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Sidelobe cancellation (SLC) is a well-established beamforming technique for mitigating interference, particularly in the context of
satellite communication (SATCOM). However, traditional SLC suffers from the issue of partially canceling the desired signal at
high signal-to-noise ratio (SNR), primarily due to unconstrained beamforming processing. Extensive research has been conducted
to address this problem; however, existing algorithms have limitations such as dependence on knowledge of signal array vectors or
number of interferers and involve high computational complexity. In this paper, we propose a robust SLC algorithm based on
beamforming vector norm constraint. Our proposal offers a practical solution by only requiring knowledge of the earth station
antenna gain and maximum auxiliary array gain to the desired signal, both of which are fully known. Furthermore, compared to
traditional SLC, our proposed method introduces additional computational complexity that only scales linearly with the size of the
auxiliary array. Simulation results demonstrate comparable performance between our proposed method and existing techniques
such as diagonal loading and spatial degrees-of-freedom control-based algorithms.

1. Introduction

Sidelobe cancellation (SLC) is widely employed to suppress
interference in radio systems equipped with high-gain anten-
nas [1, 2], particularly in the field of satellite communication
(SATCOM) [3, 4], as well as radar [5, 6]. An SLC system
typically consists of a high-gain antenna (the main antenna)
for receiving the desired signal, and an auxiliary array with
low-gain antenna elements for receiving interference signals.
The beamforming algorithm is simple, i.e., minimizing the
average output signal power by linearly weighting and com-
bining the received signals of the auxiliary array and then
subtracting from the received signal of the main antenna [7].
An intrinsic drawback of the traditional beamforming algo-
rithm is that the desired signal is partially canceled when the
received signal-to-noise ratio (SNR) is high. This problem is
known as the desired signal cancellation problem [1, 8].

Multiple methodologies have been proposed in the exist-
ing literature to address the issue of desired signal cancella-
tion. The first method involves using a blocking matrix to
suppress the desired signal in the auxiliary array output
before applying SLC beamforming [1]. However, obtaining

knowledge of the angle or array vector of the desired signal is
challenging or even impossible when interference signals are
present. Nonetheless, if the array vector of the desired signal
is known, the desired signal received by the auxiliary array
can be eliminated to prevent signal cancellation. The second
method is diagonal loading (DL) methodology [9], i.e., add-
ing a proper DL factor to the autocovariance matrix of the
auxiliary array output signal. DL is a popular and effective
method. Despite that the optimization of the DL factor
remains a well-known challenge with no universally available
simple solution [10–12]. These methods are typically limited to
uniform one-/two-dimensional arrays in order to take advan-
tage of the array geometry, e.g., [13]. The third method is to
control the number of spatial degrees-of-freedom (DoF), spe-
cially, by reducing the auxiliary array signal dimension down to
exactly the number of interferers. The dimension reduction
procedure is typically based on principal component analysis
(PCA) [8]. If the number of interferers is known exactly, DoF
control can also achieve great performance. However, estimat-
ing the number of interferers is not an easy task especially for
unknown signals [14]. Some algorithms, e.g., [7, 15], rely on
Gram–Schmidt (GS) orthogonalization to control the DoF.
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However, this technique is limited to colocated uniform auxil-
iary array for which the fixed orthogonalization order does not
impact performance. Another method is based on the concept
of worst-case performance optimization, e.g., [16], which is also
proposed for uniform arrays. However, it is associated with the
drawback of high computational complexity due to involve-
ment of convex/nonconvex optimization procedures.

In this study, we focus on an SLC system depicted in
Figure 1. However, the auxiliary array geometry is not lim-
ited to any specific configuration. Our objective is to develop
a beamforming algorithm that possesses the following prop-
erties: (1) not limited to uniform auxiliary arrays, (2) does
not require channel knowledge or angles of either the signal-
of-interest (SOI) or interference signals, and (3) has low
computational complexity. To achieve this goal, we propose
a robust SLC algorithm based on constraining the norm of
the beamforming vector. Our proposal is motivated by the
observation that in high SNR regimes, the norm of the beam-
forming vector primarily depends on and scales monotoni-
cally with SNR while being approximately independent of
interference-to-noise ratio (INR). Therefore, our hypothesis
is that constraining the norm of the beamforming vector may
mitigate the signal cancellation effect without degrading
interference cancellation performance.

The contributions of this paper are as follows:

(1) We present mathematical analysis of the relationship
between the norm of the beamforming vector and
SNR, revealing that the norm of the beamforming
vector exhibits an approximately linear behavior
with respect to SNR when the SNR is large.

(2) We demonstrate that imposing a constraint on the
norm of the beamforming vector is tantamount to
minimizing the degradation in SNR under the worst-
case condition, thereby providing a physical interpre-
tation for the norm constraint.

(3) We propose a robust SLC algorithm that incorpo-
rates a beamforming vector norm constraint, i.e.,
the optimal beamforming vector is obtained by
imposing restrictions on its vector norm. By trans-
forming the beamforming algorithm into a quadratic

constraint convex optimization problem, we enable
its solvability using well-established techniques such
as Lagrange methodology. The key advantage of this
algorithm lies in its reliance solely on the knowledge
of earth station antenna gain and maximum auxiliary
array gain to the desired signal, both of which are fully
known. Consequently, this algorithm can be applied
to arrays with arbitrary geometries.

(4) To mitigate the computational complexity of the pro-
posed algorithm, we introduce a Lagrange multiplier
approximation that exhibits a linear complexity in
relation to the number of antennas. Simulations
demonstrate excellent performance in comparison
with existing algorithms.

The paper is structured as follows. Section 2 presents the
signal model. Section 3 elaborates on the proposed robust
SLC algorithm. Section 4 presents discussions. Section 5
showcases simulation results, and conclusions are drawn in
Section 6.

2. Signal Model

Consider an SLC system with a high-gain antenna and an
auxiliary array with arbitrary geometry and low-gain ele-
ments, as illustrated in Figure 1.

The received signal of the high-gain antenna is as fol-
lows:

d nð Þ ¼ gss nð Þ þ gcc nð Þ þ nd nð Þ; ð1Þ

where sðnÞ: is the SOI, cðnÞ : ¼ ½ck�K×1 2CK×1 is the signal
vector of the K interferers, ndðnÞ : is the receiver noise of the
earth station antenna; gs is the gain of the earth station
antenna to the SOI, and gc ¼ ½gc;k�1×K 2C1×K is a row vector
consisting of the gains to the K interferers.

The received signal vector of the auxiliary array is as
follows:

x nð Þ ¼ ass nð Þ þ Acc nð Þ þ nx nð Þ; ð2Þ

where as 2CN×1 is the array vector of the SOI, A¼
½ac;k�N×K 2CN×K is the matrix composed by the array vectors
of the interferers, and nxðnÞ : ¼ ½nx;k�N×1 2CN×1 is the noise
vector of the auxiliary array, where N is the number auxiliary
antennas.

The output signal of the beamformer is as follows:

e nð Þ ¼ d nð Þ − wHx nð Þ
¼ gs − wHasð Þs nð Þ þ gc − wHAð Þc nð Þ þ nd nð Þ − wHnx nð Þ;

ð3Þ

where w2CN×1 is the beamforming vector.

Satellite

Auxiliary antennas
Interferers

Beamforming SLC output

FIGURE 1: Illustration of SLC system.

2 IET Signal Processing



The beamforming output SINR is as follows:

SINRout ¼
gs − wHasj j2ps

gc − wHAð ÞHPc gc − wHAð Þ þ 1þ wk k2ð Þpn
;

ð4Þ

where ps ¼EðjsðnÞj2Þ : is the power of the SOI, Pc ¼ diagfpc;1;
…; pc;Kg:, and pc;k ¼ EðjckðnÞj2Þ : is the power of the kth inter-
ference signal, and pn is the receiver noise power.

3. Proposed Robust Beamforming Algorithm

We begin by analyzing the relation between beamforming
vector norm and SNR, followed by the relation between
beamforming vector norm constraint and worst-case SNR
loss constraint. We then propose a robust SLC algorithm,
which is defined as an optimization problem, and then dis-
cuss its approximate solution.

3.1. Beamforming Vector Norm versus SNR. For traditional
SLC, the beamforming vector is found by solving the uncon-
straint optimization problem:

Miminize J wð Þ ¼ E e nð Þj j2ð Þ: ð5Þ
The solution is given by the following equation:

wSLC ¼ R−1
xxRxd; ð6Þ

where Rxx ¼EðxðnÞxðnÞHÞ : ¼ asaHs ps þAcPcAH
c þ pnIN and

Rxd ¼ EðxðnÞdðnÞ∗Þ : ¼ asg∗s ps þAcPcgHc .
When SNR is high, we can have the following approxi-

mation (see Appendix A, and let λ¼ 0):

wSLCk k ≈ ps
pn

gsj j ask k: ð7Þ

That is, the norm of the SLC beamforming vector is
linearly related to the SNR but is independent with the inter-
ference signal power. This observation inspires us to consider
constraining the norm of the beamforming vector to mitigate
the signal cancellation effect.

3.2. Worst-Case SNR Loss Constraint. In this section, we will
find that constraining the norm of the beamforming vector
can be interpreted as limiting the loss in SNR in the worst-
case scenario.

When interference signals are absent, the signal cancel-
lation effect is the most pronounced, which we refer to as the
worst case. Under this condition, the beamforming output
SNR is as follows:

SNR ¼ gs − wHasj j2ps
1þ wk k2ð Þpn

: ð8Þ

We define SNR loss as follows:

ρ¼ SNR0=SNR ¼ ps gsj j2
pn

=
ps gs − wHasj j2
1þ wk k2ð Þpn

¼ gsj j2 1þ wk k2ð Þ
gs − wHasj j2 ;

ð9Þ

where SNR0 is the received SNR of the earth station antenna.
We would expect the SNR loss to be minimal. Therefore, we
restrict ρ≤ ρloss, where ρloss is a control variable that denotes
the maximum SNR loss. Based on our experience, it is a good
practice to set ρloss within the range of 0.1–1 dB.

By applying Cauchy–Schwarz inequality to Equation (9),
we get the following equation:

ρ ≤
gsj j2 1þ wk k2ð Þ
gsj j2 − ask k2 wk k2 ; ð10Þ

where kasjj2 is the gain of the auxiliary array to the SOI.
Obtaining as becomes challenging or impossible in the

presence of interferences, especially when the SNR is low,
such as in SATCOM. However, the maximum gain of the
auxiliary array, denoted by ε2, is a priori knowledge. By
replacing kasjj2 with ε2 in Equation (10), we can get the
following equation:

ρ ≤
gsj j2 1þ wk k2ð Þ
gsj j2 − ε2 wk k2 ≤ ρloss: ð11Þ

Equation (11) can be seen as a worst-case SNR loss con-
straint. In other words, in the worst-case scenario that the
gain of the auxiliary array to the SOI achieves the maximum,
SNR loss should be smaller than a predefined value ρloss.

From Equation (11), we can derive the following equation:

wk k2 ≤ η¼ ρloss − 1ð Þ gsj j2
gsj j2 þ ρlossε

2 : ð12Þ

Hence, the worst-case SNR loss constraint can be reformu-
lated as a constraint on the norm of the beamforming vector. It
is worth noting that the right-hand side of Equation (12) can be
determined offline, making it easily applicable in practice.

3.3. Robust SLC Beamforming Algorithm. Imposing the con-
straint of Equation (12) on the optimization problem defined
in Equation (5), we can formulate the following new optimi-
zation problem:

Minimize J wð Þ s:t: wk k2 ≤ η: ð13Þ

This optimization problem can be solved using Lagrange
multiplier methodology [17]. Note that when the solution of
Problem (5) satisfies the constraint Equation (12), it is
unnecessary to solve the constraint problem defined by
Equation (13); Otherwise, if the constraint is violated, the
Problem (13) is equivalent to the following equation:

Minimize J wð Þ s:t: wk k2 ¼ η: ð14Þ

To solve Equation (14), first, form the Lagrangian as
follows:
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L w; λð Þ ¼ wHRxxw − wHRxd − wHRxdð ÞH þ λ wk k2 − ηð Þ:
ð15Þ

Then, derive the optimality conditions as follows:

rwL w; λð Þ ¼ Rxx þ λIMð Þw − Rxd ¼ 0

rλL w; λð Þ ¼ wk k2 − η¼ 0:
ð16Þ

Hence:

wopt ¼ Rxx þ λINð Þ−1Rxd; ð17Þ

where λ is found by solving the following equation:

wopt

 2 − η¼ 0: ð18Þ

Substituting Equation (17) into Equation (18), we get the
following equation:

f λð Þ ¼ RH
xd Rxx þ λIMð Þ−2Rxd − η¼ 0: ð19Þ

Applying eigendecomposition to Rxx, we get Rxx ¼
QΓQH. Then, we obtain the following equation:

Rxx þ λ¼QΓQH þ λIM ¼Q Γ þ λIMð ÞQH: ð20Þ

Therefore:

f λð Þ ¼ RH
xd Rxx þ λð Þ−2Rxd − η

¼ RH
xdQ Γ þ λIð Þ−2QHRxd − η

¼ QHRxdð ÞH Γ þ λIð Þ−2 QRxdð Þ − η:

ð21Þ

Let c¼QHRxd, and substituting it into Equation (21), we
get the following equation:

f λð Þ ¼ cH Γ þ λIð Þ−2c − η¼ ∑
i

cij j2
γi þ λð Þ2 − η: ð22Þ

Since we have the following inequality:

∂f λð Þ
∂λ

¼ ∑
i
−2 cij j2 γi þ λð Þ−3<0 for λ ≥ 0: ð23Þ

The solution of Equation (22) is unique. Equation (23)
has to be solved using numerical methods like Newton’s
method. The search procedure typically converges in a few
iterations [18].

The proposed robust SLC beamforming algorithm
(Algorithm 1) is summarized below:

The main computational complexity comes from the
eigendecomposition of Rxx in Step 3, which is about OðN3Þ :

FLOPs. Therefore, the complexity is significant when N is
large.

3.4. Lagrange Multiplier Approximation. To reduce the com-
plexity involved in finding the optimal Lagrange multiplier,
we propose a method to approximate it, by taking advantage
of some properties of the SLC system. As a result, the com-
plexity is reduced to OðNÞ: FLOPs.

We find that the following approximation holds for SLC
(see Appendix A for the proof):

wk k2 ≈ wsk k2 ≈ p2s gsj j2 ask k2
pn þ λð Þ2 : ð24Þ

Then, let kwjj2 ¼ η. The solution of λ is as follows:

λ ¼ ps gsj j ask kffiffiffi
η

p − pn: ð25Þ

Unfortunately, the knowledge of ps, pn, gs, and kasjj2 is
required for calculating λ. Usually,jgsj: and kasjj: are a priori
information, and pn can be easily measured. It is, however,
hard to estimate ps particularly when interferences are
present.

We observe that it is possible to use Equation (24) to
get a rough estimate of ps, or psjgsj :kasjj : as a whole, when
SNR is high. This is explained in the following. First, let
λ¼ 0, i.e., without using the SNR loss constraint, then
Equation (24) is an approximation of kwSLCjj2 calculated
by Equation (5), i.e.:

wSLCk k2 ≈ ps
pn

gsj j ask k
� �

2
: ð26Þ

Then, a rough estimate of ps is then given by the follow-
ing equation:

ps ≈
pn wSLCk k
gsj j ask k : ð27Þ

Substituting Equation (26) or Equation (27) into
Equation (25), we finally can get the following equation:

bλ ¼ pn
wSLCk kffiffiffi

η
p − 1

� �
: ð28Þ

Note that now we do not need the information of ps, gs,

and kasjj2 at all, but only pn, to calculate the bλ. The compu-
tational complexity of Equation (28) is only OðNÞ:.

Step 1: Compute Rxx and Rxd .

Step 2: Use Equation (5) to calculate wopt (unconstraint SLC).
If kwoptjj2 ≤ η, go to Step 5; otherwise, go to Step 3.

Step 3: Compute the eigendecomposition of Rxx .

Step 4: Use Equation (22) to find optimal λ by numerical
search.

Step 5: Use Equation (17) to calculate wopt.

Step 6: Use Equation (3) to calculate SLC output signal.

ALGORITHM 1: Robust SLC algorithm.
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Since λ should be non-negative, we define λ as the fol-
lowing equation:

λ¼
bλ; bλ ≥ 0

0; bλ<0

(
: ð29Þ

Then, λ can then be substituted into Equation (17) to cal-
culate w. As a result of Equation (29), λ is set to zero when SOI
power is low, i.e., the proposed algorithm degrades to tradi-
tional SLC.

The robust SLC algorithm using an approximated Lagrange
multiplier is summarized in the following.

4. Discussion

The proposed algorithm can be implemented with either an
iterative or noniterative structure. For the iterative imple-
mentation, the algorithm structure resembles that of stochas-
tic gradient algorithms, such as least mean square (LMS).
However, a key distinction lies in the weight updates being
determined by wðnþ 1Þ : ¼wðnÞ : þ μbxðnÞ :e∗ðnÞ :, where bxðnÞ
: ¼ xðnÞ : þ ffiffiffi

λ
p

nðnÞ : and nðnÞ : represents i.i.d. Gaussian noise
vector. This similarity arises from the observation that,
EðbxðnÞbxHðnÞÞ : ¼Rxx þ λIN , and Equation (17) resembles the
Wiener filter. On the other hand, for noniterative implemen-
tation, Step 1 computes the covariance matrix Rxx and cross-
correlation vector Rxd using received signal samples, without
explicitly requiring instant channel knowledge or antenna
array vectors. The remaining steps are straightforward.

The limitations of this study are as follows. First, we have
primarily focused on Gaussian noises, similar to previous
relevant works, as the main objective is to enhance robust-
ness against desired signal cancellation effects. However, it is
also crucial to improve robustness against non-Gaussian
noises in practical scenarios. In this regard, incorporating
ideas proposed in [19, 20], particularly regarding iterative
implementation, can be considered. Second, if an iterative
structure is employed for implementing the proposed algo-
rithm, investigating its tracking performance would be
intriguing. Specifically, tracking the power of the desired
SOI becomes important when dealing with scenarios where
SOI power frequently changes. The SOI power remains con-
stant in SatCom system due to the line-of-sight channel, thus
obviating the need for intensive tracking.

5. Simulation Results

In this section, simulations are conducted to compare the
performance of the proposed Robust SLC algorithm with
existing algorithms, including traditional SLC, PC method
proposed in [8], diagonal loading method in [13], while the
diagonal loading factor optimized by numerical search. Min-
imum power distortionless response (MPDR), assuming
knowledge of the SOI array vector, is considered as a perfor-
mance benchmark.

The main simulation parameters are listed in Table 1. The
earth station antenna is a Ku band parabolic antenna of 0.8m
diameter, with amaximum gain of 38 dB; the auxiliary array is
a uniform circular array with diameter of 1m, surrounding
the main antenna. The auxiliary antenna element is an isotro-
pic antenna with a gain of 6 dB. A comparison of the earth
station antenna pattern and the auxiliary array gain is shown
in Figure 2. The interferers are located within the sidelobe
angles of the earth station antenna. The size of the auxiliary
array is chosen to ensure that its gain is much larger than the
sidelobe gains toward the interferers. The ranges of SNR and
INR are determined based on practical considerations [21],
and relevant literature such as in [13, 22].

5.1. Validation of Lagrange Multiplier Approximation.
The only difference between the Robust SLC algorithm
(Algorithm 2) and the preliminary version (Algorithm 1) lies
in the utilization of Lagrange multiplier approximation. In this
subsection, we present numerical results to validate the approx-
imation method of the Lagrange multiplier.

The simulation parameters are as follows: K ranges from
1 to 3, and the interferers are positioned at angles of 30°,

TABLE 1: Simulation parameters.

Interferer angles jθc;k − θsj : ≥ 10

Number of interferers, K 1–3
SNR, ρs 0–30 dB
INR, maxkρc;k 0–30 dB
Auxiliary array size, N 8
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FIGURE 2: Comparison of earth station antenna gain and auxiliary
array gain.

Step 1: Compute Rxx and Rxd .

Step 2: Use Equation (5) to calculate wopt (unconstraint
SLC). If kwoptjj2 ≤ η, go to Step 5; otherwise, go to Step 3.

Step 3: Calculate λ using Equation (28) and (29).

Step 4: Use Equation (17) to calculate wopt.

Step 5: Use Equation (3) to calculate SLC output signal.

ALGORITHM 2: Robust SLC algorithm with approximated Lagrange
multiplier.
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−30°, and 60°, respectively; INR= 30 dB, and ρloss = 0.5 dB.
Figure 3 presents an example of the beamforming output
SINR and Lagrange multiplier. Note that the Lagrange mul-
tiplier is normalized with respect to the noise power.

The approximated Lagrangemultiplier is generally observed
to be smaller than the optimal one, resulting in a slight decrease
in output SINR. This reduction primarily occurs at high SNR
levels, particularly when SNR exceeds approximately 25 dB.
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FIGURE 3: Example of output SINR and Lagrange multiplier using Algorithms 1 and 2: (a) K= 1, (b) K= 2, and (c) K= 3.
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When the SNR is below 7 dB, both the optimal and approx-
imated Lagrange multipliers are zero (thus not visible on
the logarithmic scale). Subsequent sections will mainly
focus on analyzing Algorithm 2 due to its practicality stem-
ming from low computational complexity.

5.2. Choice of ρloss for Robust SLC Algorithm. The choice of
ρloss is important for the performance of the proposed robust
SLC algorithm. If it is too small, the constraint will be too
restrictive, there may be no viable solution; if it is too large,
the algorithm will revert to traditional SLC, hence no
improvement is obtained. Since there is no theoretical
method to obtain the optimal value of ρloss, we turn to
numerical analysis to examine the effect of it.

Figure 4 presents results of average output SINR versus
ρloss, for various SNRs, INRs, and number of interferers. We
observe that:

(1) For low SNRs (≤10 dB), output SINR is almost con-
stant with respect to ρloss. Therefore, it is unnecessary
to use the constraint.

(2) For high SNRs (>10 dB), the optimal SINR is achieved
when ρloss is around 0.1–1 dB. INR has negligible
effect on the optimal ρloss.

(3) The optimal ρloss is slightly larger for a larger number
of interferers.

(4) The output SINR decreases slowly with ρloss, we
would expect a rough setting of ρloss will not signifi-
cantly degrade the performance.

Hence, in this paper, we consider ρloss to be in the range
of 0.1–1 dB.

5.3. Beamforming Performance. Figure 5 presents the average
beamforming output SINR versus receive SNR for different
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FIGURE 4: Output SINR versus ρloss: (a) single interferer, (b) two interferers, and (c) three interferers.
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INRs. The average is taken with respect to random interfer-
ence directions. For the proposed Robust SLC algorithm,
ρloss ¼ 0.1, 0.5, and 1 dB are considered, respectively. We
observe that:

(1) For traditional SLC, the output SINR starts to decrease
when SNR is larger than about 10 dB and experiences a
more significant degradation as the SNR increases.

(2) The DL method achieves close-to-optimal perfor-
mance as MPDR for low and moderate SNRs (≤20
dB) but performs poorly for high SNRs. The PC-based

method achieves a similar performance as DL but
deteriorates when the SNR is high (SNR≥ 20 dB).

(3) The robust SLC algorithm achieves approximately
the same performance as the DL method when using
a small ρloss, for example, 0.1 dB. This result is
observed across various simulated SNRs and INRs,
demonstrating the effectiveness of our proposal.

(4) As the SNR constraint becomes relaxed, i.e., when
ρloss increases, we observe that the performance curve
of the Robust SLC algorithm approaches that of tra-
ditional SLC (still significantly superior). Therefore, it

Robust SLC, ρ loss = 0.1 dB 
Robust SLC, ρ loss = 0.5 dB
Robust SLC, ρ loss = 1 dB
SLC

PC-SLC
DL
MPDR

–5

0

5

10

15

20

25

30
SI

N
R o

ut
 (d

B)

50 10 15 20 25 30
SNR (dB)

ðaÞ

Robust SLC, ρ loss = 0.1 dB 
Robust SLC, ρ loss = 0.5 dB
Robust SLC, ρ loss = 1 dB
SLC

PC-SLC
DL
MPDR

–5

0

5

10

15

20

25

30

SI
N

R o
ut

 (d
B)

50 10 15 20 25 30
SNR (dB)

ðbÞ

–5

0

5

10

15

20

25

30

SI
N

R o
ut

 (d
B)

50 10 15 20 25 30
SNR (dB)

Robust SLC, ρ loss = 0.1 dB 
Robust SLC, ρ loss = 0.5 dB
Robust SLC, ρ loss = 1 dB
SLC

PC-SLC
DL
MPDR

ðcÞ

–5

0

5

10

15

20

25

30

SI
N

R o
ut

 (d
B)

50 10 15 20 25 30
SNR (dB)

Robust SLC, ρ loss = 0.1 dB 
Robust SLC, ρ loss = 0.5 dB
Robust SLC, ρ loss = 1 dB
SLC

PC-SLC
DL
MPDR

ðdÞ
FIGURE 5: Output SINR versus receive SNR for different algorithms: (a) INR= 0 dB, (b) INR= 10 dB, (c) INR= 20 dB, and (d) INR= 30 dB.
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is advantageous to employ a smaller ρloss for Robust
SLC.

6. Conclusions

We propose a robust SLC algorithm based on beamforming
vector norm constraint to address the signal cancellation prob-
lem in SLC systems. The algorithm is formulated as a quadratic
optimization problem with a quadratic inequality constraint,
which is then solved using Lagrange methodology. To reduce
the computational complexity of finding the Lagrange multi-
plier, we propose an approximation method. This results in a
linear computation complexity with respect to the auxiliary
array size, contrasting with the cubic complexity of Lagrange
methodology. Simulation results demonstrate that our pro-
posed algorithm performs comparably to optimal diagonal
loading and principal component-based algorithms.

Appendix

A. Proof or Equations (7) and (24).

First, rewrite Equation (17) as follows:

w ¼ Rxx þ λINð Þ−1Rxd

¼ Rxx þ λINð Þ−1 asg∗
s ps þ ∑

k
ac;kg∗c;kpc;k

� �
¼ Rxx þ λINð Þ−1asg∗s ps|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ws

þ∑
k

Rxx þ λINð Þ−1ac;kg∗c;kpc;k|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
wc;k

;

ðA:1Þ

where ws is the component contributed by SOI, and wc;k, k¼
1;…;K are the components contributed by the interference
signals.

Next, we will show that kwsjj2 ≫ kwcjj2, where wc ¼
∑k wc;k, when SNR is high, thus we can have the approxima-
tion that kwjj2 ≈ kwsjj2.

By using the Woodbury equation, we get the following
equation:

Rxx þ λINð Þ−1 ¼ psasa
H
s þ Rin þ λIð Þð Þ−1

¼ Rin þ λIð Þ−1 − ps Rin þ λIð Þ−1asaHs Rin þ λIð Þ−1
Iþ psaHs Rin þ λIð Þ−1as

:

ðA:2Þ

Therefore:

ws ¼ Rin þ λIð Þ−1 − ps Rin þ λIð Þ−1asaHs Rin þ λIð Þ−1
1þ psa

H
s Rin þ λIð Þ−1as

� �
asg∗

s psð Þ

¼ Rin þ λIð Þ−1asg∗s ps −
ps Rin þ λIð Þ−1asaHs Rin þ λIð Þ−1asg∗s ps

1þ psa
H
s Rin þ λIð Þ−1as

¼ ps Rin þ λIð Þ−1asg∗s −
ps Rin þ λIð Þ−1asg∗

s psa
H
s Rin þ λIð Þ−1as

1þ psaHs Rin þ λIð Þ−1as

:

ðA:3Þ

Based on eigenvalue decomposition, we can get Rin ¼
∑K

i¼1γiuiu
H
i þ∑N

i¼Kþ1pnuiu
H
i , and then the following equation:

aHs Rin þ λIð Þ−1as ¼ aHs ∑
N

i¼1

uiuHi
γi þ λ

as

¼ ∑
K

i¼1

aHs uiuHi as
γi þ λ

þ ∑
N

i¼Kþ1

aHs uiuHi as
pn þ λ

¼ UH
I ask k2

γ þ λ
þ UH

Nask k2
pn þ λ

≈
ask k2

pn þ λ
:

ðA:4Þ

The approximation here is due to the fact that the signal
power of the SOI falls mainly into the noise subspace.

Similarly:

aHs Rin þ λIð Þ−2as ≈
ask k2

pn þ λð Þ2 : ðA:5Þ

Substituting Equation A.4 into Equation A.3, we get the
following equation:

ws ≈ ps Rin þ λIð Þ−1asg∗
s −

ps Rin þ λIð Þ−1asg∗s ps ask k2
pnþλ

1þ ps
ask k2
pnþλ

¼ psg∗s Rin þ λIð Þ−1as 1 −
ps ask k2

pn þ λþ ps ask k2
� �

¼ psg∗s Rin þ λIð Þ−1as
pn þ λ

pn þ λþ ps ask k2
≈ psg∗

s Rin þ λIð Þ−1as

;

ðA:6Þ

where it is assumed that pskasjj2 ≪ pn, i.e., the SOI power
received by the auxiliary array is much smaller than the
receiver noise. Then, we can obtain the following equation:

wsk k2 ≈ p2s gsj j2aHs Rin þ λIð Þ−2as ≈
p2s gsj j2 ask k2
pn þ λð Þ2 : ðA:7Þ

Therefore, kwsjj2 increases quadratically with the SOI
power ps.

Like the derivation of kwsjj2, we can get the following
equation:

wc;k ¼ Rin þ λIð Þ−1ac;kg∗c;kpc;k
−
ps Rin þ λIð Þ−1asaHs Rin þ λIð Þ−1ac;kg∗c;kpc;k

1þ psaHs Rin þ λIð Þ−1as
:

ðA:8Þ
Since as is approximately orthogonal to the interference

subspace, and ac;k is orthogonal to the noise subspace [13],
we can get the following approximation:
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aHs Rin þ λIð Þ−1ac;k ¼ aHs ∑
N

i¼1

uiuHi
γi þ λ

ac;k

¼ ∑
K

i¼1

aHs uiuHi ac;k
γi þ λ

þ ∑
N

i¼Kþ1

aHs uiuHi ac;k
pn þ λ

≈ 0:

ðA:9Þ

Based on the above equation, we have the following
equation:

wc;k ≈ Rin þ λIð Þ−1ac;kg∗
c;kpc;k: ðA:10Þ

Thus, wc;k is then not related to SOI. Then, we have the
following equation:

wck k2 ¼ gcPcAH
c AcPcAH

c þ pn þ λð ÞINð Þ−2AcPcgHc :

ðA:11Þ

It is, however, not possible to further simplify the above
equation. Therefore, we consider an assumption that the
array vectors of the interferers are mutually orthogonal.
This is approximately true when the interferers are separated
larger than a beam width [13]. Since the auxiliary array has a
large aperture, the beamwidth is small; therefore, the assump-
tion can be employed safely. Under this assumption, we have
the following equation:

wck k2 ≈ ∑
k

p2c;k ac;k
 2 gc;k�� ��2

pc;k ac;k
 þ pn þ λ

À Á
2 : ðA:12Þ

We can see that kwcjj2 increases with the interference
power. When the interference power is high, we have the
following equation:

wck k2 ≈ ∑
k

gc;k
�� ��2
1þ λð Þ2 : ðA:13Þ

Therefore, kwcjj2 tends to level off when interference
power increases, and finally becomes upper bounded.

By comparing Equations (A.7) and (A.13), we can con-
clude that kwsjj2 will be much larger than kwcjj2 when the
SNR is large. Hence, kwjj2 ≈ kwsjj2. Note that jgsj2 ≫ jgc;kj2
since the main antenna has low sidelobes, while usually
kasjj2 ≥maxðjgc;kj2Þ :.

To illustrate the above findings, we present simulation
results of the average of kwjj2, kwsjj2, and kwcjj2 versus SNR
in Figure 6. The number of the interferers is K ¼ 2. The other
parameters used in this section remain consistent with those
in Section 5. We can see that when SNR is larger than around
10 dB, kwjj2 ≈ kwsjj2, and kwcjj2 is almost constant for dif-
ferent SNRs. In fact, when SNR≥ 10 dB, kwsjj2 start to dom-
inates, then the output SINR starts to drop dramatically.

Based on the above approximations, we can finally get
the following equation:

wk k2 ≈ wsk k2 ≈ p2s gsj j2 ask k2
pn þ λð Þ2 : ðA:14Þ
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