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We propose a multi-objective joint model of non-negative matrix factorization (NMF) and deep neural network (DNN) with a new
loss function for speech enhancement. The proposed loss function (LMOFD) is a weighted combination of a frequency differential
spectrum mean squared error (MSE)-based loss function (LFD) and a multi-objective MSE loss function ðLMOÞ :. The conventional
MSE loss function computes the discrepancy between the estimated speech and clean speech across all frequencies, disregarding
the process of changing amplitude in the frequency domain which contains valuable information. The differential spectrum
representation retains spectral peaks that carry important information. Using this representation helps to ensure that this
information in the speech signal is reserved. Also, on the other hand, noise spectra typically have a flat shape and as the differential
operation makes the flat spectral partly close to zero, the differential spectrum is resistant to noises with smooth structures. Thus,
we propose using a frequency-differentiated loss function that considers the magnitude spectrum differentiations between the
neighboring frequency bins in each time frame. This approach maintains the spectrum variations of the objective signal in the
frequency domain, which can effectively reduce the noise deterioration effects. The multi-objective MSE term ðLMOÞ: is a combined
two-loss function related to the NMF coefficients which are the intermediate output targets, and the original spectral signals as the
actual output targets. The use of encoded NMF coefficients as low-dimensional structural features for DNN serves as prior
knowledge and helps the learning process. LMO is used beside LFD to take advantage of both the properties of the original and
the differential spectrum in the training loss function. Moreover, a DNN-based noise classification and fusion strategy (NCF) is
proposed to exploit a discriminative model for noise reduction. The experiments reveal the improvements of the proposed
approach compared to the previous methods.

1. Introduction

Speech enhancement is the task of separating the target
speech from unwanted noises. Speech enhancement methods
generally include statistical and data-driven learning-based
methods. The statistical approaches such as the minimum
mean-square error (MMSE) method [1] and Wiener filtering
[2] are based on the statistical models of speech and noise.
Non-negative matrix factorization (NMF) a well-known
method in this category has been recently used a lot in speech
separation [3]. By NMF, a speech or noise signal can be
decomposed into a non-negative basis matrix and an

activation matrix. Then, for speech enhancement applica-
tions, in the testing phase, the learned concatenated basis
matrices of speech and noise are used for an unknown noisy
speech to estimate the related activation matrices. The esti-
mated activations are multiplied by the related learned basis
matrices to approximate the speech and noise sources. In
addition, extracting noise-robust features is another approach
for reducing the noise effects of speech signals [4]. Lately,
data-driven learning-based methods such as deep learning
have also been widely used for complex mapping modeling
such as learning the nonlinear mapping of noisy speech to
clean speech for applications of speech enhancement and
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speech recognition [5–10]. Training targets in data-driven meth-
ods are mostly the spectral magnitude of sources directly (map-
ping-based targets), or the spectralmasks (masking-based targets)
which are the gain values that represent T–F energy ratios of each
source to the mixture and are then multiplied with the mix-
ture of speech and noise to estimate each of them [11, 12].

Moreover, in some research works, NMF or its extended
versions are combined with deep neural networks (DNNs) to
improve performance [13–20]. In Kang et al.’s [13] study,
mapping of the spectral magnitude of the noisy speech to the
NMF activation coefficients of speech and noise is performed
by a DNN. Then, the related estimated coefficients are mul-
tiplied with the corresponding learned basis matrix outside
of DNN separately to approximate the actual signals. In Vu
et al.’s [17] and Jia et al.’s [19] studies, instead of the main
noisy spectrum, the noisy activation matrix which is the
concatenated activation matrices of speech and noise is
used as the DNN input noisy feature. Furthermore, in
Wang and Wang’s [20] study, NMF is first applied to an
ideal ratio mask (IRM) and it is decomposed into a basis
matrix and an activation matrix. Then, instead of directly
predicting a mask as the DNN target, the related activation
coefficients are estimated by DNN as an intermediate target.
Then, the estimated activation matrix and the learned basis
matrix of IRM are linearly combined outside of DNN to
reconstruct the IRM. Afterward, the estimated IRM separates
the desired speech from the noisy mixture. On the other hand,
in Williamson et al.’s [21–23] and Grais et al.’s [24] studies,
DNN and NMF have combined in two subsequence separate
stages, so that DNN in the first stage is applied for the separation
purpose and then, NMF in the second stage for enhancement,
or vice versa. In Williamson et al.’s [21–23] studies, the NMF
reconstruction is used as a postprocessing step to enhance the
separated speech by the mask estimated by DNN. In William-
son et al.’s [25, 26] studies compared with Williamson et al.’s
[21] study, a DNN is used in the second stage as an NMF
alternative to estimate the activation matrix of clean speech
from the first masked speech. Then, the estimated coefficients
are multiplied with the pretrained basis matrix separately out-
side of the DNN to acquire the enhanced speech.

However, in the mentioned approaches, the NMF and
DNN processes are carried out separately. Also, the DNN
does not directly estimate the main targets but only estimates
an intermediate target, which is the NMF activation coeffi-
cients. Therefore, in Nie et al.’s [14, 15] and Li et al.’s [16]
studies, the NMF and DNN processes are jointly combined,
so that the learned NMF bases are integrated into the DNN
as an extra layer. Then, the main objective signals are directly
estimated by the DNN. However, in these methods, the acti-
vation coefficients do not have a direct effect on the DNN
learning process and are not directly optimized by DNN.
Hence in this paper, it is suggested that the activation coeffi-
cients be used in the network as prior knowledge in a multi-
objective multi-loss training approach so that the extracted
activation coefficients be injected at an intermediate output
(prior) layer of DNN as a direct target and in the loss func-
tion while the original signals are also estimated by the DNN
at the main output layer simultaneously.

The training loss function is also a remarkable subject in
speech enhancement algorithms. The traditional MSE func-
tion is widely used as the training loss function in spectral
speech enhancement. However, the spectral changes are not
considered in the MSE. Due to the unique characteristics of
each individualʼs sound source and vocal tract, the pitch
frequency, the difference between frequency bins, and the
process of changing amplitude in the frequency domain
are different for each frame. Consequently, incorporating
the process of changes between frequency bins in a time
frame into the loss function can improve network learning
and the performance of speech and noise separation. In
addition, as described in Chen et al.’s [27] study and accord-
ing to our observations, in the differentiated spectrum repre-
sentation, the spectral peaks that carry valuable information
are kept almost intact and the smooth parts of the spectrum
become zero. Thus, to take an account the peak movements
in the frequency domain in addition to the pitch informa-
tion, we propose a frequency-differentiated loss function
which is added to the multi-objective MSE loss function in
this paper. In the MSE terms, the multi-objective training is
applied so that in addition to the estimation of the actual
signals in an MSE, the related NMF activation coefficients
are also considered in another MSE function.

Also, another issue of interest is that most of the speech
enhancement models are trained with a pool of different
types of noises, and then these general models are used in
the testing phase for enhancing each observed noisy speech.
In this paper, to have better improvement, our joint models
are exclusively learned for each type of training noise, and in
the testing phase, using a noise classification and fusion
approach (NCF), one or a suitable combination of the mul-
tiple learned models is used to enhance each detected noise.

The organization of this paper is structured as follows: in
Section 2, an overview of NMF-based speech enhancement is
given. In Section 3, the proposed system, including the Jnt-
DNN-NMF model, the proposed loss function, and the noise
classification and fusion approach will be explained. In Sec-
tion 4, the experimental setup and results are presented.
Finally, the conclusion is provided in Section 5.

2. NMF-Based Speech Enhancement

In the NMF approach, a non-negative data matrix, which in
our work is themagnitude spectrumX 2RF×T

≥0 , is decomposed
into a non-negative basis matrix Bx 2RF×K

≥0 (K≤ F) and an
activation matrix Hx 2RK×T

≥0 according to Equation (1). K,
T, and F represent the number of basis vectors (columns of
Bx), time frames, and frequency bins, respectively. The basic
structures of X are captured in the basis matrix. X can be the
clean speech S, noisy speech Y, or noise N:

X ≃ BxHx : ð1Þ

Kullback–Leibler (KL) divergence as one of the multipli-
cative update rules is used to extract Bx and Hx matrices by
iteratively minimizing the error between the observed signal
X and its reconstruction BxHx as follows:
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min
B;H>0

DKL X ∥ BHð Þ; ð2Þ

Hx ← Hx ⊗
BT
x

X
BxHx

BT
x 1

Bx ← Bx ⊗
X

BxHx
HT

x

1HT
x

;

ð3Þ

whereD is Euclidean distance and 1 is an F ×  T matrix with
all elements equal to one. By assuming additive noise (i.e., yðiÞ
: ¼ sðiÞ: þ nðiÞ :, i is the sample index) and without considering
the speech-noise cross-term we have Yð f ; tÞ: ≈ Sð f ; tÞ: þ
Nð f ; tÞ: in the spectrum domain. Y , S, and N 2RF×T

≥0 are
the noisy, clean, and noise spectral magnitudes, respectively.
f and t are the frequency and time indices. In using NMF for
speech enhancement, in the training phase, Bx and Hx for
clean speech and noise are usually randomly initialized and
then obtained using the iterative multiplicative update rules.
Hx is discarded and Bx is held fixed for the enhancement
stage. The noisy basis matrix By is formed by concatenating
the trained basis matrices of clean and noise (By ¼ ½BsBn� : 2
RF×ðKsþKnÞ
≥0 ). Then in the testing phase, the magnitude of a test

noisy speech is approximated as a product of the fixed By matrix

and a new activation matrix bHy ¼ ½bHT
s
bHT

n �T 2RðKsþKnÞ×T
≥0

which is calculated iteratively by Equation (3). Finally, the
estimated speech and noise magnitudes are obtained as
follows:

bS ¼ Bs
bHs; bN¼ Bn

bHn    
bS; bN2 RF × T

≥0 : ð4Þ

3. Proposed System

Since the effect of phase enhancement is not significant in
speech improvement, we only use the short-time Fourier
transform (STFT) magnitude spectrum of the framed signals
for enhancement. As shown in Figure 1, the proposed system
is performed in two phases of training and testing. The train-
ing phase includes the sections of NMF training, Jnt-DNN-
NMF training, and classifier DNN training. Jnt-DNN-NMF
is the joint cooperative model of DNN and NMF which will
be explained in Section 3.1. The testing phase contains the
classifier DNN prediction and the Jnt-DNN-NMF prediction
for the test data. The NMF and the Jnt-DNN-NMF training
parts are two consecutive stages, the NMF training is pre-
training for the Jnt-DNN-NMF training (so that the results
of the NMF training are used in the Jnt-DNN-NMF training
as a pretraining stage). This will be described in Section 3.1.
It should be noted that NMF and Jnt-DNN-NMF training
are performed for each training noise type to produce the
noise-specific Jnt-DNN-NMF models which will be used in
the testing phase (the dashed boxes in the bottom part of
Figure 1). In other words, the repeated dashed boxes in
Figure 1 are the learned Jnt-DNN-NMF models related to
the N training noise types and have the same approach as

dashed box1 (for noise1). The classifier DNN training is
performed with different noisy speech magnitudes as input
and N output class labels. In the testing phase, the noise type
(matched or mismatched) of each input noisy speech is
detected based on the classifier results (Section 3.3). Then
according to Figure 1, after predictions made by N different
Jnt-DNN-NMF models, in the fusion block, only one corre-
sponding detected model is used for enhancement of each
matched noise. However, for mismatched noises, a weighted
combination of outputs of Nmodels is regarded as enhanced
speech. Finally, an inverse STFT followed by the overlap-
add method is applied to reconstruct the waveform of the
desired signal using the estimated magnitude and noisy
phase. It should be noted that in the training phase, models
are trained using noise-specific data which is the smaller
dataset, and in the testing phase, multiple models are instan-
taneously and parallelly applied to the input noisy speech, so
the computations are light.

3.1. Jnt-DNN-NMF Model. According to Figure 1, at first, in
the NMF training stage, the structures in the magnitude
spectra of the speech and noise sources are captured by
applying the NMF inference for speech and each noise
type independently as a feature and structure extraction pro-
cess. So, the corresponding activation coefficients and basis
matrices are obtained. In such a way that bases are trained
first and then coefficients are extracted with the fixed bases.
Then, as shown in Figure 1, the extracted NMF activation
coefficients and basis matrices are employed in the next stage
(the Jnt-DNN-NMF training stage). The extracted activation
coefficients (Hs, Hn) are directly served as the primary target
features for the DNN (dashed lines) while the spectral mag-
nitude of the noisy speech is as input (Y). The trained basis
matrices are integrated into the DNN as an additional layer
named the NMF reconstruction layer. The DNN together
with the integrated NMF reconstruction and Wiener-like
filtering layers form the multi-objective Jnt-DNN-NMF
model to jointly optimize the main spectral magnitudes in
the main output layer and the related NMF coefficients in the
coefficients output layer. So, in the Jnt-DNN-NMF training
stage, the joint model is trained with the noisy magnitude Y
as input and the multi-objective targets of the activation
coefficients at the coefficient output layer and the main
speech and noise magnitudes at the main output layer using
the proposed loss functions (Section 3.2). The mapping func-
tion of the DNN (g) is as follows:

Lj ¼ g Lj−1
À Á¼ σ W∗

j Lj−1 þ b∗j
� �

1 ≤ j ≤ J

L0 ¼ Y ; LJ ¼ bHs
bHn

h i
;

ð5Þ

where W∗
j and b∗j are the weights and biases of the DNN,

respectively. J is the index of the coefficient output layer. bHs
and bHn represent the estimated activation coefficients of
speech and noise, respectively. In the NMF reconstruction
layer, the speech and noise basis matrices are multiplied by
the estimated coefficients, and then through a Wiener
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filtering layer, the final speech and noise estimates are
achieved as follows:

eS ¼ Bs
bHs

� �
2

Bs
bHs

� �
2 þ Bn

bHn

� �
2 ⊗ Y ; ð6Þ

eN¼
Bn

bHn

� �
2

Bs
bHs

� �
2 þ Bn

bHn

� �
2 ⊗ Y  : ð7Þ

S̃ and Ñ are the final estimated speech and noise magni-
tudes. The division and multiplication operations are ele-
ment-wise. Jnt-DNN-NMF is trained with the proposed
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FIGURE 1: Block diagram of the proposed system including training and testing phases. The NMF and Jnt-DNN-NMF training is repeated for
each noise type. The classification and fusion blocks are applied in the testing phase to select one model (for matched noises) or combine the
output of Nmodels that have already been trained for N training noise types (for mismatched noises). Each dashed box in the testing phase is
the learned model for each training noise type.
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loss functions (Section 3.2), and the weights and bias param-
eters are computed by the backpropagation algorithm.

3.2. Proposed Loss Functions. In most traditional DNN-based
speech enhancement methods, the learning process contains
a direct mapping from the noisy signal to the actual separa-
tion targets without the use and direct influence of the struc-
tural features as prior knowledge on DNN and in the training
process. So, in our Jnt-DNN-NMF model, we first propose a
multi-objective combined loss function (LMO) that not only
optimizes the actual spectral signals of speech and noise but
also the intermediate activation coefficients as follows:

LMO ¼ 1
F
∑
F

f¼1
C t; fð Þ − eC t; fð Þ

� �
2 þ 1

F
∑
F

f¼1
H t; fð Þ − bH t; fð Þ

� �
2
;

ð8Þ

where C is the concatenated speech and noise spectral mag-
nitudes ([S N]) at each time step t and frequency bin f, and C̃
is its estimated version ([S̃ Ñ ]). H is the concatenated NMF
activation coefficients of speech and noise ([Hs Hn]) and bH is
its estimated version ([bHs

bHn]). Also, F is the total number of
frequency bins.

Then, to consider the spectrum changes in the frequency
domain, according to Equation (9), we use a frequency-
differentiated loss function (LFD) which calculates the ampli-
tude differences between the neighboring frequency bins in
each frame. Using this function allows the network to gain a
better understanding of frequency characteristics and changes
in the frequency domain. It calculates the MSE between the
target signal and the estimated signal concerning frequency
changes in each frame.

LFD¼
1
F
∑
F

f¼1
∑
M

i¼1

C t; f þ ið Þ − C t; f − ið Þð Þ − eC t; f þ ið Þ − eC t; f − ið Þ
� �h i

2
:

ð9Þ

M is the number of neighboring frequency bins for a
frequency bin that are involved in the calculation of the
cost function for that frequency bin for each frame. Then,
as shown in Equation (10), we propose the MSE-based multi-
objective frequency-differentiated loss function (named as
LMOFD) which is a weighted combination of the frequency-
differentiated loss function LFD and a multi-objective com-
bined loss function (the last two terms). These terms are the
MSEs related to the objective spectral signals and the NMF
activation coefficients, respectively. This leads to the simul-
taneous optimization of the encoded output features and the
original spectral signals jointly in a single model. Indeed, the
encoded features directly affect the learning process by con-
sidering a separate optimization term in the overall loss
function LMOFD. Therefore, the joint model is trained based
on two types of targets at the related output layer:

LMOFD ¼ α1LFD þ α2
F

∑
F

f¼1
C t; fð Þ − eC t; fð Þ

� �
2

þ 1
F
∑
F

f¼1
H t; fð Þ − bH t; fð Þ

� �
2
;

ð10Þ

where α1 and α2 are the weight parameters for LFD and the
first MSE, respectively.

3.3. Noise Classification and Fusion Approach. According to
Figure 1, in the testing phase, first, to judge the noise type, a
classifier DNN which has already been learned to classify the
N training noisy types is used to estimate the similarity rates
of each observed noisy speech to the training noise classes.
The noise type (matched or mismatched) is diagnosed such
that if one of the estimated rates is greater than a high
threshold (set to 0.90), that noisy speech is regarded as one
of the training noisy mixtures i.e., a matched condition, oth-
erwise, it is a mismatched condition. Then, in the fusion
block, for matched noises, the enhanced speech is obtained
from the output of only one learned model corresponding to
the detected noise. However, for mismatched noises, the final
result is calculated based on a weighted combination of the
outputs of multiple models, where the weights are the corre-
sponding classification rates.

4. Experimental Setup and Results

The performance of the proposed system is compared with
the following methods:

(i) NMF [28]: the explained NMF-based speech enhance-
ment in Section 2.

(ii) DNN-Mag [29]: the traditional DNN-based speech
enhancement where a DNN is used to map the spec-
tral magnitude of noisy speech to the spectral mag-
nitude of clean speech.

(iii) LSTM-Mask [7, 30]: a long short-term memory
(LSTM) network maps the noisy speech magnitude
to the IRM mask values. Then, the estimated mask
values are multiplied by the noisy speech to estimate
the sources.

(iv) CRN-Mag [31]: a convolutional–recurrent network
(CRN) is used with the mapping-based magnitude
target. CRN is composed of CNN encoder–decoder
and LSTM layers and its architecture is set similar
to [31].

(v) DNN-NMF-Sep [13]: a separate combinatorial
model of DNN and NMF where the DNN maps
the noisy speech to the NMF activation coefficients
and the reconstruction of the main objective signals
is separately performed outside of DNN.

(vi) Jnt-DNN-NMF [15]: a joint combinatorial model of
DNN and NMF where the DNN optimizes the
objective signals. However, the activation coeffi-
cients do not directly incorporate into the DNN
structure and learning process.

IET Signal Processing 5



Wedenote our proposed Jnt-DNN-NMFmodelwith two loss
functions of the multi-objective loss function LMO and the multi-
objective frequency-differentiated loss function LMOFD as “Jnt-
DNN-NMF-MO” and “Jnt-DNN-NMF-MOFD,” respectively.

The proposed and comparison methods are trained and
evaluated on the TIMIT dataset [32] which consists of 6,300
different utterances. We randomly select 200 clean speech utter-
ances from the training set of TIMIT and are corrupted with
babble, factory, and machinegun noises from the NOISEX-92
corpus [33] at SNRs −5 to 20dB with steps of 5dB. Our test
set includes different 60 utterances from the test set of TIMIT
which are corrupted with the training noises as matched noises
and the real-world recorded factorymachine and windshieldrain
noises from the Freesound data as mismatched noises at −5 to
10dB SNRs. The baselines are trained and evaluated with the
same training and testing datasets used for the proposed meth-
ods, respectively.

We use a 512-point STFT for the waveforms sampled at
16 kHz and framed using a 512-sample (32ms) frame length,
512-sample (32ms) Hamming window, and 128 shift sam-
ples (8ms). The symmetric part of the STFT coefficients is
cut off, so the dimension of our spectral magnitude matrices
is 257× frame numbers.

4.1. DNN and NMF Parameters. The NMF ranks of speech
and noise basis matrices in all the baseline and proposed NMF-
based methods are empirically set at 100 each (Ks;Kn¼ 100).
So, the size of the basis matrices is 257× 100 (frequency bins×
bases numbers). The maximum NMF iteration number is set
to 50.

The architecture of the used DNN in all the baseline and
proposed models includes four hidden layers with 1,024 units
for a fair comparison. It should be noted that the main idea
of the baseline DNN-Mag, DNN-NMF-Sep, and Jnt-DNN-
NMF methods are, respectively, from Kang et al.’s [13], Nie
et al.’s [15], and Huang et al.’s [29] studies, while the network
topology and configurations are set according to our pro-
posed models for a fair comparison. In all methods, the input
layer includes 257 nodes due to the size of the noisy magni-
tude spectrum. The coefficient output layer due to the acti-
vation labels has 100× 2= 200 nodes and the main output
layer for the main spectral magnitudes labels contains 257×
2= 514 nodes. The activation functions of the hidden layers
and the main output layer are leaky rectified linear units
(LReLU) [34] with α¼ 0:1 (f ðxÞ: ¼maxðαx; xÞ :) and linear,
respectively. The activation function of the coefficient output
layer is ReLU (f ðxÞ: ¼maxð0; xÞ :) due to the non-negativity
of the activation coefficients. The classifier DNN has two hid-
den layers of 1,024 units with the ReLU function and one
output layer of three units with the softmax activation function
for three classes. The softmax output is a probability distribu-
tion in the [0,1] range with a total sum of 1. The batch nor-
malization is used after each hidden layer for faster training
convergence. The baseline LSTM-Mask network has two
LSTM layers of 3,072 LReLU units and a fully connected
(FC) layer of 1,024 LReLU units, and a fully connected
output layer of 257 linear units for mask values prediction.
This configuration is according to the LSTM part in [7] and

the LSTM-IRM method [30] which was used as a compari-
son method in Strake et al.’s [7] study. However, instead of
425 nodes in Strake et al.’s [7] study, here the nodes of the
two LSTM layers are experimentally set to 3,072 to have
better results.

The classifier DNN uses the cross-entropy loss function
and the proposed model uses LMO and LMOFD loss functions.
All networks are trained by the Adam optimizer [35] with an
initial learning rate of 0.001 and a maximum epoch of 100.
The weights of α1 and α2 in Equation (10) and theM param-
eter in Equation (9) are experimentally set to 2.3, 0.1, and 2,
respectively. The N in Figure 1 is equal to 3 due to the three
training noise classes. Moreover, to avoid overfitting, the
early stopping method which stops the learning process
based on the minimum validation loss is used in all models.

4.2. Results and Discussion. This section explains the results
of the proposed methods and baselines evaluated by three
metrics of perceptual evaluation of speech quality (PESQ)
[36], short-time objective intelligibility (STOI) [37], and
frequency-weighted segmental SNR (SNRfw) [38, 39].

First, the classification results of the training noise types
are displayed in Table 1 which indicates an appropriate clas-
sification. The classifier DNN identifies the mismatched
noises of factorymachine and windshieldrain with the rates
of (0.64, 0.22, 0.14) and (0.80, 0.18, 0.02), respectively. So,
based on these prediction ratios (w1, w2, w3 in Figure 1), the
proportional contribution of the corresponding models is
used for enhancement.

The average improvements of the PESQ metric (gPESQ),
STOI, and SNRfw results of different methods over matched
noise types and for each input SNR are displayed in Figures 2–4,
respectively.

As can be seen in Figures 2–4, the proposed Jnt-DNN-
NMF-MO and Jnt-DNN-NMF-MOFD methods outperform
the baseline comparative methods. The superiority of Jnt-
DNN-NMF-MO results over Jnt-DNN-NMF [15] in terms
of three metrics is due to the use of extracted speech and
noise NMF activation coefficients as direct intermediate tar-
gets by DNN, which are structural features and act as prior
knowledge for DNN training. In fact, incorporating these coef-
ficients in addition to themain signals into the loss function has
led to improvement. The superior performance of Jnt-DNN-
NMF-MO over other baseline methods is due to the joint
learning of the integrated model of DNN and NMF bases
and the use of the structural NMF features for DNN.According
to Figures 2–4, in terms of three metrics, the Jnt-DNN-NMF-
MOFDmethod outperforms the Jnt-DNN-NMF-MO and also
the baselines, which demonstrates the strength of the proposed

TABLE 1: Noise classification results.

Actual class
Predicted class

Factory Babble Machinegun

Factory 0.94 0.03 0.03
Babble 0.03 0.90 0.07
Machinegun 0.03 0.07 0.90
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frequency-differentiated loss function. By using LMOFD, the
frequency dynamics are learned better than using LMO.

The results in Figure 2 show that the proposed methods
(the last two methods) have higher PESQ improvements at
each input SNR than the previous methods. The proposed
Jnt-DNN-NMF-MOFD method reaches about 0.15 more
average PESQ improvement compared to the best baseline
(Jnt-DNN-NMF [15]) and 1.10 over the noisy speech. Also,
the increase of STOI and SNRfw scores for the proposed
methods is more than the baselines (Figures 3 and 4). Better
extraction of frequency characteristics in the Jnt-DNN-
NMF-MOFD method has led to improved performance.

Furthermore, to evaluate the generalization ability, the
average gPESQ results of the proposed and comparison
methods over the mismatched noise types are given in
Figure 5 for each input SNR. According to this figure, the
results of the proposed methods are better compared to
others. It indicates an average PESQ improvement of 0.11
higher than the best baseline (Jnt-DNN-NMF [15]).

To examine the enhancement performance in more mis-
matched noise types, the average gPESQ results of the proposed
Jnt-DNN-NMF-MOFDmethod and the baseline LSTM-Mask
method [7, 30] over two other mismatched noises, restaurant
and street, are given in Figure 6 for each input SNR. The
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TABLE 2: The noise classification (NC) performance for the proposed Jnt-DNN-NMF-MOFD model.

Matched noises Mismatched noises

PESQ STOI SNRfw PESQ STOI SNRfw

Noisy 2.10 0.70 9.30 2.08 0.74 6.11
Without NC 3.10 0.87 13.96 2.35 0.78 8.73
With NC 3.20 0.88 15.27 2.42 0.79 9.51
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restaurant and street noises are given from the Aurora-2 data-
base [40]. These noises have different properties and structures
from the previous matched and mismatched noises. The esti-
mated classification rates of the restaurant and street noises are
approximately (0.11, 0.71, 0.18) and (0.18, 0.28, 0.54), respec-
tively. According to this figure, the performance trend is similar
to the previous mismatched noises indicating the effectiveness
of the suggested approach and the generalization capability.

Moreover, to investigate the noise classification (NC) per-
formance, the average results of the final proposed Jnt-DNN-
NMF-MOFD method with and without NC are reported in
Table 2 for matched and mismatched noises. Better results
with NC compared towithout NC indicate the benefit of using
the noise-specific models and the fusion strategy.

Finally, the magnitude spectrograms of the estimated
speech by the proposed Jnt-DNN-NMF-MOFD method
and the baseline LSTM-Mask method are given in Figure 7,
as examples. As can be seen, Jnt-DNN-NMF-MOFD restores
speech components and removes noise parts better than
LSTM-Mask. One reason for this result is due to the joint
cooperation of NMF and DNN and the direct effect of the
NMF activation coefficients on DNN as structural intermedi-
ate target features. The joint estimation of the actual spectral
targets and the activation coefficients by DNN as multi-
objective joint learning, and also consideration of the fre-
quency domain spectrum changes in the loss function are
the main reasons for this result.

5. Conclusion

We proposed a jointmulti-objective model of NMF andDNN
with new loss functions for speech enhancement. In the pro-
posedmulti-objective loss function ðLMOÞ :, the NMF activation
coefficients are estimated simultaneously with the objective
spectral signals by the DNN. Setting the NMF activation coef-
ficients as a direct target of DNN and integration of the NMF
speech and noise bases and wiener filters with the DNN layers
leads to further improvement. It is due to the extraction of the
harmonic structures by NMF and the direct incorporation of
the extracted structural characteristics into the DNN structure.
Then, to consider andmaintain the frequency domain changes
of speech and noise spectrums, we proposed a frequency-
differentiated loss function (LFD) that considers the spectrum
differences between the adjacent frequency bins. Finally, to
improve the enhancement results, we proposed a multi-
objective frequency differentiated loss function (LMOFD) to
optimize the Jnt-DNN-NMF model which is a weighted com-
bination of the frequency-differentiated loss function and two
MSEs related to the actual spectral signals and the NMF acti-
vation coefficients.

Data Availability

Research data are not shared.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this article.

Acknowledgments

This work was supported in part by Iran National Science
Foundation (INSF) under grant no. 97014206.

References

[1] Y. Ephraim and D. Malah, “Speech enhancement using a
minimum-mean square error short-time spectral amplitude
estimator,” IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. 32, no. 6, pp. 1109–1121, 1984.

[2] M. A. Abd El-Fattah, M. I. Dessouky, A. M. Abbas et al., “Speech
enhancement with an adaptive Wiener filter,” International
Journal of Speech Technology, vol. 17, no. 1, pp. 53–64, 2014.

[3] M. Sun, Y. Li, J. F. Gemmeke, and X. Zhang, “Speech
enhancement under low SNR conditions via noise estimation
using sparse and low-rank NMF with Kullback–Leibler
divergence,” IEEE/ACM Transactions on Audio, Speech, and
Language Processing, vol. 23, no. 7, pp. 1233–1242, 2015.

[4] S. Seyedin and M. Ahadi, “Feature extraction based on DCT
andMVDR spectral estimation for robust speech recognition,”
in 2008 9th International Conference on Signal Processing,
pp. 605–608, IEEE, Beijing, China, October 2008.

[5] M. Pashaian, S. Seyedin, and S. M. Ahadi, “A novel jointly
optimized cooperative DAE-DNN approach based on a new
multi-target step-wise learning for speech enhancement,”
IEEE Access, vol. 11, pp. 21669–21685, 2023.

[6] Y. Wang, J. Han, T. Zhang, and D. Qing, “Speech
enhancement from fused features based on deep neural
network and gated recurrent unit network,” EURASIP Journal
on Advances in Signal Processing, vol. 2021, no. 1, pp. 1–19,
2021.

[7] M. Strake, B. Defraene, K. Fluyt, W. Tirry, and T. Fingscheidt,
“Speech enhancement by LSTM-based noise suppression
followed by CNN-based speech restoration,” EURASIP
Journal on Advances in Signal Processing, vol. 2020, no. 1,
pp. 1–26, 2020.

[8] R. Safari, S. M. Ahadi, and S. Seyedin, “Modular dynamic deep
denoising autoencoder for speech enhancement,” in 2017 7th
International Conference on Computer and Knowledge Engineer-
ing (ICCKE), pp. 254–259, IEEE, Mashhad, Iran, 2017.

[9] K. Wang, W. Lu, P. Liu, J. Yao, and H. Li, “Multi-stage
attention network for monaural speech enhancement,” IET
Signal Processing, vol. 17, no. 3, 2023.

[10] S. Alisamir, S. M. Ahadi, and S. Seyedin, “An end-to-end deep
learning model to recognize Farsi speech from raw input,” in
2018 4th Iranian Conference on Signal Processing and Intelligent
Systems (ICSPIS), pp. 1–5, IEEE, Tehran, Iran, 2018.

[11] Y. Wang, A. Narayanan, and D. L. Wang, “On training targets
for supervised speech separation,” IEEE/ACM Transactions on
Audio, Speech, and Language Processing, vol. 22, no. 12,
pp. 1849–1858, 2014.

[12] D. L. Wang and J. Chen, “Supervised speech separation based
on deep learning: an overview,” IEEE/ACM Transactions on
Audio, Speech, and Language Processing, vol. 26, no. 10,
pp. 1702–1726, 2018.

[13] T. G. Kang, K. Kwon, J. W. Shin, and N. S. Kim, “NMF-based
target source separation using deep neural network,” IEEE
Signal Processing Letters, vol. 22, no. 2, pp. 229–233, 2015.

[14] S. Nie, S. Liang, H. Li et al., “Exploiting spectro-temporal
structures using NMF for DNN-based supervised speech
separation,” in IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 469–473, IEEE,
Shanghai, China, 2016.

IET Signal Processing 9



[15] S. Nie, S. Liang, W. Liu, X. Zhang, and J. Tao, “Deep learning
based speech separation via NMF-style reconstructions,”
IEEE/ACM Transactions on Audio, Speech, and Language
Processing, vol. 26, no. 11, pp. 2043–2055, 2018.

[16] H. Li, S. Nie, X. Zhang, and H. Zhang, “Jointly optimizing
activation coefficients of convolutive NMF using DNN for
speech separation,” in Proceedings of the Annual Conference of
the International Speech Communication Association, Inter-
speech, pp. 550–554, ISCA, 2016.

[17] T. T. Vu, B. Bigot, and E. S. Chng, “Combining non-negative
matrix factorization and deep neural networks for speech
enhancement and automatic speech recognition,” in IEEE
International Conference on Acoustics, Speech and Signal
Processing, pp. 499–503, IEEE, Shanghai, China, 2016.

[18] H.-W. Tseng, M. Hong, and Z.-Q. Luo, “Combining sparse NMF
with deep neural network: a new classification-based approach for
speech enhancement,” in IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 2145–2149,
IEEE, South Brisbane, QLD, Australia, 2015.

[19] H. Jia, W. Wang, and S. Mei, “Combining adaptive sparse
NMF feature extraction and soft mask to optimize DNN for
speech enhancement,” Applied Acoustics, vol. 171, Article ID
107666, 2021.

[20] Y. Wang and D. Wang, “A structure-preserving training target
for supervised speech separation,” in IEEE International
Conference on Acoustics, Speech and Signal Processing,
pp. 6107–6111, IEEE, Florence, Italy, 2014.

[21] D. S. Williamson, Y. Wang, and D. Wang, “Reconstruction
techniques for improving the perceptual quality of binary
masked speech,” The Journal of the Acoustical Society of
America, vol. 136, no. 2, pp. 892–902, 2014.

[22] D. S. Williamson, Y. Wang, and D. Wang, “A sparse
representation approach for perceptual quality improvement
of separated speech,” in IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 7015–
7019, IEEE, 2013.

[23] D. S. Williamson, Y. Wang, and D. Wang, “A two-stage
approach for improving the perceptual quality of separated
speech,” in 2014 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 7084–7088, IEEE,
Florence, Italy, 2014.

[24] E. M. Grais, G. Roma, A. J. R. Simpson, and M. D. Plumbley,
“Two-stage single-channel audio source separation using deep
neural networks,” IEEE/ACM Transactions on Audio, Speech,
and Language Processing, vol. 25, no. 9, pp. 1773–1783, 2017.

[25] D. S. Williamson, Y. Wang, and D. Wang, “Estimating
nonnegative matrix model activations with deep neural
networks to increase perceptual speech quality,” The Journal of
the Acoustical Society of America, vol. 138, no. 3, pp. 1399–
1407, 2015.

[26] D. S. Williamson, Y. Wang, and D. Wang, “Deep neural
networks for estimating speech model activations,” in IEEE
International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 5113–5117, IEEE, South Brisbane,
QLD, Australia, 2015.

[27] J. Chen, K. K. Paliwal, and S. Nakamura, “Cepstrum derived from
differentiated power spectrum for robust speech recognition,”
Speech Communication, vol. 41, no. 2-3, pp. 469–484, 2003.

[28] E. M. Grais and H. Erdogan, “Single channel speech music
separation using nonnegative matrix factorization and spectral
masks,” in 2011 17th International Conference on Digital
Signal Processing (DSP), pp. 1–6, IEEE, Corfu, Greece, 2011.

[29] P.-S. Huang,M. Kim,M.Hasegawa-Johnson, and P. Smaragdis,
“Deep learning for monaural speech separation,” in 2014 IEEE
International Conference on Acoustics, Speech and Signal
Processing, pp. 1562–1566, IEEE, Florence, Italy, 2014.

[30] J. Chen and D. Wang, “Long short-term memory for speaker
generalization in supervised speech separation,” The Journal of
the Acoustical Society of America, vol. 141, no. 6, pp. 4705–
4714, 2017.

[31] Y. Shi, W. Yuan, S. Hu, and Y. Lou, “A convolutional recurrent
neural network for real-time speech enhancement,” in Interna-
tional Speech Communication Association (Interspeech), pp. 3229–
3233, 2018.

[32] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus,
D. S. Pallett, and N. L. Dahlgren, “DARPA TIMIT acoustic-
phonetic continous speech corpus CD-ROM. NIST speech
disc 1-1.1,”NASA STI/Recon Technical Report N, vol. 93, 1993.

[33] A. Varga and H. J. M. Steeneken, “Assessment for automatic
speech recognition: II. NOISEX-92: a database and an
experiment to study the effect of additive noise on speech
recognition systems,” Speech Communication, vol. 12, no. 3,
pp. 247–251, 1993.

[34] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier
neural networks,” in Proceedings of the Fourteenth Interna-
tional Conference on Artificial Intelligence and Statistics, vol.
15, pp. 315–323, PMLR, 2011.

[35] D. Kingma and J. Ba, “Adam: a method for stochastic
optimization,” in International Conference on Learning
Representations (ICLR), University of Amsterdam, 2014.

[36] A. W. Rix, J. G. Beerends, M. P. Hollier, and A. P. Hekstra,
“Perceptual evaluation of speech quality (PESQ)—a new
method for speech quality assessment of telephone networks
and codecs,” in 2001 IEEE International Conference on
Acoustics, Speech, and Signal Processing, vol. 2, pp. 749–752,
IEEE, USA, 2001.

[37] C. H. Taal, R. C. Hendriks, R. Heusdens, and J. Jensen, “An
algorithm for intelligibility prediction of time–frequency
weighted noisy speech,” IEEE Transactions on Audio, Speech,
and Language Processing, vol. 19, no. 7, pp. 2125–2136, 2011.

[38] Y. Hu and P. C. Loizou, “Evaluation of objective quality
measures for speech enhancement,” IEEE Transactions on
Audio, Speech, and Language Processing, vol. 16, no. 1,
pp. 229–238, 2008.

[39] J. Tribolet, P. Noll, B. McDermott, and R. Crochiere, “A study
of complexity and quality of speech waveform coders,” IEEE
International Conference on Acoustics, Speech, and Signal
Processing, vol. 3, pp. 586–590, 1978.

[40] D. J. B. Pearce and H.-G. Hirsch, “The aurora experimental
framework for the performance evaluation of speech recognition
systems under noisy conditions,” in 6th International Conference
on Spoken Language Processing, ICSLP, China, 2000.

10 IET Signal Processing




