructed in the proposed approach, which we
expect is due to the multiscale dilated convolution network
introduced into the model.

4.2. Ablation Studies. The multiscale dilated convolution
model has demonstrated remarkable performance due to
its ability to extract features at different scales from an image,
where the combination of these features contributes to better
reconstruction [35]. Previous studies [32–35] have often uti-
lized dilation factors of 1, 2, and 3. In our proposed model,
we intentionally incorporated seven branches with different
dilation factors, as depicted in Figure 4, to better observe the
impact of these factors. The branches are labeled from 1 to 7
based on their corresponding dilation factor values. To

facilitate training, at the outset, we assigned the seven
branches with the same parameter values as a pre-trained
STP-DEQ-Net, with the exception of the dilation factor. We
conducted several ablation studies to analyze the effects, as
shown in Tables 3–7 [48].

TABLE 1: Mean PSNR (dB) and SSIM comparisons on Set11 at different CS ratios [16].

Algorithm
CR= 1% CR= 4% CR= 10% CR= 25%

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

STP-Net [25] 20.73 0.5111 23.39 0.6310 26.08 0.7679 30.06 0.8843
DPA-Net [22] 18.05 0.5011 23.50 0.7205 26.99 0.8354 31.74 0.9238
SWDGAN [23] 21.01 0.5410 24.67 0.6410 28.45 0.8570 33.45 0.9300
PE-Net [24] 20.74 0.4909 25.19 0.7586 28.58 0.8701 33.23 0.9407
ISTA-Net+ [26] 17.42 0.4029 21.32 0.6037 26.64 0.8087 32.59 0.9254
OPINE-Net [26] 19.87 0.5070 25.04 0.7730 29.33 0.8825 34.44 0.9491
AMP-Net [30] 20.20 0.5581 25.26 0.7722 29.40 0.8779 34.63 0.9481
STP-ISTA-Net [16] 21.32 0.5529 25.47 0.7152 29.01 0.8438 33.72 0.9327
STP-DEQ-Net [16] 21.24 0.5565 24.67 0.7028 28.96 0.8495 32.63 0.9331
MsDC-DEQ-Net 21.43 0.5642 25.55 0.7303 29.96 0.8723 34.09 0.9446

The best performance is labeled in bold.

TABLE 2: Mean PSNR (dB) and SSIM comparisons on BSD68 at different CS ratios.

Algorithm
CR= 1% CR= 4% CR= 10% CR= 25%

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

STP-Net [25] 21.06 0.4639 23.11 0.5804 25.11 0.7091 28.48 0.8473
DPA-Net [22] 18.98 0.4643 23.27 0.6096 25.57 0.7267 29.68 0.8763
SWDGAN [23] 22.28 0.5600 24.88 0.6700 27.29 0.7890 30.96 0.9100
PENet [24] 22.10 0.4820 25.06 0.6711 27.38 0.7960 30.97 0.9053
ISTA-Net+ [26] 19.14 0.4158 22.17 0.5486 25.32 0.7022 29.36 0.8525
OPINE-Net [26] 21.80 0.4972 24.87 0.6709 27.54 0.7966 31.28 0.9034
AMP-Net [30] 22.28 0.5387 25.26 0.6760 27.86 0.7926 31.74 0.9048
STP-ISTA-Net [16] 21.87 0.5046 25.12 0.6639 27.94 0.7932 31.35 0.8956
STP-DEQ-Net [16] 21.38 0.4882 23.74 0.6209 26.58 0.7615 30.48 0.8966
MsDC-DEQ-Net 22.53 0.5316 25.18 0.6724 28.24 0.7988 32.17 0.9136

The best performance is labeled in bold.

FIGURE 7: Original image of the parrot with zoomed-in region
around the eye.
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FIGURE 8: Reconstruction of parrot image with 10 different methods (corresponds with Table 1 when CR= 10%).

TABLE 3: Mean SSIM and mean PSNR (dB) on Set11 with one scale dilated convolution model (after [48]).

Connected branch All None 1 2 3 4 5 6 7

SSIM 0.8723 0.6756 0.8595 0.7198 0.6973 0.7007 0.7006 0.7000 0.6989
PSNR 29.96 25.63 29.36 26.13 25.88 25.91 25.90 25.90 25.89

Bold indicates best performance.

TABLE 4: Mean SSIM and mean PSNR (dB) on Set11 with two scales dilated convolution model (after [48]).

Connected branch 1+ 2 1+ 3 1+ 4 1+ 5 1+ 6 1+ 7

SSIM 0.8650 0.8624 0.8628 0.8625 0.8586 0.8605
PSNR 29.57 29.51 29.51 29.50 29.32 29.41

Bold indicates best performance.

TABLE 5: Mean SSIM and mean PSNR (dB) on Set11 with three scales dilated convolution model (after [48]).

Connected branch 1+ 2+ 3 1+ 2+ 4 1+ 2+ 5 1+ 2+ 6 1+ 2+ 7

SSIM 0.8679 0.8683 0.8680 0.8647 0.8664
PSNR 29.71 29.72 29.71 29.55 29.63

Bold indicates best performance.

TABLE 6: Mean SSIM and mean PSNR (dB) on Set11 with six scales dilated convolution model (after [48]).

Disconnected branch None All 1 2 3 4 5 6 7

SSIM 0.8723 0.6756 0.6635 0.8674 0.8720 0.8715 0.8713 0.8724 0.8703
PSNR 29.96 25.63 25.49 29.77 29.93 29.92 29.90 29.94 29.84

Bold indicates best performance.

TABLE 7: Mean SSIM and mean PSNR (dB) on Set11 with multiscale dilated convolution model (after [48]).

Disconnected branch None All 3+ 6 3+ 6+ 1 3+ 6+ 2 3+ 6+ 4 3+ 6+ 5 3+ 6+ 7

SSIM 0.8723 0.6756 0.8718 0.6644 0.8665 0.8703 0.8692 0.8699
PSNR 29.96 25.63 29.91 25.50 29.69 29.83 29.76 29.80

Bold indicates best performance.
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The results in Table 3 indicate that when all seven paral-
lel branches are connected (denoted as “under all”), the
model effectively learns the residual and achieves good per-
formance. Conversely, when no branches are connected
(denoted as “under none”), the model essentially produces
an immediate reconstruction r(k), which requires improve-
ment in terms of quality. Notably, when only one branch is
connected, branch 1, with a dilation factor of 1, outperforms
branches 2–7.

Tables 4 and 5 present additional ablation studies where
2 or 3 branches in Figure 4 are connected while the remain-
ing branches are removed. Branch 1 is retained in all cases
due to its outstanding performance, as demonstrated in
Table 3. When fuzing the features of another branch with
branch 1, it is observed that branch 2 has a greater influence
compared to the other branches. Furthermore, by incorpo-
rating branch 4, the overall performance is further enhanced.

Tables 6 and 7 present the performance of the proposed
model when some of the seven branches in Figure 4 are
removed. From Table 6, it is evident that branch 1 is the
most important, as its removal leads to significant perfor-
mance degradation. In contrast, the removal of branch 3 and
branch 6 has a much smaller impact on model performance.
Table 7 provides further insights, demonstrating that branch
2 is more important than branches 4, 5, and 7. Removing
branch two results in more degradation compared to the
removal of the other branches. Overall, these findings high-
light the varying importance of the different branches, with
branch 1 and branch 2 playing crucial roles in the model’s
performance.

5. Conclusion and Future Work

Inspired by the concepts of DUM, we present a novel approach
called MsDC-DEQ-Net, which combines the DEQ based on the
ISTA algorithm with multiscale dilated convolution for image
CS. By mapping a single iteration of the ISTA algorithm to a
deep learning block and using it as a deep equilibrium layer, our
model maintains a clear interpretability. Extensive experiments
demonstrate that the proposed model achieves competitive per-
formance when compared to state-of-the-art CS methods.

In order to leverage the structural diversity originating
from the CS domain [13], we incorporate ResNeXt to enhance
performance and the SE block to eliminate redundancy and
enhance valuable information. Compared to DUM, our pro-
posed model significantly reduces the number of learnable
parameters by utilizing only one optimization iteration block.

In future research, we plan to explore the robustness of
the proposed model and its application in other fields. Addi-
tionally, we recognize the importance of high-throughput
methods that facilitate information transition by incorporat-
ing multiple channels in the input and output of the iteration
block.

Data Availability
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