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In the domain of lie detection, a common challenge arises from the dissimilar distributions of training and testing datasets. This
causes a model mismatch, leading to a performance decline of the pretrained deep learning model. To solve this problem, we
propose a lie detection technique based on a domain adversarial neural network employing a dual-mode state feature. First, a deep
learning neural network was used as a feature extractor to isolate speech and facial expression features exhibited by the liars. The
data distributions of the source and target domain signals must be aligned. Second, a domain-antagonistic transfer-learning
mechanism is introduced to build a neural network. The objective is to facilitate feature migration from the training to the testing
domain, that is, the migration of lie-related features from the source to the target domain. This method results in improved lie
detection accuracy. Simulations conducted on two professional lying databases with different distributions show the superiority of
the detection rate of the proposed method compared to an unimodal feature detection algorithm. The maximum improvement in
detection rate was 23.3% compared to the traditional neural network-based detection method. Therefore, the proposed method can
learn features unrelated to domain categories, effectively mitigating the problem posed by different distributions in the training and
testing of lying data.

1. Introduction

Lying is a complex psychological state in which an individual
deliberately misleads others through the employment of false
statements, distortion of facts, or intentional omission of
information.

Lie detection is an important research field [1, 2] within
computer linguistics, psychology, military science, and other
disciplines. The psychological phenomenon of lying is a com-
plex sensation influenced by the interactions between emo-
tions, cognition, and will. The processes governing the
generation and alteration of the psychological state of lying
can affect human physiological characteristics. These changes
involve speech signal characteristics, facial expressions, and
EEG signals. Therefore, in the research process, it is necessary
to adopt a comprehensive approach that takes into account
the influence of various factors.

In actual lie detection scenarios, the distributions of the
training and testing data differ because of the factors such as
inconsistent collection environments and differences in

collection methods. Pretrained deep learning models may
experience a sharp deterioration in detection algorithm perfor-
mance and model mismatch when used in practice, and a large
amount of unlabeled test data cannot be fully utilized. It is
important to use the transfer learning techniques to obtain
transferable knowledge on different data distributions. This
can be used to explore the correlation between training and
testing data to obtainmultimodal information. Therefore, stud-
ies on lie detection in real scenarios are important for addres-
sing psychological computing problems.

Currently, lie detection leverages a spectrum of signals,
including speech, facial expressions, and other physiological
indicators [3, 4]. In the realm of speech-based detection
methods, employing psycholinguistic features based on lan-
guage inquiry has been proposed as an effective means for lie
detection [5]. Studies have shown that the pitch, duration,
energy, and pauses during speech can provide information
on lying [6–8]. In a similar vein, Elliott and Leach [9] ana-
lyzed speaking proficiency to judge whether a speaker was
lying. The specific operational method focused on the

Hindawi
IET Signal Processing
Volume 2024, Article ID 7914185, 13 pages
https://doi.org/10.1049/2024/7914185

https://orcid.org/0000-0002-1038-7910
https://orcid.org/0000-0003-3761-6848
mailto:92010@jssvc.edu.cn
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1049/2024/7914185


relationship between language proficiency and lying through
the random testing of people with different levels of English
proficiency. In a previous study by Dai et al. [10], speech
spoofing detection based on big data and machine learning
was proposed. Among non-speech-based detection methods
based on facial physiological characteristics, thermal imaging
has emerged as a valuable tool for measuring facial blood
flow and skin temperature [11, 12]. Some studies have found
that facial micro-expressions such as protruding lips and
symbolic gestures may be signs of lying [13, 14]. Moreover,
some researchers have detected lies by measuring cerebral
blood flow using functional brain magnetic resonance imag-
ing or by constructing a multichannel lie detection system
based on cardiac impact signals [15, 16].

Lie detection technology based on multifeature fusion has
received significant attention. In the literature [17, 18], lie
detection methods not only extract basic features from audio,
video, and text modalities but also use manually annotated
micro-expression features. In another study by Li [19], con-
volutional neural networks (CNNs) and long short-term
memory deep learning models were used to extract audio
and video features. In another study by Mathur and Matarić
[20], a multimodal model was proposed to detect lies by com-
bining the acoustic, vision, and text modalities. Amultifeature
noncontact lie detection technique was developed. Although,
considerable research has been dedicated to voice-based lie
detection [21–24], these methods often require a large num-
ber of training samples and have significant sensitivity to data
discrepancies when the training and testing datasets originate
from the different distributions. In addition, improvements in
lie detection model performance obtained by combining the
features of differentmodalities must be compared and verified
repeatedly. Therefore, distinguishing the most effective lie
features requires further investigation.

In this study, a lie detection method is developed based
on a domain adversarial neural network (DANN) and
bimodal features. The detection feature is a fusion of speech
signals and facial expressions. Ordinarily, training and test-
ing data from different domains have individual character-
istics and distributions, which lead to a mismatch problem in
the pretrained deep learning model. The purpose of this
study was to solve the problem of an actual lie detection
scene. Labeled data were used in the training process, and
unlabeled data were used in the testing process. Moreover,
the correlation between labeled and unlabeled data from
different domains should be fully investigated. This can
improve the lie detection performance by extracting and
fuzing bimodal features of the data. The proposed DANN-
based lie detection technology utilizes the adversarial com-
petitive relationship in a DANN. It learns lie features from
data that do not contain the domain category information.
This provides a good solution to the domain mismatch prob-
lem faced by lie detection models and improves their
performance.

This study proposes a new lie detection model based on a
multimodal domain adversarial neural network that inte-
grates speech and facial expression features to detect lies.
The experimental results demonstrated that the extracted

speech and facial expression features were significant indica-
tors for detecting lies, and the accuracy of lie detection sig-
nificantly improved through the combination of multiple
features. Compared to the existing methods, the method
proposed in this study has significant advantages and out-
standing contributions in the following two aspects:

First, as concerns model selection, the mismatch between
the pretrained deep learning models was considered. The
pretrained system has the problem of sharp degradation in
performance owing to the distribution differences between
the training and testing data. This study uses the DANN
model, which introduces the idea of adversarial learning in
transfer learning. This deep learning model focuses on the
selection of transferable features between the different
domains and achieves good classification. The model in
this study is more suitable for the actual requirements of
lie detection scenarios.

Second, in terms of feature selection, the proposed lie detec-
tion model effectively addresses the problems of low accuracy
and poor model robustness reported in previous studies. This
method integrates speech and facial expressions to comprehen-
sively determine the lying state of a person from multiple per-
spectives. For speech signals, this study designs a deep
separable convolutional neural network (DSCNN) that can
learn speech features well and has absolute advantages in light-
weight aspects. A sparse CNN (SCNN) was used for facial
expression signals. It can comprehensively learn facial features
at each stage. In addition, this study introduces a multihead
attention mechanism to search for the credibility of various
modal features. Decision fusion can be achieved through
weight allocation. Therefore, the proposed method yielded
more comprehensive and accurate classification results.

In summary, the proposed multifeature lying psychological-
state detectionmethod based onDANNs represents an advance-
ment in psychological computing. The DANN provides a good
solution for alleviating domain mismatch problems. The core
concept is to learn the discriminative features of lying states from
source and target domain data. These features do not contain
domain category information.

2. Principle of Domain Adversarial
Neural Networks

A DANN alleviates the problem of domain mismatch by
making feature vectors contain no domain-specific informa-
tion [25–28]. Typically, domain adversarial transfer learning
consists of a feature extractorGf , a domain discriminator Gd ,
and a tag predictor Gy. The purpose of Gf is to learn the
domain-invariant feature representations to confuse Gd .
However, Gd attempts to distinguish the characteristics of
source domain samples from those of target domain samples.
The construction of Gy is designed to classify the objects into
different categories. The purpose of domain adversarial
training is to reduce the distribution differences between
the source and target domains using a zero-sum game pro-
cess. The network diagram is shown in Figure 1.

The structure consists of a feature extractor, a domain
discriminator, and two label classifiers for adversarial
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interactions. The network comprises two flow directions. The
source domain data, labeled as lying data, are used as the input
data for the firstflow. The other flowhandles target domain data,
which contain unlabeled data. The source- and target-domain
data flow through the feature extractor. The source-domain data
flow into the label classifier and are used to calculate the source-
domain label classification loss. The source and target domain
data flow jointly into the domain classifier and the domain
classification loss is calculated. The optimization goal of the
network is to minimize the source domain label classification
loss while maximizing the domain classification loss. The goal is
to determine domain-independent feature parameters.

In the training phase, the weight parameters of the fea-
ture extractor and domain classifier are optimized and
updated according to the loss function. This phase ceases
when the domain classifier cannot determine whether the
input data are from the source or the target domain datasets.
To ensure that the learned features do not contain domain
class information, the DANN model introduces a gradient
reversal layer (GRL) between the domain classifier and the
feature generation network. The GRL is located between the
feature layer and domain classifier. The error gradient of
the domain classifier is transmitted to the feature generation
network through backpropagation. It is multiplied by a neg-
ative value before propagating to the feature generation net-
work. The purpose is to prevent the domain classifier from
distinguishing the feature vectors generated by the input
data. This ensures that the feature distributions of different
domain data in the feature space tend to be consistent.
The mathematical definition of DANN can be expressed as
follows:
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Here, xi denotes the classification label of the ith sample,
and yi denotes the classification label of the i-th sample. Gf ;
Gy;  and Gd , respectively, represent the weight parameters of
the feature extraction, label classification, and domain dis-
crimination layers, and Li

y and Li
d , respectively, represent

the loss functions of the i-th sample passing through the label
classifier and domain discriminator, respectively. The hyper-
parameter λ is a weighting factor used to balance the con-
tributions of the label and domain discriminators to the
target loss function. The weight parameters of the feature
extractor Gf and label classifier Gy are updated to minimize
the loss function of the DANN. The dataset contains n
labeled source domain datasets Ds and m unlabeled target
domain datasets Dt .

bθ f ; bθy� �
¼ argmin

θf ;θy

 E θf ; θy; bθd� �
: ð4Þ

The training of parameter θd is performed in a manner
exactly the opposite of that of the feature extraction and label
classification layers. It is updated alternately with the param-
eters of the feature extractor θf and the label classifier θy .
Given the parameters θf and θy, the objective function of the
DANN is maximized. This makes the distributions of the
source and target domains close to each other, rendering
distinguishing them using a domain classifier difficult. The
data are defined as follows:

bθd ¼ argmax
θd

 E bθ f ; bθy; θd� �
: ð5Þ
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FIGURE 1: Network diagram of DANN.
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During the training phase, the model utilizes the
maximum–minimum strategy to update the parameters in
the model alternately according to Equations (4) and (5). The
training process continues until the model produces discrim-
inative features that do not contain domain category infor-
mation. This alleviates the problem of mismatched features
between the training and testing domains.

3. Bimodal Lie Feature Fusion

A lie detection technique based on DANNs using speech and
facial expressions with bimodal features has been developed.
The detection model learns speech and facial expression sig-
nals using the DANN method, and the domain spatial repre-
sentation features are obtained. The purpose is to realize
domain-independent features of lie detection knowledge to
improve the success rate of lie detection.

3.1. Feature Extraction
(1) Speech Lying Feature Extraction. The speech feature

extractor uses a DSCNN as the feature extraction network. This
ensures classification accuracy by minimizing the network
parameters to the extent possible. In contrast to traditional con-
volution, deep separable convolution first performs a separate
convolution operation on each channel, which is called “depth-
wise convolution”. Subsequently, a 1×1 convolution operation
is performed to combine several outputs, which is called “point-
wise convolution.”A schematic representation of the DSCNN is
shown in Figure 2.

In the DSCNN, the calculation of depthwise convolution
uses a convolutional kernel for each channel of the input
feature. Subsequently, the outputs from all these convolu-
tional kernels are concatenated to obtain the final output.
In contrast, pointwise convolution is a 1× 1 convolution
that assumes a dual role in the DSCNN. First, it enables

the DSCNN to freely change the number of output channels.
Second, it performs channel fusion on the features, facilitat-
ing the mapping of the output through the depthwise con-
volution. The computational complexity of the DSCNN is
approximately 1=C that of traditional convolution, where C
is the number of convolution kernels. Therefore, the utiliza-
tion of deep separable convolutions leads to a substantial
reduction in computational complexity compared to that
of a traditional CNN.

It is necessary to extract the lying speech feature sets from
the source and target domains using a DSCNN. The extrac-
tion process unfolds in several steps. First, 16 low-level
descriptions (LLDs) are extracted from the speech signals:
zero-crossing rate, root-mean square, pitch frequency (nor-
malized to 500 Hz), harmonic-to-noise ratio, and mel-
frequency cepstral coefficients in the range 1–12. Second,
the first-order Δ coefficients for these 16 LLD features are
calculated to obtain 16 new coefficient features. Finally, a
set of statistical functions containing 12 categories is obtained:
mean, standard deviation, kurtosis, skewness, minimum, maxi-
mum, relative position, range, two linear regression coefficients,
and their mean square errors. By performing these computa-
tions across 32 features, spanning the 12 categories, a final fea-
ture set that included 16× 2× 12= 384 attributes is obtained.

(2) Lying Facial Expression Features Extraction. Facial
expression features are extracted using a SCNN. These fea-
tures specifically pertain to lying and are extracted from the
source and target domains. A total of 68 key facial expression
points are detected. Three different features of the facial
expression images are extracted: texture, shape, and spatial
relationships. Texture features are used to analyze local tex-
ture information in the expression images. Shape features are
used to generate the corresponding models based on the
external shape information of the trained expression image
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FIGURE 2: Schematic diagram of DSCNN.
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and to match them with the measured image. Spatial rela-
tionship features are used to extract features based on the
spatial position relationships of the most important parts of
an image.

A set of lying facial expression training samples is
assumed to be given as ðx1; y1Þ :; ðx2; y2Þ :;…; ðxm; ymÞ :, where
yi ði¼ 1; 2;…;mÞ: is the training sample with labels and the
objective function of the SCNN is expressed as follows:

J ¼ 1
m

∑
m

i¼1
∑
K

k¼1

1
2

γw;b xið Þk − yik
 2; ð6Þ

where w is the weight, b is the corresponding bias, k is the
number of expected classifications, and γw;bðxikÞ : is an impor-
tant k-dimensional vector. The cost function of the SCNN is
based on the l1 norm sparse constraint. The objective func-
tion of the SCNN is expressed as follows:

Jθ ¼ J w; bð Þ þ μL w; bð Þ: ð7Þ

Here, the sparse constraint function can be expressed as
follows:
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From Equations (6)–(8), the objective function can be
expressed as follows:
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It also can be expressed as follows:
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where μ lnð1þ ðγw;bðxiÞk−yikÞ2
f 2 Þ : in Equation (11) is part of the

sparse constraint term, and μ is the regularization coefficient.
The values of μ and f generally affect the computational
performance of the SCNN. The output of the fully connected
layer is the extracted feature.

3.2. Feature Fusion Mechanism. The DSCNN and SCNN are
used to obtain two modal data features for the speech and facial
expression signals. The multihead attention mechanism is then

deployed to achieve the interactive learning of attention features
within and between speech and facial expressions. Finally,
multimodal fusion is performed on the learning features,
culminating in the generation of an inference prediction
output. Using this method, features closely related to lying can
be enhanced, while simultaneously the significance of features
unrelated to deception can be diminished. This results in more
accurate multimodal features. The calculation process for the
multihead self-attention (MHSA) is as follows:

Multihead Q;K;Vð Þ ¼ Concat head1; head2;…; headhð ÞWo;

ð12Þ

where headi ¼ Attention QWQ
i ;KWK

i ;VWV
i

À Á
; ð13Þ

Attention Q;K;Vð Þ ¼ softmax
QKTffiffiffiffiffi

dk
p !

V ; ð14Þ

where Q, K, and V represent the input matrices,
ffiffiffiffiffi
dk

p
repre-

sents the dimension of the K matrix, and Q¼ qwq1;K ¼
kwk1;V ¼ vwv1, where q1 ¼ FS; Fs is the lying speech feature,
FE is the facial expression feature, FE ¼ k1 ¼ v1,, andwq1;wk1;
wv1 express the training parameters. Matrices Q and K are
transformed by multiplication and then multiplied by matrix
V using the softmax function. By adopting this method, the
MHSA can search for commonalities between speech and
facial expression features. The structure of the MHSA is
shown in Figure 3.

3.3. Lie Detection Based on Bimodal Features. A DANN that
simultaneously uses bimodal feature information with speech
and facial expression signals is used in this study. The algo-
rithm aligns the data distribution of the signals in the source
and target domains to improve the lie detection performance.
In this study, the MHSA feature-fusion method is adopted to

Linear Linear Linear

Scaled dot-product attention

V K

Concat

Multihead attention

Q

FIGURE 3: Structure of MHSA mechanism.
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fuze the features of various modalities. This approach enables
the creation of a detection methodology that seamlessly inte-
grates information from the different modalities. The pro-
posed dual-modal DANN lie detection model is shown in
Figure 4.

The input data for the detection model are FS and FE,
representing the features derived from speech and facial
expressions, respectively. The source domain contains
labeled data, whereas the target domain contains unlabeled
data. The training process of the detection algorithm is as
follows:

Step 1: The multimodal information from the source
domain data and target domain pertaining to speech signal
features is generated using feature extractor 1. In total, 300
speech-feature dimensions are generated in the hidden layer.

Step 2: The modal information from the source domain
data and the target domain of the facial expression features is
generated using feature extractor 2. A total of 300 facial
expression feature dimensions are generated in the hidden
layer.

Step 3: Speech features are input into domain classifier 1
to classify the domain and calculate the domain classification
loss function. Simultaneously, the facial expression features
are input into domain classifier 2 to perform domain classi-
fication and calculate the domain classification loss function.

Step 4: In the feature fusion technology, an MHSAmech-
anism is used to fuze speech and facial expression features.
The fuzed feature length has 300 dimensions. The feature is
input into the label classifier for source domain label classifi-
cation, and the loss is calculated.

Step 5: The two parts of the domain classification are
combined to obtain the total loss for gradient backpropaga-
tion. Label classification loss, speech feature domain classifi-
cation loss, and facial expression domain classification loss
are combined to obtain the total loss.

Step 6: After training, the target domain test data are
input into the feature extractor for deep feature extraction.
The classifier then detects the liar. The final optimization
goal is as follows:

E θf1 ; θf2 ; θy; θd1 ; θd2
À Á¼ ∑

ns

i¼1
Ly Ry Rf1 xsið Þ þ Rf2 xsið Þ; ysi

À ÁÀ Á
 

− λ1 ∑
nsþnt

i¼1
Ld1 Rd1 Rf1 Xj

À ÁÀ Á
; di

À Á
− λ2 ∑

nsþnt

i¼1
Ld2 Rd2

À
Rf2 Xj

À ÁÀ Á
; di

ð15Þ

where Rf1 ;Rf2 ;Ry;Rd1 ; and Rd2 are, respectively, feature
extractor 1, feature extractor 2, the source domain label clas-
sifier, domain discriminator 1, and domain discriminator 2.
The parameters θf1 ; θf2 ; θy; θd1 ; θd2 belong to feature extractor
1, feature extractor 2, the source domain label classifier,
domain discriminator 1, and domain discriminator 2,
respectively. Where ns and nt are the numbers of samples
in the source and target domains, respectively. The parame-
ters yi and di are category and domain labels, respectively,
and λ1; λ2 are the weight coefficients. Domain discriminator
1, domain discriminator 2, and the source domain label clas-
sifier use a cross-entropy function to minimize the total loss
and optimize the model through iterative training. Target
domain recognition and classification use trained feature
classifiers and source-domain label classifiers. The DSCNN
and SCNN are used as feature extractors. The structures of
domain classifiers 1 and 2 are identical.

4. Simulation Experiments and Analysis

4.1. Datasets. In this study, the model environment was a
TensorFlow deep learning framework. The algorithm runs
on the Windows 10 operating system, the graphics card is a
GTX1050, and the processor was trained using a graphics
processing unit. The experimental dataset used was the
open-source real-life trial dataset (RLTD) [29] comprised
real court trial videos. It consisted of 121 court trial video
clips, including 61 videos depicting deceptive statements and
60 videos with truthful statements. The average durations of
the deceptive and truthful videos were 27.7 and 28.3 s,
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FIGURE 4: Diagram of lie detection model based on bimodal features.
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respectively. MP4 format video data were converted into
WAV-format audio data to obtain an audio dataset. Mean-
while, facial expression images of the speaker were collected
from MP4 video data, and the collection time was synchro-
nized with the audio data. Additionally, it is necessary to
ensure that the target domain data are distributed differently
from the source domain data. The self-developed Suzhou
University Lying Database (SULD) [30, 31], which includes
three parts: induced lying speech, deliberately imitative lying
speech, and natural lying speech, was also used. In this study,
the induced-lying speech component was used. The SULD
database was recorded in a quiet environment through con-
versations. The content of the corpus included student dor-
mitory conflicts and students’ opinions of teachers during the
recording process. Each participant recorded five different
types of language materials, including students’ cheating on
exams and their emotional status. Each participant recorded
five segments, resulting in 300 audio and video signals. All
data were used for training and testing. The speakers’ facial
expression data were collected using the method described
above. The database descriptions are presented in Table 1.

4.2. Simulation Parameter Settings. The structure of the lie
detection model based on the multimodal DANN used in this
study refers to [32], which mainly includes three parts: a feature
extractor, domain classifier, and label predictor. The parameter λ
in the domain adversarial network in this paper is set to 0.01,
epoch is set to 100, and batch size is set to 32. First, the DSCNN
parameter settings for extracting speech features were improved
based on [33], using three convolutional layers with a
convolutional kernel size of 3× 3. The input is a Mel-level
filter bank feature, calculated every 10ms within a 25ms
window, and the final linear layer produces an output. The
gradient norm, learning rate, dropout, label smoothing rate,
and random sampling rate are set to 15, 0.05, 0.1, 0.05, and
0.01, respectively. Second, the sparse CNN model used for
extracting facial expression features was improved on the basis
of [34], with four convolutional layers: the number of
convolutional kernels was (256,512,512,512), kernel size was
set to 3×3, and step size was set to 2×1. Pooling operations
were performed in each layerwith a pooling size of 2×2 and step
size of 1× 1. The activation function for each convolutional layer
was a leaky rectified linear unit, and the dropout layer probability
was set to 0.25. A sparse representation layer was added before
the convolutional layer. The K-singular value decomposition
sparse representation algorithm [35, 36] was implemented
during the sparse transformation process.

4.3. Analysis of Experimental Results

4.3.1. Analysis of Feature Dimensions across Different
Domains. In general, high-dimensional features can capture
more information, yet they may also introduce redundancy

and dimensional complexity. Conversely, the lower dimen-
sions inherently convey reduced information. The DANN
model, renowned for its capability to acquire feature vectors
that are devoid of domain-specific categories, exhibits strong
generalization. Nevertheless, the dimensions of the learned
feature vectors may affect their ability to represent input data
in the feature space. In this experiment, the impact of the
feature dimensions on the model recognition performance
was evaluated by setting different dimension values.

This experiment verifies the detection performance of the
DANN model with feature dimensions of 50, 100, 150, 200,
250, 300, 350, 400, 450, and 500 pixels. The detection perfor-
mance for different vector dimensions was verified using a
tenfold cross-validation method. The recognition perfor-
mances of the model for the different vector dimensions
are shown in Figure 5. In the figure, “SD” and “TD” represent
the source and target domains, respectively. The unweighted
average recall (UAR) rate is used to measure the perfor-
mance of the system. The UAR is calculated as follows:

UAR ¼ ∑Nc
i¼1Recalli

Nc
; ð16Þ

Recall¼ TP
TPþ FN

; ð17Þ

where Nc denotes the number of classes. “TP” indicates that
the true value is positive, and the model judges it to be posi-
tive. “FN” indicates that the true value is positive, but the
model judges it to be negative. Recall refers to the original
sample, which indicates the probability of being predicted as
a positive sample in the actual positive sample. Recalli repre-
sents the recall rate for each type of data sample.

The experimental results indicate that different data dis-
tributions have different optimal feature dimensions. The
feature vector dimensions affect the recognition performance
of the model. The performance of the DANNmodel changed
with the size of the feature dimensions. When the RLTD was
used as the source and target domain datasets, the model
achieved optimal performance when the feature vector
dimension was set to 150. When SULD was used for the
source and target domain datasets, the model achieved opti-
mal performance when the feature vector dimension size was
set to 200. Interestingly, when RLTD was used as the source
domain dataset, and SULD was used as the target domain
dataset, the model achieved optimal performance when the
feature vector dimension size was set to 300. When SULD
was used as the source domain dataset, and RLTD was used
as the target domain dataset, the model achieved optimal
performance when the feature vector dimension size was
set to 250.

TABLE 1: Description of RLTD and SULD datasets.

Corpus Language Text type Acquisition method Data type Total data

RLTD English Fixed Natural Audio and video 121 Court trial video clips
SULD Chinese Unfixed Natural and intentional Audio and video 300 Voice segments
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The results showed that when the source and target
domain samples were consistent, the required feature dimen-
sions were low. However, when the source and target domain
samples were inconsistent, the required feature dimensions
were high. Moreover, these results indicate that neither high
nor low feature vector dimensions can achieve optimal per-
formance for the model. Therefore, a reasonable feature vec-
tor dimension achieves optimal performance.

4.3.2. Analysis of Feature Fusion. The purpose of this experi-
ment was to determine the differences between features
extracted from lying and nonlying samples using the pro-
posed lie detection method based on a DANN. The t distri-
bution stochastic neighbor embedding algorithm was used to
display the visualized features. This method was proposed by
van der Maaten and Hinton. In this experiment, RLTD was
used as the source domain dataset and SULD was used as the
target domain dataset. All samples were labeled. The feature
dimensions of the last fully connected layer of the deep CNN
were reduced to two and represented in the form of a scatter
plot. Figure 6 shows the visualization-fused feature results for
lying and nonlying samples.

As shown in Figure 6(a), for the nonlying samples, the
feature distributions of the source and target domain data
samples were almost indistinguishable. This indicates that

the features learned by the model do not contain any
lying-specific information. However, the feature vector dis-
tribution shown in Figure 6(b) exhibits an evident variance.
Owing to the better generalization of the DANN, the features
of the lying samples can be clearly distinguished in the fea-
ture space, which contains the lying information. This exper-
iment demonstrates that the DANN model can effectively
extract the lying feature vectors.

4.3.3. Analysis of Feature Performance. A lie detection model
based on DANN was developed. In this experiment, the goal
was to analyze the performance of lie detection systems
based on features from the different modalities while ensur-
ing their independence from both the source and target
domains. Both the source and target domain samples were
set to 100. The samples were preprocessed with zero mean
and unit variance normalization. To evaluate the improve-
ment in the lie detection model performance by feature com-
binations of different modalities, experimental comparisons
were conducted using single and bimodal feature combina-
tions. The feature vectors for each sample in the speech and
facial expression modalities were set as the best-dimensional
vectors. The feature fusion algorithm used in this study
adopts the method described in Section 3.2.
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FIGURE 5: Detection performance of DANN with different feature dimensions. (a) RLTD is used for SD and TD. (b) SULD is used for SD and
TD. (c) RLTD is used for SD and SULD is used for TD. (d) SULD is used for SD and RLTD is used for TD.
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The experiment was conducted using a tenfold cross-
validation method. In this model, nine–tenths of the dataset
were used as the training sample, and one-tenth of the sam-
ple was used as the test sample. Ten experiments were con-
ducted, and the average of the 10 experimental results was
considered as the final result. The Hadamard product feature
fusion method was used for comparison. Accuracy is defined
as follows:

Accuracy ¼ TPþ TN
TPþ TNþ FPþ FN

; ð18Þ

where “FP” indicates that the true value is negative, but the
model determines it to be positive; “TN” indicates that the
true value is negative, and the model determines it to be
negative.

A comparison of the results is presented in Table 2. As
shown in the table, in contrast to the unimodal feature, the
proposed bimodal lie detection model has a relatively high-
classification accuracy.

The test results presented in the table show that the
bimodal model employed in this study has a significantly
improved detection accuracy when compared to the single-
mode model. For the source domain dataset, the testing
accuracy of the lie detection model using the Hadamard
product fusion of bimodal features reached 88.7%, which
was 30.4% higher than that of the single-mode model based
on facial expression features and 16.2% higher than that of
the single-mode model based on speech features. For the
target domain dataset, the accuracy of bimodal combination
detection reached approximately 85.5%, which was 32.3%

higher than that of the single-mode model based on facial
expression features and 17.1% higher than that of the single-
mode model based on speech features. The test results show
that the bimodal feature combination significantly improves
the performance of the lie detection model and achieves
higher detection accuracy.

4.3.4. Ablation Experiments. To verify the effectiveness of
each submodule in the proposed method, ablation experi-
ments were conducted using various datasets. The datasets
included male trial videos from RLTD, female trial videos
from RLTD, and male and female videos from SURD. Four
modules were used in the experiments. The details are as
follows:

(1) Basic DANN: This submodule uses one-dimensional
convolution and speech modal features.

(2) A multimodal fusion module was added to the DANN.
A feature fusion module was added to the basic DANN.
Two convolutional networkswere used to extract speech
and facial expression features. This submodule is multi-
modal fusion DANN (MF-DANN).

(3) A multihead attention module was added to the
DANN. An attention mechanism was added to the
DANN. Subsequently, a multihead attention mecha-
nism based on DANN (MHSA DANN) was estab-
lished. This submodule considers only the speech
modal features of the data.

(4) Final model: This is the final model proposed in this
study. It considers the multimodal features of speech
and facial expressions based on a DANN, while

TABLE 2: Comparison of lie detection accuracy based on different features.

Features
Accuracy (%)

(Source domain dataset)
Accuracy (%)

(Target domain dataset)

Facial expression features 58.3 53.2
Speech features 72.5 68.4
Feature fusion based on Hadamard product method 82.1 80.3
Feature fusion based on MHSA mechanism method 88.7 85.5

Represent source domain feature
Represent target domain feature

ðaÞ

Represent source domain feature
Represent target domain feature

ðbÞ
FIGURE 6: Visualized features. (a) Visualized fuzed features of nonlying samples. (b) Visualized fuzed features of lying samples.
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incorporating an attention module. This final model
is a multimodal multihead attention mechanism
DANN (MF-MHSA-DANN).

The experimental results for the four models are listed in
Table 3. From the table, it is observed that the model with the
addition of the multimodal fusion module improved the accu-
racy index for all four datasets compared with the basic DANN
model. This indicates that the multimodal fusion module can
effectively extract features from time-series signals and provide
more effective information for the lie detection tasks than a
single modality. The model with the added multihead attention
mechanism exhibited significant improvements on different
datasets. This indicates that it can effectively extract the temporal
and spatial dependencies of time-series signals. The final model
exhibited a significant improvement in accuracy compared to
using the multimodal fusion module or the multihead attention
module alone. The ablation experiments prove that adding the
submodules of multimodal feature fusion and the multihead
attention mechanism can help to learn the distribution charac-
teristics of the data and improve the performance of the lie
detection model.

4.3.5. Comparison of Different Detection Models. This exper-
iment aimed to validate the performance of the proposed
domain adversarial transfer CNN for lie detection and dem-
onstrate its superiority. RLTDwas used in this study. The area
under the curve (AUC) was used as an objective indicator.

This study considers multimodal feature-based methods
as a baseline. All experiments were evaluated using the same
setup and dataset as those used in our model. The proposed
method was compared with three neural network models
[37–39] using the same experimental setup as that used in
our method. These methods use features extracted from
videos and multimodal features, including speech and facial
expression features, as described. In [37], the GhostNet
model was used to extract recognition features, combined
with the design ideas of island and circle loss functions,
and a loss function was designed and adopted based on
cosine similarity to guide the learning of neural networks.
In [38], deep separable convolution (DSConv) was used to
design a lightweight fully CNN, including Part 1, which is a
parallel convolutional structure comprising three parallel
convolutional layers, and Part 2, which adopts the residual
structure concept. The main edge contained two convolu-
tional layers, each with 64 convolutional layers of size 3× 3.
The convolutional kernel of three comprises four consecutive
convolutional layers, each with a kernel size of 3× 3. The
numbers of cores were 128, 160, 256, and 300, respectively.

In [39], a deep pretrained neural network was constructed to
measure the human ability to detect deceptive utterances.
This model was used to obtain text representations using a
universal sentence encoder. The model performs better for
typed utterances than for the spoken utterances.

The receiver operating characteristic (ROC) curves of the
different models are shown in Figure 7.

The experimental results showed strong performance across
all models. Particularly, the AUC values of the DANN model
used in this study surpassed those of the DNN, DSCNN, and
GhostNet network models by margins of 0.2, 0.18, and 0.1,
respectively. The ROC curve in Figure 7 also shows that the
bimodal feature combination of the DANN model significantly
improved the model performance.

Moreover, to compare the performances of the various
models under different data distributions, experiments were
conducted using different databases, specifically the RLTD
and SULD databases. The performance metric employed was
accuracy. DNN, GhostNet, and DSCNN models were
selected for comparison. The experiment was performed 10
times to obtain the average value and reduce the impact of
random errors during network initialization. In the first test,
the sample was a mixture of the RLTD and SULD data. In the
second test, data were obtained only from the RLTD, and in
the final test, data were obtained from the SULD.

As shown in the detection accuracy results in Figure 8,
the DANNmodel has superior lie detection ability compared

TABLE 3: Detection accuracy of the ablation experiment (%).

Methods
Dataset

Male trial videos in RLTD Female trial videos in RLTD Male videos in SULD Female videos in SULD

DANN 73.4 75.2 70.3 72.7
MF-DANN 80.6 79.3 78.4 79.8
MHSA-DANN 81.5 83.4 79.3 78.4
MF-MHSA-DANN 87.7 88.5 88.9 86.2
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FIGURE 7: Average accuracies under different recognition modes.
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to the other three models, particularly when the database of
the sample is inconsistent. In the case of mixed test data of
RLTD and SULD, where the training and testing data exhib-
ited different data distributions, the accuracy values achieved
by the DANN model surpassed those of the other three
models. Specifically, these values were 23%, 21%, and 43%
higher than those of the other three models, respectively.
This can be attributed to the DANN model’s capacity to
learn features devoid of domain class information. The mod-
el’s parameters were updated and optimized using the joint
objective functions of these tasks. Consequently, the shared
feature vectors learned by the model have the characteristics
of discriminability, generalization, and domain-class inde-
pendence. In conclusion, the proposed method, based on
bimodal feature fusion and a DANN, is significantly superior
and more suitable for lie detection, particularly in scenarios
involving inconsistent data distributions.

5. Summary and Outlook

The mismatch problem of a pretrained deep-learning model
when the lie training data and test data originate from dif-
ferent data distributions was addressed. The proposed lie
detection model, based on DANNs, can learn common fea-
ture vectors from both source and target domain data. The
proposed method was validated using open-source datasets
and a high correct lie detection rate was achieved. The main
conclusions of this study are as follows:

First, the use of a DANN to construct feature extractors
not only improves the detection accuracy in the source
domain, but also significantly improves detection accuracy
in the target domain. The experimental results indicated
that DANNs can extract invariant features from lying samples
and provide strong support for subsequent lie detection tasks.
Second, a bimodal lie detectionmodel was developed to detect
lies by fuzing speech and facial expression features. The exper-
imental results indicate that integrating different modal fea-
tures to detect lies can significantly improve detection
performance and achieve high accuracy. Third, the DANN
detection model resolves the impact of inconsistent data

distribution on the performance of machine learning models,
ensuring robust performance across different scenarios.

However, the proposed method has limitations similar to
those of the other data-sensitive detection models, such as
regression problems and the sacrifice of discriminant fea-
tures. Future research on lie detection should focus on
searching for more effective detection features and expand-
ing the database of liar scenarios to improve detection accu-
racy and the overall generalization ability of the detection
model. This direction represents planned future research
efforts in the field of lie detection.
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