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To accelerate the data acquisition speed of magnetic resonance imaging (MRI) and improve the reconstructed MR images’ quality, we
propose a parallelMRI reconstructionmodel (SPIRiT-Net), which combines the iterative self-consistent parallel imaging reconstruction
model (SPIRiT) with the cascaded complex convolutional neural networks (CCNNs). More specifically, this model adopts the SPIRiT
model for reconstruction in the k-space domain and the cascaded CCNNs with dense connection for reconstruction in the image
domain. Meanwhile, this model introduces the data consistency layers for better reconstruction in both the image domain and the
k-space domain. The experimental results on two clinical knee datasets as well as the fastMRI brain dataset under different under-
sampling patterns show that the SPIRiT-Net model achieves better reconstruction performance in terms of visual effect, peak signal-to-
noise ratio, and structural similarity over SPIRiT, Deepcomplex, and DONet. It will be beneficial to the diagnosis of clinical medicine.

1. Introduction

Magnetic resonance (MR) imaging (MRI) is a modern clinical
medical tool with multiparameter, multisequence, multidirec-
tional, and high soft tissue resolution. But acquiring fully sam-
pled k-space data tends to take a long time. Reducing the
number of k-space data can accelerate the acquisition speed,
but undersampled k-space data will cause artifacts in the recon-
structed image. Therefore, how to reconstruct MR images with
high quality from undersampled k-space data has become a
significant problem.

Parallel imaging is an effective way to accelerate the acquisi-
tion speed, which uses a set of multichannel coils to acquire data
simultaneously and encode spatial information using the sensi-
tivity differences of the coils to reduce the number of necessary
gradient encoding steps and the time required for imaging [1].
Reconstruction methods for parallel MRI mainly include
the sensitivity encoding (SENSE) [2], the generalized auto-
calibrating partially parallel acquisitions (GRAPPA) [3], and
the iterative self-consistent parallel imaging reconstruction
(SPIRiT) [4]. Among them, SPIRiT is a widely used coil-by-
coil autocalibrating model for parallel MRI, which avoids the
sensitivity information estimation in the SENSE reconstruction

model due to the implicit use of sensitivity information. To
improve the reconstructed images’ quality, the SPIRiT model
was combined with the joint total variation regularization term
[5, 6], simultaneous 2D low rankness in k-space [7], nonlocal
low-rank constraints [8], and joint sparsity and sparsifying trans-
form learning [9].

Recently, deep learning-based methods have been pro-
posed to reconstruct parallel MRI from undersampled k-space
data. Deep learning models for MR image reconstruction can
be categorized into twomain groups: one of them is the end-to-
end nonexpanding iterative methods that directly use a stan-
dard network structure to learn the mapping from input to
output. Specifically, Lee et al. [10] proposed a deep residual
learning network composed of magnitude and phase networks
separately trained for reconstructing parallel MRI. Huang
et al. [11] proposed a variant of U-net with channel-wise
attention (CWA) as reconstruction block together with long
skip connection technique. Sriram et al. [12] proposed an
end-to-end variational network for parallel MRI reconstruc-
tion. Yiasemis et al. [13] proposed a recurrent variational
network (RecurrentVarNet) for reconstructing parallel MR
images via multiple recurrent blocks. In recent years, other net-
works such as transformer [14] and diffusion model [15] have
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also been used in MRI reconstruction tasks to further improve
the quality of reconstruction and achieve good results.

The other is a physical model-based method that starts from
a hypothetical optimization problem and unfolds the iterative
optimization algorithm to obtain a deep network. Specifically,
Hammernik et al. [16] proposed a variational network was pro-
posed to learn critical parameters for parallelMRI reconstruction
from fully sampled multicoil k-space data. Aggarwal et al. [17]
proposed a model-based reconstruction framework with a deep
learned prior (MoDL), which involved data-consistency terms
and learned convolution neural networks (CNNs) to capture
redundant information of images. Sriram et al. [18] proposed
the GRAPPA-Net model by combining the GRAPPA model
with deep neural networks to achieve improved reconstructions.
Pramanik et al. [19] proposed a model-based deep learning
framework (Deep-SLR) to accelerate the structured low-rank
(SLR) matrix-completion algorithm significantly, which trained
a CNN-based filterbank to estimate the annihilation relations.

To improve the reconstruction performance, we propose the
SPIRiT-Net model that simultaneously utilizes the correlations
of multicoil k-space data and complex convolutional neural net-
works (CCNNs) to capture redundant information of parallel
MR images. Specifically, the SPIRiT calibration block and the k-
space data consistency layer are used to reconstruct the under-
sampled k-space data, and then the cascaded CCNNswith dense
connections and image domain data consistency layers are used
to further reconstruct the calibrated k-space data.

Our main contributions are as follows: First, we use SPIRiT
for initialization of undersampled k-space data. Second, we use a
CCNN with dense connection for further capturing the redun-
dant information of the MR images reconstructed by SPIRiT.
Third, we conduct experiments on two clinical knee datasets as
well as the fastMRI brain dataset. The experimental results show
that our model achieves better results in terms of visual effects
and quantitativemetrics compared to the SPIRiT, Deepcomplex,
and DONet models.

The outline of this article is given as follows. We propose
a parallel MRI reconstruction model (SPIRiT-Net) by com-
bining the cascaded CCNNs with the SPIRiT model in
Section 2. Simulated experimental results and analysis are
given in Section 3. Finally, Section 4 summarizes this paper.

2. Methods

2.1. Notation and Preliminaries. In this article, the domain of
real numbers and the domain of complex numbers are
denoted as R and C, respectively. The relevant mathematical
manipulation operators are denoted by Eulerian letters, the
matrices are denoted as boldface capital letters, and some
basic constants are denoted by unbolded capital letters. We
provide the symbols used in Algorithm 1 proposed in this
paper along with their corresponding meanings in Table 1.

2.2. Problem Formulation. The undersampled k-space data of
a multicoil image are given by the following equation:

y ¼ Ax ; ð1Þ

where x¼ xr þ jxi 2CNC denotes the multicoil image to be
reconstructed, xr and xi denote the real and imaginary parts
of x, y¼ yr þ jyi 2CMC denotes the multicoil undersampled
k-space data, yr and yi denote the real and imaginary parts of
y, C denotes the total number of received coils, M ≪ N
denotes the number of single coil undersampled data points,
N ¼Nv ×Nh denotes the total number of pixel points of the
image to be reconstructed, Nv and Nh denote the number of
rows and columns of the image. A¼DF2CMC×NC denotes
the system encoding matrix, D¼ IC ⊗ D2CMC×NC and
F¼ IC ⊗ F 2CNC×NC denote the undersampling operator
and Fourier transform operator for multicoil images. IC is
an identity matrix of size C ×C, ⊗ denotes the Kronecker
product, D2RM×N denotes the undersampling matrix sam-
pled from k-space, and F 2CN×N denotes the 2D Fourier
transform operator [8] for single-coil images. The parallel
MRI reconstruction based on deep learning can be repre-
sented as follows:

min
x

x − fΘ yð Þk k22 þ λ Ax − yk k22; ð2Þ

where fΘð⋅Þ : denotes the forward mapping function of the
deep learning network parameterized by Θ, which includes
millions of adjustable network weights. ky − Axjj22 is the data
fidelity term.

2.3. Algorithmic Framework. In contrast to real-valued natu-
ral images, MR images are complex, and each pixel point
contains magnitude and phase information. Some of the net-
works use the magnitude image for training [20]. Some of the
networks consider the real and imaginary parts separately
[19]. The former methods neglect the phase information
during reconstruction, and the latter methods lose the corre-
lation between the real and imaginary parts. The CCNN can
take both magnitude and phase information into account
[21]. Therefore, we choose the CCNN as the benchmark
network for feature learning.

The SPIRiT-Net mainly consists of a k-space-domain
reconstruction block and an image-domain reconstruction
block. The k-space-domain reconstruction block consists of
a SPIRiT calibration block (SCB) and a k-space data consis-
tency (KDC) layer. The image-domain reconstruction block
consists of a complex-valued convolution block (CCB) and
an image-domain data consistency (IDC) layer. Figure 1
illustrates the architecture of the proposed SPIRiT-Net.

2.3.1. SPIRiT Calibration Block. In the SCB, the multigroup
convolution kernels are first estimated from the auto-
calibration signals (ACS), and then used to reconstruct the
missing k-space data (linear interpolation), as shown in
Figure 2.

Let x̃c denote the cth coil of the k-space data x̃ , and x̃cðrÞ :

denote the k-space value of the cth coil at position r, Rrx̃c
denote the k-space points in the neighborhood of position r,
gcs denote a set of convolution kernels estimated from the
ACS, and g∗cs is the conjugate transpose of gcs. The
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reconstruction of the point x̃sðrÞ : of the sth coil at position r is
given by the following equation:

exs rð Þ ¼ ∑
C

c¼1
g∗
cs Rrexcð Þ: ð3Þ

gcs can be obtained by solving the following optimization
problem:

min
gcs

∑
r2ACS

∑
C

c¼1
g∗cs Rrexcð Þ − exs rð Þ

 2
2
: ð4Þ

Equation (3) can also be expressed in matrix form as
follows:

ex ¼ Gex; ð5Þ

where G is a matrix containing a series of convolution kernel
operators gcs at appropriate positions.

2.3.2. k-Space Data Consistency Layer. After the under-
sampled k-space data are calibrated, k-space data consistency
operations are applied, as shown in Figure 3. K-space data
consistency operations can be expressed as follows:

exKDC ¼DT
uDuex þDTy; ð6Þ

where D and Du are the operators that select the acquired
and nonacquired points from the whole k-space respectively,
DT andDT

u are the operators that put them back in the right

1: Input: fx̃ðnÞgNt
n¼1; fyðnÞgNt

n¼1; fxGTðnÞgNt
n¼1;G;D

T;DT
u ;Du

2: Parameters: Total number of training samples Nt, learning rate α, decay rate β, network parameters Θ, batch size Ns, number of
convolution units Nc, and number of complex-valued convolution blocks Nb.

3: for n¼ 1 toNt do

4: Obtain gcs or G (in matrix form) by solving the problem (4).

5: x̃ðnÞ: ¼Gx̃ðnÞ :

6: x̃KDCðnÞ : ¼DT
uDux̃ðnÞ: þDTyðnÞ:

7: for m¼ 1 toNb do

8: if m¼ ¼ 1 then

9: bxm0 ðnÞ: ¼F−1ðx̃KDCðnÞÞ:

10: else

11: bxm0 ðnÞ: ¼ xm−1
IDC ðnÞ:

12: end if

13: for k¼ 1 toNc do

14: xmk ðnÞ: ¼Ckðbxmk−1ðnÞÞ :

15: bxmk ¼PkðxmðkÞrðnÞ;bxmðk−1ÞrðnÞ;…;bxmð1ÞrðnÞÞ : þ jPkðxmðkÞiðnÞ;bxmðk−1ÞiðnÞ;…;bxmð1ÞiðnÞÞ:

16: end for

17: xmNc
ðnÞ: ¼bxm0 ðnÞ: þbxmNc

ðnÞ :

18: xmIDCðnÞ: ¼F−1ðDT
uDuFðxmNc

ðnÞÞþDTyðnÞÞ:

19: end for

20: if modðn;NsÞ: ¼ ¼ 0 then

21: Calculated loss: LossðΘÞ: ¼ 1
Ns
∑

NsþNsð⌊ n
Ns
⌋−1Þ

n¼1þNsð⌊ n
Ns
⌋−1ÞkSOSðxNb

IDCðnÞÞ − SOSðxNb
GTðnÞÞjj22

22: Update parameters: Θ← AdamðrLossðΘÞ;Θ; α; βÞ :

23: end if

24: end for

25: Output network parameters: Θ

ALGORITHM 1: Parallel MRI reconstruction algorithm based on the SPIRiT model and complex convolutional neural network (SPIRiT-Net).

TABLE 1: The symbols used in Algorithm 1.

Parameter Value

The fully sampled MR image xGT
The MR image to be reconstructed x
The k-space data to be reconstructed x̃
The undersampled k-space data y
The SPIRiT calibration kernel G
The operator that selects the nonacquired points Du

The operator that puts the acquired points back DT

The operator that puts the nonacquired points back DT
u

The convolution units C
The dense concatenation operation P
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positions in the k-space, respectively. Therefore,DTy denotes
the zero-filled k-space data.

2.3.3. Complex-Valued Convolution Block. k-space data x̃KDC
reconstructed by SCB and KDC are fed into the image-
domain reconstruction block after inverse Fourier transfor-
mation. The input of the image-domain reconstruction block
is as follows:

bx10 ¼F−1 exKDCð Þ: ð7Þ

The image-domain reconstruction block consists of Nb
cascaded CCBs and IDC layers. Each CCB contains Nc
convolution units Ck, where k¼ 1; 2;…;Nc, as shown in
Figure 4. Each convolution unit Ck includes a complex con-
volution unit and a rectified linear unit (ReLU), except the
last convolution unit only contains a complex convolution
unit. The convolution kernel K ¼Kr þ jKi of each complex
convolution unit is of size 3× 3, and Kr and Ki denotes the
real and imaginary parts of K . The output feature map for the
kth convolution unit of the mth (m¼ 1; 2;…;Nb) CCB is as
follows:

xmk ¼Ck bxmk−1À Á¼ ReLUðx̄rÞ þ jReLUðx̄ iÞ; k ¼  1;…;Nc − 1

x̄r þ jx̄ i; k¼ Nc

(
;

ð8Þ

where x̄r ¼bxmðk−1Þr ×Kr −bxmðk−1Þi ×Ki, x̄ i ¼bxmðk−1Þr ×Ki þbxmðk−1Þi ×Kr, and bxmk−1 ¼bxmðk−1Þr þ jbxmðk−1Þi are the input feature
maps for the kth convolution unit of the mth CCB.

In addition, the output feature maps of each previous
layer are concatenated to ensure that the output features
can be reused. Let Pk denote the dense concatenation oper-
ation, then the final output feature map for the kth convolu-
tion unit of the mth CCB is formulated as follows:

bxmk ¼ Pk  xmkð Þr;bxmk−1ð Þr;…;bxm1ð Þr 
� �

þ  jPk  xmkð Þi;bxmk−1ð Þi;…;bxm1ð Þi 
� �

:
ð9Þ

The final output of the mth CCB is as follows:

xmNc
¼ bxm0 þ bxmNc

: ð10Þ

2.3.4. Image-Domain Data Consistency Layer. Each CCB is
followed by an image-domain data consistency (IDC) layer
to ensure acquired k-space data unchanged. The IDC layer is
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FIGURE 1: The architecture of the proposed SPIRiT-Net.
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shown in Figure 5. The output of the mth IDC layer is for-
mulated as follows:

xmIDC ¼F−1 DT
uDuF xmNc

� �
þDTy

� �
: ð11Þ

It should be noted that the output of the ðm− 1Þ:th IDC
layer is directly used as the input of the mth CCB:

bxm0 ¼ F−1 exKDCð Þ;m¼ 1

xm−1
IDC ; other

(
: ð12Þ

Then, we obtain a parallel MRI reconstruction algorithm
SPIRiT-Net based on the SPIRiT model and CCNN, which is
summarized in Algorithm 1.

After the final multicoil image xNb
IDC is reconstructed, the

square root of sum of squares (SOS) method is adopted to
obtain a magnitude image. SOS is defined as follows:

SOS xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
C

c¼1
xcj j2

s
: ð13Þ

3. Experimental Results

3.1. Experimental Setup. The knee datasets and the fastMRI
brain datasets are used to evaluate the performance of all the
reconstruction models [16]. The knee datasets were obtained
using a clinical 3T MRI scanner with two different sequences
called “Coronal Proton Density (Coronal-PD)” and “Sagittal
Proton Density (Sagittal-PD),” respectively. The scan param-
eters of the Coronal-PD weighted sequence are TR= 2,750
ms, TF= 4ms, TE= 27ms, matrix size= 320× 288× 15, and
voxel size= 0.49× 0.44× 3mm3. The scan parameters of the
Sagittal-PD weighted sequence are TR= 2,800ms, TF= 4
ms, TE= 27ms, matrix size= 384× 307× 15, and voxel
size= 0.46× 0.36× 3mm3. Each sequence consists of 20 sub-
jects. Twenty slices from No. 11−30 for each subject are
selected. All the slices are padded or cropped to 320× 320
pixels to ensure that all images have the same size. Fourteen
patients are randomly selected for training, three for valida-
tion, and three for testing. The fastMRI brain datasets were
obtained using a clinical 3T MRI scanner. The T1 post-
weighted sequences are selected for experiment, 50 patients’
data for training, eight patients for validation, and eight
patients for test, eight slices for each patient are selected.
All the slices are also padded or cropped to 320× 320 pixels
to ensure that all images have the same size.

All compared models are trained and tested on a desktop
computer with an Intel (R) Core (TM) i9-12900K@3.20 GHz
processor, 64GB of RAM memory, an NVIDIA GeForce
RTX 3090 GPU (24GB of memory) and an Ubuntu 20.04
operating system (64-bit). We compare the proposed model
SPIRiT-Net with one traditional model SPIRiT [4] and two
deep learning models (Deepcomplex [21] and DONet [22]).
Except for SPIRiT implemented in Python, all other com-
pared models are implemented using TensorFlow 2.4. The

Zero-flled
k-space data

mth CCB
output data

(m + 1)th CCB
output datau

T
u

–1

FIGURE 5: The architecture of the image-domain data consistency
(IDC) layer.

Complex
convolution unit ReLU unit Dense

connection 

mth CCB
input data

C1 C2 C3 C4 C5 mth CCB
output data

FIGURE 4: The architecture of the complex-valued convolution block (CCB).
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model parameters of SPIRiT-Net are shown in Table 2.
Besides, the proposed SPIRiT-Net is trained using the
Adam optimization algorithm and Kaiming initialization
method [23]. ACS size of 24× 24 is used for all the under-
sampling patterns for the SPIRiT-based algorithms. It should
be noted that the small amount of unacquired data of ACS
does not affect the calibration of SPIRiT.

We employ the peak signal-to-noise ratio (PSNR) and
structural similarity (SSIM) for the evaluation of recon-
structed images’ quality. PSNR is defined as follows:

PSNR ¼ 10 ⋅ log10
max2

MSE

� �
; ð14Þ

where MSE denotes the mean square error between the
ground truth image X and the reconstructed image bX , and
max denotes the maximum value of X.

SSIM is defined as follows:

SSIM¼
2uXubX þ c1

� �
2σ

XbX þ c2
� �

u2X þ u2bX þ c1
� �

σ2X þ σ2bX þ c2
� � ; ð15Þ

where c1; c2 are constants, uX and ubX denote the mean values
of X and bX , respectively, σ2X and σ2bX denote the variance of X
and bX , respectively, and σ

XbX denotes the covariance of X andbX . Larger PSNR and SSIM values indicate better reconstruc-
tion quality.

3.2. Evaluation of Quantitative Metrics. Tables 3 and 4 tabu-
late the quantitative metric results (average PSNR and SSIM
values with standard deviation) for the reconstructed MR
images via the compared models under the 3x and 5x acceler-
ated 1D random undersampling (1DRU) pattern, 2D random
undersampling (2DRU) pattern, 2D Poisson-disc undersam-
pling (2DPU) pattern, and radial undersampling pattern
(RADU) for the Coronal-PD and Sagittal-PD datasets, respec-
tively. As shown in Tables 3 and 4, SPIRiT-Net consistently
outperforms SPIRiT, Deepcomplex, and DONet in terms of
average PSNR and SSIM values in all cases. We also provide
box plots of the average difference in PSNR between SPIRiT-
Net and the compared models (Deepcomplex, DONet, and
SPIRiT) on the Coronal-PD and Sagittal-PD datasets from
the 3x and 5x accelerated 1DRU, 2DRU, 2DPU, and RADU
patterns respectively, as shown in Figure 6.

Table 5 tabulates the quantitative metric results (average
PSNR and SSIM values with standard deviation) for the
reconstructed MR images via the compared models under
the 4x and 8x accelerated 1D equispaced undersampling
(1DEU) pattern for the real k-space raw data in the fastMRI
brain dataset. It can be seen from Table 5 that the SPIRiT-
Net model achieves some improvement in the metrics results
compared to SPIRiT, Deepcomplex, and DONet models.

3.3. Evaluation of the Visual Effect. We visually compare the
reconstructed MR images via all the models. The recon-
structed image and its corresponding fully sampled image
are utilized to plot an error map, while 2x magnification is
performed at the same location on both the reconstructed
image and the error map to observe the reconstruction details.
We choose different undersampling patterns, acceleration
factors, and datasets to observe the reconstruction results.

First, it can be seen from Figure 7 that under the 1D
undersampling pattern, there are many artifacts in the recon-
structed image of SPIRiT model, Deepcomplex, and DONet
greatly reduce those artifacts, and our proposed SPIRiT-Net
further removes the artifacts. Second, as can be seen from
Figures 8−10, under the 2DRU, 2DPU, and RADU patterns,
the four models achieve relatively clear reconstructed images.
The Deepcomplex and DONet models achieve good results
in the overall reconstruction quality. However, we can see
from the zoomed-in error maps that the SPIRiT-Net model
achieves the best reconstruction quality in terms of details.
Third, Figure 11 shows the reconstruction results of the real
k-space raw data from the fastMRI brain dataset. We can see
that there are still obvious artifacts in the reconstructed
image of SPIRiT. Deepcomplex and DONet models remove
most of the artifacts, and the SPIRiT-Net model further
removes the artifacts. The above experimental results prove
that the SPIRiT-Net model can effectively remove the arti-
facts and improve the reconstruction MRI quality.

3.4. Ablation Studies. To prove the effectiveness of the SCB
and dense concatenation, we compare the baseline models
SPIRiT and Deepcomplex, Deepcomplex with SCB, and
Deepcomplex with SCB and dense concatenation (namely
our proposed SPIRiT-Net) on the Coronal-PD dataset with
the 2DPU pattern. It can be observed from Table 6 that intro-
ducing SCB to the baseline model Deepcomplex effectively
improves the PSNR and SSIM values of the reconstructed
images, while the feature reusability of the dense concatena-
tion leads to further PSNR and SSIM improvement. This
indicates that both SCB and dense concatenation are indis-
pensable and important parts of our proposed SPIRiT-Net.

We also incorporate the SCB and dense concatenation
with DONet. As shown in Table 7, DONet with SCB and
dense concatenation achieves higher PSNR than DONet with
SCB and the baseline models SPIRiT and DONet.

3.5. Significance Test.We perform the Wilcoxon signed-rank
test in PSNR between SPIRiT-Net and the competing meth-
ods (SPIRiT, Deepcomplex, and DONet). Table 8 shows the
P-values of the Wilcoxon signed-rank test, and it can be seen
that the P-values between the proposed SPIRiT-Net and the

TABLE 2: The model parameters of SPIRiT-Net.

Parameter Value

SPIRiT convolution kernel 5× 5
Cascaded CCB, Nb 10
Convolution units of each CCB, Nc 5
Learning rate, α 3× 10−4

Decay rate, β 0.95
Batch size 2
Epoch 40
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TABLE 3: Comparisons of average PSNR and SSIM values of the MR images reconstructed by all the models for the Coronal-PD dataset from
the 3x and 5x accelerated 1DRU, 2DRU, RADU, and 2DPU patterns.

Undersampling
patterns

Reconstruction
models

Threefold AF Fivefold AF

PSNR (dB) SSIM PSNR (dB) SSIM

1DRU

SPIRiT 31.970Æ 1.157 0.823Æ 0.028 29.261Æ 1.683 0.761Æ 0.039
Deepcomplex 35.586Æ 1.385 0.880Æ 0.021 33.039Æ 1.243 0.818Æ 0.029

DONet 35.812Æ 1.443 0.884Æ 0.020 33.540Æ 1.148 0.831Æ 0.028
SPIRiT-Net 36.468Æ 1.141 0.892Æ 0.019 34.077Æ 1.141 0.843Æ 0.026

2DRU

SPIRiT 38.334Æ 2.279 0.910Æ 0.023 35.782Æ 2.185 0.864Æ 0.032
Deepcomplex 39.632Æ 2.817 0.931Æ 0.024 37.245Æ 2.684 0.889Æ 0.036

DONet 39.823Æ 2.984 0.932Æ 0.025 37.500Æ 2.918 0.892Æ 0.038
SPIRiT-Net 40.937Æ 1.984 0.943Æ 0.016 38.477Æ 1.688 0.910Æ 0.020

2DPU

SPIRiT 39.398Æ 2.762 0.928Æ 0.026 36.832Æ 2.450 0.883Æ 0.034
Deepcomplex 39.491Æ 2.704 0.934Æ 0.022 37.151Æ 2.450 0.894Æ 0.034

DONet 39.786Æ 2.846 0.936Æ 0.025 37.597Æ 2.791 0.898Æ 0.037
SPIRiT-Net 40.869Æ 1.702 0.942Æ 0.016 38.941Æ 1.606 0.919Æ 0.019

RADU

SPIRiT 38.357Æ 2.409 0.911Æ 0.025 35.829Æ 2.533 0.859Æ 0.038
Deepcomplex 39.803Æ 2.886 0.933Æ 0.025 36.947Æ 2.733 0.883Æ 0.040

DONet 39.857Æ 3.004 0.933Æ 0.025 37.090Æ 2.847 0.884Æ 0.040
SPIRiT-Net 40.963Æ 1.847 0.943Æ 0.016 38.011Æ 1.813 0.901Æ 0.023

The best values are in bold.

TABLE 4: Comparisons of average PSNR and SSIM values of the MR images reconstructed by all the models for the Sagittal-PD dataset from
the 3x and 5x accelerated 1DRU, 2DRU, RADU, and 2DPU patterns.

Undersampling
patterns

Reconstruction
models

Threefold AF Fivefold AF

PSNR (dB) SSIM PSNR (dB) SSIM

1DRU

SPIRiT 31.976Æ 2.617 0.822Æ 0.045 29.763Æ 2.473 0.754Æ 0.050
Deepcomplex 36.889Æ 1.590 0.893Æ 0.019 34.342Æ 1.632 0.833Æ 0.027

DONet 37.308Æ 1.541 0.896Æ 0.018 34.931Æ 1.578 0.831Æ 0.028
SPIRiT-Net 38.178Æ 1.733 0.910Æ 0.020 35.726Æ 1.804 0.865Æ 0.030

2DRU

SPIRiT 39.310Æ 1.376 0.927Æ 0.013 36.182Æ 1.618 0.884Æ 0.021
Deepcomplex 40.806Æ 1.169 0.941Æ 0.009 38.430Æ 1.193 0.905Æ 0.014

DONet 40.798Æ 1.179 0.941Æ 0.009 38.426Æ 1.205 0.904Æ 0.014
SPIRiT-Net 42.119Æ 1.471 0.951Æ 0.011 39.906Æ 1.498 0.925Æ 0.017

2DPU

SPIRiT 39.759Æ 3.089 0.932Æ 0.013 36.970Æ 1.582 0.886Æ 0.037
Deepcomplex 40.617Æ 1.219 0.943Æ 0.009 38.342Æ 1.202 0.891Æ 0.015

DONet 40.897Æ 1.167 0.945Æ 0.008 38.586Æ 1.167 0.908Æ 0.013
SPIRiT-Net 42.339Æ 1.481 0.955Æ 0.010 40.264Æ 1.544 0.930Æ 0.016

RADU

SPIRiT 39.220Æ 1.165 0.926Æ 0.013 36.575Æ 1.528 0.872Æ 0.021
Deepcomplex 40.559Æ 1.178 0.938Æ 0.009 37.693Æ 1.293 0.891Æ 0.015

DONet 40.614Æ 1.714 0.947Æ 0.012 37.749Æ 1.835 0.910Æ 0.021
SPIRiT-Net 41.809Æ 1.527 0.948Æ 0.012 38.985Æ 1.717 0.912Æ 0.020

The best values are in bold.

IET Signal Processing 7



4.657

0.960
0.597

6.083

1.336
0.832

SPIRiT Deepcomplex DONet
–4
–3
–2
–1

0
1
2
3
4
5
6
7
8
9

10

PS
N

R 
(d

B)

–4
–3
–2
–1
0
1
2
3
4
5
6
7
8
9
10

PS
N

R 
(d

B)

Coronal-PD
Sagittal-PD

ðaÞ

2.394

1.112 1.013

3.266

1.394 1.400

SPIRiT Deepcomplex DONet
–4
–3
–2
–1

0
1
2
3
4
5
6
7
8
9

10

PS
N

R 
(d

B)

–4
–3
–2
–1
0
1
2
3
4
5
6
7
8
9
10

PS
N

R 
(d

B)

Coronal-PD
Sagittal-PD

ðbÞ

1.790 1.584
1.213

2.937

1.822 1.560

–4
–3
–2
–1

0
1
2
3
4
5
6
7
8
9

10

PS
N

R 
(d

B)

–4
–3
–2
–1
0
1
2
3
4
5
6
7
8
9
10

PS
N

R 
(d

B)

SPIRiT Deepcomplex DONet

Coronal-PD
Sagittal-PD

ðcÞ

2.649

1.268 1.045

2.500

1.271 1.216

–4
–3
–2
–1

0
1
2
3
4
5
6
7
8
9

10

PS
N

R 
(d

B)

–4
–3
–2
–1
0
1
2
3
4
5
6
7
8
9
10

PS
N

R 
(d

B)

SPIRiT Deepcomplex DONet

Coronal-PD
Sagittal-PD

ðdÞ
FIGURE 6: (a–d) denote box plots of the average difference in PSNR between SPIRiT-Net and the compared models (Deepcomplex, DONet,
and SPIRiT) with the 1DRU, 2DRU, 2DPU, and RADU patterns, respectively.

TABLE 5: Comparisons of average PSNR and SSIM values of the MR images reconstructed by all the models for the fastMRI brain dataset from
the 4x and 8x accelerated 1DEU patterns.

Undersampling
patterns

Reconstruction
models

Fourfold AF Eightfold AF

PSNR (dB) SSIM PSNR (dB) SSIM

1DEU

SPIRiT 31.314Æ 1.643 0.794Æ 0.076 23.472Æ 1.099 0.620Æ 0.027
Deepcomplex 34.293Æ 3.592 0.855Æ 0.086 28.234Æ 2.722 0.704Æ 0.048

DONet 34.209Æ 3.641 0.850Æ 0.086 29.014Æ 2.714 0.714Æ 0.042
SPIRiT-Net 34.944Æ 3.362 0.860Æ 0.076 30.127Æ 3.222 0.782Æ 0.067

The best values are in bold.
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ðaÞ ðbÞ ðcÞ ðdÞ ðeÞ

ðfÞ ðgÞ ðhÞ ðiÞ ðjÞ
FIGURE 7: Reconstructed MR images on the Coronal-PD dataset from the 3x accelerated 1DRU pattern. (a) denotes the ground truth image;
(b–e) denote the reconstructed images of SPIRiT, Deepcomplex, DONet, and SPIRiT-Net, respectively; (f ) denotes the undersampling
pattern (1DRU); and (g–j) denote corresponding error maps of reconstructed images.

ðaÞ ðbÞ ðcÞ ðdÞ ðeÞ

ðfÞ ðgÞ ðhÞ ðiÞ ðjÞ
FIGURE 8: Reconstructed MR images on the Coronal-PD dataset from the 5x accelerated 2DRU pattern. (a) denotes the ground truth image;
(b–e) denote the reconstructed images of SPIRiT, Deepcomplex, DONet, and SPIRiT-Net, respectively; (f ) denotes the undersampling
pattern (2DRU); and (g–j) denote corresponding error maps of reconstructed images.
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ðaÞ ðbÞ ðcÞ ðdÞ ðeÞ

ðfÞ ðgÞ ðhÞ ðiÞ ðjÞ
FIGURE 9: Reconstructed MR images on the Coronal-PD dataset from the 5x accelerated 2DPU pattern. (a) denotes the ground truth image;
(b–e) denote the reconstructed images of SPIRiT, Deepcomplex, DONet, and SPIRiT-Net, respectively; (f ) denotes the undersampling
pattern (2DPU); and (g–j) denote corresponding error maps of reconstructed images.

ðaÞ ðbÞ ðcÞ ðdÞ ðeÞ

ðfÞ ðgÞ ðhÞ ðiÞ ðjÞ
FIGURE 10: Reconstructed MR images on the Sagittal-PD dataset from the 5x accelerated RADU pattern. (a) denotes the ground truth image;
(b–e) denote the reconstructed images of SPIRiT, Deepcomplex, DONet, and SPIRiT-Net, respectively; (f ) denotes the undersampling
pattern (RADU); and (g–j) denote corresponding error maps of reconstructed images.
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ðaÞ ðbÞ ðcÞ ðdÞ ðeÞ

ðfÞ ðgÞ ðhÞ ðiÞ ðjÞ
FIGURE 11: Reconstructed MR images on the fastMRI brain dataset from the 4x accelerated 1DEU pattern. (a) denotes the ground truth image;
(b–e) denote the reconstructed images of SPIRiT, Deepcomplex, DONet, and SPIRiT-Net, respectively; (f ) denotes the undersampling
pattern (1DEU); and (g–j) denote corresponding error maps of reconstructed images.

TABLE 6: Comparisons of average PSNR and SSIM values with standard deviation of the MR images reconstructed by SPIRiT, Deepcomplex,
Deepcomplex with SCB, and our proposed SPIRiT-Net on the Coronal-PD dataset under the 2DPU pattern.

Reconstruction model
Threefold AF Fivefold AF

PSNR (dB) SSIM PSNR (dB) SSIM

SPIRiT 39.398Æ 2.762 0.928Æ 0.026 36.832Æ 2.450 0.883Æ 0.034
Deepcomplex 39.491Æ 2.704 0.934Æ 0.022 37.151Æ 2.450 0.894Æ 0.034
Deepcomplex with SCB 40.551Æ 1.591 0.940Æ 0.012 38.595Æ 1.515 0.916Æ 0.015
SPIRiT-Net 40.869Æ 1.702 0.942Æ 0.016 38.941Æ 1.606 0.919Æ 0.019

The best values are in bold.

TABLE 7: Comparisons of average PSNR and SSIM values with standard deviation of the MR images reconstructed by SPIRiT, DONet, DONet
with SCB, and DONet with SCB and dense on the Coronal-PD dataset under the 2DPU pattern.

Reconstruction model
Threefold AF Fivefold AF

PSNR (dB) SSIM PSNR (dB) PSNR (dB)

SPIRiT 39.398Æ 2.762 0.928Æ 0.026 36.832Æ 2.450 0.883Æ 0.034
DONet 39.786Æ 2.846 0.936Æ 0.025 37.597Æ 2.791 0.898Æ 0.037
DONet with SCB 40.650Æ 1.636 0.941Æ 0.012 38.674Æ 1.442 0.917Æ 0.014
DONet with SCB and dense 40.855Æ 1.722 0.942Æ 0.013 38.885Æ 1.557 0.919Æ 0.015

The best values are in bold.
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competing methods are less than a significance level of 0.05
ðP<0:05Þ : under all undersampling patterns and with differ-
ent acceleration factors, which proves that the difference
between our method and the other three competing methods
is significant at a significance level of 0.05.

4. Conclusions

In this paper, we propose a parallel MRI reconstructionmodel
(SPIRiT-Net), which combines the cascaded CCNNs with the
SPIRiT model. This model simultaneously utilizes the corre-
lations of multicoil k-space data and a CCNN to capture
redundant information of parallel MRI. Simulation experi-
ments on two clinical knee datasets as well as the fastMRI
brain dataset show that SPRiT-Net outperforms SPIRiT,
Deepcomplex, andDONet in terms of visual effects and quan-
titative metrics. Additional ablation experiments demonstrate
that introducing the SPIRiT model to the deep learning net-
work can effectively improve the reconstruction quality.

Data Availability

The knee data used to support the findings of this study have
been deposited in the Zenodo repository at https://doi.org/10.
5281/zenodo.10668971. The dataset contains 11−30th slices
of 20 patients. Three patients (No. 7, 9, and 6) are randomly
selected for validation, three patients (No. 1, 17, and 14) for
testing, and other 14 patients for training. We also provide
permanent identifiers (at https://doi.org/10.5281/zenodo.
10556450) for our reconstruction results of the Coronal-PD
knee dataset and the fastMRI brain dataset.We provide theses
.h5 files of our test results for one to verify the accuracy of our
metrics. We also provide the Python code for reading .h5 files
and calculating PSNR metrics.
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