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Wireless communication plays a crucial role in the automation process in the industrial environment. However, the open nature of
wireless communication renders industrial wireless sensor networks susceptible to malicious attacks that impersonate authorized
nodes. The heterogeneity of the wireless transmission channel, coupled with hardware and software limitations, further compli-
cates the issue of secure authentication. This form of communication urgently requires a lightweight authentication technique
characterized by low complexity and high security, as inadequately secure communication could jeopardize the evolution of
industrial devices. These requirements are met through the introduction of physical layer authentication. This article proposes
novel deep learning (DL) models designed to enhance physical layer authentication by autonomously learning from the frequency
domain without relying on expert features. Experimental results demonstrate the effectiveness of the proposed models, showcasing
a significant enhancement in authentication accuracy. Furthermore, the study explores the efficacy of various DL architecture
settings and traditional machine learning approaches through a comprehensive comparative analysis.

1. Introduction

Industrial wireless sensor networks (IWSN) have received
increased attention in most industries in recent years thanks
to their flexible nature and ability to work in challenging
environments. IWSN can be used in various manufacturing
applications, such as industrial control and process automa-
tion. However, the accessibility of IWSN raises concerns
about security and privacy. Consequently, vulnerabilities
may arise, primarily linked to the potential for adversaries
to eavesdrop through the unauthorized interception of com-
munications between industrial nodes, jam communications
between nodes by flooding a channel with noise, or spoof
communications by transmitting a forged signal between two
authorized nodes. The wireless network must implement secu-
rity procedures for access control and prevent unauthorized
users. Every connection between nodes, whether involving a
limited-access device or a smart device, is significant in terms of
security. In the field of IWSN, addressing confidentiality,

integrity, and availability is crucial as the foremost requirement
for information security [1].

Authentication is an essential challenge in IWSN, where
node identification requires safeguarding wireless communi-
cations to determine nodes’ authenticity and grant them
access while blocking unauthorized devices [2]. Wireless com-
munication systems execute authentication using upper-layer
authentication methods, which generally employ cryptographic
algorithms [2]. Traditional authentication methods rely on vul-
nerable addresses, especially IP and MAC addresses. Neverthe-
less, upper-layer authentication methods that use traditional
cryptography algorithms are insufficient for advanced wireless
communication technologies [3], such as the Internet of Things
(IoT) and the Internet of Vehicles. As artificial intelligence (AI)
technologies progress, various cybersecurity techniques explore
methods to leverage the capabilities offered by AI. Machine
learning (ML) and deep learning (DL) enhancements have
recently strengthened classification reliability within authenti-
cation systems.
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Due to the open nature of wireless communication,
adversaries that imitate authorized users can compromise
IWSN. Therefore, the heterogeneous nature of the wireless
transmission channel and the limited hardware and software
capabilities of the nodes make secure authentication in an
IWSN more challenging. Consequently, determining the
source of unknown wireless transmitters and mitigating
security dangers raised by adversaries requires a simple
and lightweight authentication solution.

In this article, we present an uncomplicated authentica-
tion model. The model is formulated to enact lightweight
authentication by leveraging the unique characteristics of
the physical layer within the transmission medium and is
integrated with DL approaches.

The main contributions of this article are summarized as
follows:

(i) This article introduces the wireless physical layer
authentication (WPLA) model designed for wireless
industrial device communications. The model employs
DL architectures incorporating autonomous parameter
optimization, thereby serving as a substitution for tra-
ditional ML algorithms.

(ii) We have developed a representative sequential archi-
tecture consisting of two layers of convolutional neural
networks (CNNs), two layers of long short-termmem-
ory (LSTM) architecture, and an architecture based on
restricted Boltzmann machines (RBMs). This compos-
ite architecture is systematically designed to ascertain
the optimal model for physical layer authentication.

(iii) The conducted experiments utilized the publicly
available dataset provided by the National Institute
of Standards and Technology (NIST) [4]. We pro-
pose a model that systematically explores channel
impulse response (CIR) and transitions to channel
frequency response (CFR) as a strategic approach to
attaining reliable performance.

(iv) Furthermore, a comparative analysis has been under-
taken to scrutinize the impact of varied DL structural
configurations and traditional ML algorithms on
classification performance.

The remainder of this article is organized as follows: In
Section 2, an overview of the background of DL architectures.
Related works are discussed in Section 3. In Section 4, the
systemmodel is briefly described. Then, in Section 5, a physi-
cal layer authentication model is proposed. Section 6 presents
the result and discusses the proposed models’ performance.
Finally, the conclusion is presented in Section 7.

2. Background

DL computing has emerged as the predominant paradigm
within ML, exhibiting remarkable efficacy in diverse, intricate
cognitive investigations. Notably, DL has outperformed estab-
lishedMLmethodologies across multiple domains, which can
be attributed to its enhanced capabilities in data analysis. The

categorization of DL approaches encompasses four principal
classifications, as delineated below:

(i) Deep supervised learning: This approach engages
with labeled data, where the classifier continuously
refines network parameters to understand desired
outputs better. Various classes of supervised learn-
ing, such as recurrent neural networks (RNNs) and
CNNs [5], fall under this category. Additionally,
RNN architectures encompass gated recurrent units
and LSTM architectures [6].

(ii) Deep unsupervised learning: This approach facili-
tates learning without the availability of labeled
data. The classifier autonomously discerns signifi-
cant features to reveal latent structures or relation-
ships within the input data. Recently developed
frameworks within the DL family, such as RBMs
[7], autoencoders, and generative adversarial net-
works, have demonstrated proficiency in addressing
nonlinear dimensionality reduction and clustering
problems.

(iii) Deep reinforcement learning: Combines reinforce-
ment learning and DL, allowing the classifier to
make decisions from unstructured input data with-
out manual engineering. This technique was devel-
oped in 2013 with Google Deep Mind [8].

(iv) Deep semisupervised learning: This learning process
relies on semi-labeled datasets to facilitate the learn-
ing process.

2.1. CNN. The CNN is typically designed for processing data
with a known grid-like structure. The convolutional layer
plays a crucial role in the CNN architecture, where each layer
comprises multiple filters working collaboratively to conduct
extensive convolutions on the input, resulting in the creation
of feature maps. The learning algorithm trains these filters
through a backpropagation mechanism, often represented as
a multidimensional array of parameters [5]. To achieve an
appropriate level of abstraction at the correct scale, filter sizes
are selected based on the dimensions of the input data.

For instance, a convolutional layer convolves over the 2D
input x using 2D filters k to extract features, represented as
follows:

x × kð Þm;n ¼ x m; n½ � × k m; n½ � ¼ ∑
i
∑
j
x i; j½ � ⋅ k m − i½ � n − j½ �:

ð1Þ

After the convolution, a bias term b and a point-wise
nonlinearity f are utilized to create a feature map at the filter
output. The feature map is created as follows using filters
based on the input x and weights W:

km;n ¼ f x ×Wð Þmn þ bð Þ: ð2Þ

A pooling layer is applied after a convolutional layer to
perform a down-sampling operation, reducing the in-plane
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dimensionality of the feature maps. This operation intro-
duces translation invariance to minor shifts and distortions
while also reducing the number of subsequent learnable
parameters. The fully connected layer, constituting fully
linked neurons with all feature maps from the last layer,
represents a fundamental component of a CNN architecture.

2.2. LSTM. LSTMs are a distinct type of RNN designed to
retain information in an internal state or memory, facilitat-
ing the creation of long-term dependencies. The two states—
the cell state and the hidden state—are transmitted to the
subsequent cell. LSTMs utilize gates to regulate the memori-
zation process, preventing long-term dependence. The three
gates comprising an LSTM are the input gate (It), the forget
gate (Ft), and the output gate (Ot). Equations (3)–(9) delin-
eate the fundamental structure of the LSTM model [6]. This
learning process relies on semilabeled datasets to facilitate
the learning process.

The information from the new input, Xt, is decided upon
and stored in the cell state, Ct, by the first gate, the input gate.
This phase comprises two components: the sigmoid and tanh
functions. The sigmoid function determines whether to
update the data based on the new information, while the
tanh function weighs the values passed to assess their relative
importance. Conversely, according to the sigmoid function,
the forget gate is employed to determine unnecessary infor-
mation that will be excluded from the cell. The last gate is an
output gate, where a filtered version of the output cell state
generates the output values, Ht. A sigmoid function selects
the components of the cell state sent to the output, and the
new values produced by the tan h from the cell state, Ct, are
multiplied by the outcome of the sigmoid function.

Sigmoid function:

σ xð Þ ¼ 1
1þ e−x

¼ ex

1þ ex
: ð3Þ

Gate:

Ft ¼ σ Wf Ht−1 þWf Xt

À Áþ bf ; ð4Þ

It ¼ σ WiHt−1 þWiXtð Þ þ bi; ð5Þ

Ot ¼ σ WoHt−1 þWoXtð Þ þ bo: ð6Þ

Input transform:

Nt ¼ tanh WnHt−1 þWnXtð Þ þ bn: ð7Þ

State update:

Ct ¼ Ft ⋅ Ct−1 þ It ⋅ Nt ; ð8Þ

Ht ¼ tanh Ctð Þ ⋅ Ot: ð9Þ

Here, σ represents the sigmoid function, Ht−1 is the out-
put of the last LSTM unit at time t−1, Xt is the current input

at time t, and W and b are the weight matrices and bias,
respectively. Additionally, Ct−1 and Ct denote the cell states
at t−1 and t.

2.3. RBMs. RBMs are undirected probabilistic models with
two layers: visible and hidden units [7]. To optimize the
likelihood function, one must identify the joint probability
distribution. RBMs develop neural network topologies for
unsupervised data modeling using the concept of energy
minimization [9]. The term “restricted” refers to the absence
of intralayer connections between the visible and hidden
units. However, connections between visible units and hid-
den units are still allowed.

There are two essential stages in the operation of RBMs:
the feed-forward pass and the feed-backward pass. During
the feed-forward pass, the inputs are multiplied by the
weights, and the bias is applied. The result is then fed into
a sigmoid activation function, with the function’s output
determining the activation of the hidden state. Conversely,
the feed-backward pass reconstructs the functionality of the
input units using the activated hidden units. The dual con-
nection structure assumes conditional distributions of visible
units on all hidden units, as well as distributions of hidden
units on all visible units [5, 10], which are defined as follows:

p v hjð Þ ¼ ∏
m

i¼1
p vi hjð Þ; p h vjð Þ ¼ ∏

n

j¼1
p hj vj
À Á

; ð10Þ

p vi hjð Þ ¼ σ bi þ ∑
n

j¼1
hj ⋅ Wij

 !
; ð11Þ

p hj vj
À Á¼ σ bj þ ∑

m

i¼1
vi ⋅ Wij

� �
: ð12Þ

Originally, RBMs were proposed for use with binary vis-
ible units (v2 {0, 1}) and hidden units (h2 {0, 1}). The bias
vector is denoted by the letter b, and the weight of the link
between the ith visible unit and the jth hidden unit is repre-
sented as Wij.

3. Related Work

This section provides an overview of the pertinent literature
on the WPLA approach. WPLA is an authentication method
designed to identify a wireless transmitter by analyzing phys-
ical layer characteristics within the transmission [11]. The
focus of scholarly inquiry within WPLA has been directed
toward methodologies such as radio frequency fingerprint
(RFF) and channel-based techniques. The inception of RFF
technology dates to 1995, when Toonstra and Kinsner [12]
first proposed its conceptual framework. Rooted in exploiting
manufacturing defects in wireless device components, RFF
leverages minor imperfections inherent in the launch signal.
Drawing a parallel to human biometric fingerprint identifiers,
RFF is a practical and effective technique for authenticating
wireless devices based on hardware irregularities.
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On the other hand, due to the uniqueness, space-variability,
time-variability, and reciprocity of the wireless channel, the
physical layer features demonstrate the unique nature of the
wireless channels used by the transmission parties. By analyz-
ing channel features, for example, channel state information
(CSI), CIR, CFR, and received signal strength. Signal classifica-
tion and identification have become required with the advance-
ment of wireless communication technologies. Described signal
intelligence is a subject of research based on extracting signal
features fromunidentified radio frequency signals, which include
modulation, center frequency, bandwidth, protocols, and trans-
mitter identity [13]. Significant studies have implemented their
classification methods by utilizing RFF [14] and channel fea-
tures [15–18].

In recent years, DL has been increasingly integrated with
WPLA within the context of secure wireless networks. This
section introduces the pertinent literature exploring the intersec-
tions between DL and WPLA. Due to DL’s excellent classifica-
tion capabilities, deep neural networks perform exceptionally
well when used for authentication. Liao et al. [16] created a
multiuser authentication approach that could recognize numer-
ous devices with little resource consumption using deep neural
networks with data augmentation techniques. However, CNNs
were chosen in some research because of their dependability and
robust learning capabilities, which have high accuracy and low
loss function during training. Baldini et al. [19] used CNN and
recurrence plot techniques to develop classification approaches
for the physical layer authentication challenge. To identify dif-
ferent devices by utilizing distinctive RF fingerprints, Aminud-
din et al. [20] presented a methodology based on CNN to secure
wireless transmission in a wireless local area network. Liao et al.
[21] adopted deep neural networks, CNN, and convolution pre-
processing neural networks to perform physical layer authenti-
cation in IWSN.

Furthermore, some research examined the relationship
between the number of hidden layers and authentication
rates, and it was discovered that the authentication rate
improved as the number of hidden layers increased. In con-
trast, Ma et al. [22] used LSTM as an effective classifier to
determine authorized and unauthorized users and increase
detection efficiency and accuracy through simulations with
varied channel conditions. Chatterjee et al. [23] demonstrated
how to use the radiofrequency properties that the wireless
device produces to authenticate devices in IoT networks as
a trustworthy physical, unclonable function. Accordingly, a
simpleMLmodel was designed to consider receiver imperfec-
tions, channel, and data unpredictability.

4. System Model

We propose a WPLA model aimed at enhancing the security of
IWSN with minimal impact on communication resources.
Figure 1 illustrates numerous sensor nodes deployed across vari-
ous locations within the industrial environment. We consider
different wireless sensor nodes within the broadcast range of
other nodes. For the sake of simplicity, we assume the availability
of channel information for authorized nodes while the channel
information for unauthorized nodes remains unknown. The

computational node is responsible for validating the legitimacy
of received messages and ascertaining their origin from an
authorized node based on channel information.

To initiate the authentication process, the computing
node cyclically disseminates request messages to nodes within
the industrial wireless network. Upon receipt of the message,
all nodes transmit response messages to the computing node,
incorporating both the pilot signal and identity information.
Subsequently, upon receiving these response messages, the
computing node conducts an initial assessment to ascertain
the node type and detect potential identity conflicts by com-
paring the provided information with the stored identity
details of authorized nodes. In the presence of conflicting
declarations of identity, the node may be deemed unautho-
rized. Conversely, if the identity remains consistent, a node
with an identical ID may be flagged as potentially malicious.
Thus, the authentication process is briefly characterized as
follows:

f CFR; IDð Þ ¼
IDi ¼ IDj and CFRi ¼ CFRj;Authorized node

IDi ¼ IDj and CFRi ≠ CFRj;Malicious node

IDi ≠ IDj;Unauthorized node

8><
>: :

ð13Þ

The detailed sequence diagram is depicted in Figure 2,
where Node 1 is designated as authorized, Node 2 is defined
as malicious, and Node 3 is unauthorized. The computing
node is involved in identity authentication for the three
nodes. When a valid node attempts to gain access, the com-
puting node initially determines whether it is an authorized
or malicious node. Subsequently, it undergoes physical layer
channel authentication. Similarly, suppose a node requesting
authentication lacks valid identity credentials. In that case,
the computing node is initially categorized as an unautho-
rized node with incorrect identity information before pro-
ceeding with physical layer channel authentication.

Attacker

Malicious node
Robot arm node

Unknown nodeAccess point

Sensor node

Computing node

AGV node

FIGURE 1: Illustration of our considered communication system
model.
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5. WPLA Framework

This section introduces a proposed WPLA framework for
physical layer authentication based on different DL architec-
tures, as illustrated in Figure 3. The procedural delineation of
the proposed model comprises two distinct stages: the initial

pretraining model stage and the subsequent authentication
model stage. The initial phase of the pretraining model encom-
passes three consecutive stages. In the beginning, the signal
acquisition part lets the authentication model get CIR data
from different nodes that are spread out in an industrial setting.
Subsequently, data processing transforms the acquired CIR

Pretraining
authentication model

Authentication model

Begin

Begin

Signal acquisition Signal processing

Retraining 

Features extraction

No

End
training

Reference
database

Reference
database

Training
dataset

Test
dataset

Achieve target
rate

Training authentication
model

CFR transformationKnown wireless
node transmit pilot

Signal acquisition
(unknown node)

Signal processing Authentication
model

Authentication
prediction

Estimates CIR of
wireless node

FIGURE 3: Proposed WPLA framework.

2: ID request message

3: ID request message

1: ID request message

4: Response {pilot, ID}

5: CFR extraction ()

ID and CFR valid
6: WPLA result ()
Authorized node

7: CFR extraction ()

9: CFR extraction ()

ID and CFR invalid

8: WPLA result ()
malicious node

10: WPLA result ()
unauthorized node

ID valid but CFR invalid

5: Response {pilot, ID}

Alt

(Valid ID)

(Else)

6: Response {pilot, ID}

Node 1 Node 2 Node 3Computing node

FIGURE 2: Sequence diagram of WPLA model.
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data into CFR values while eliminating irrelevant values. Lastly,
the refined CFR data serves as input for the authentication
module, facilitating the training and validation of a neural
network model deployed on the authentication model. In the
subsequent stage, the authenticator system, seeking to ascertain
the identity of unknown nodes, transmits a set of CIR vectors to
the authentication model. Upon receipt of these vectors, the
authentication model extracts CFRs, undergoes a processing
step, and inputs the processed CFRs into the trained authenti-
cation model. The authentication model then outputs an
authentication decision.

5.1. Signal Acquisition. The CIRs constitute crucial informa-
tion for the development of wireless communication networks.
From a mathematical standpoint, the communication channel
linking a transmitter and receiver is characterized by CIRs,
serving as a comprehensive model that encapsulates the cumu-
lative impact of various elements such as reflectors, absorbers,
path loss, and environmental intricacies between them [24]. In
particular, CIRs encompass all signal paths from the transmit-
ter to the receiver, including those resulting from reflection,
diffraction, or scattering [25]. Moreover, CIRs provide insights
into both the propagation conditions and the positions of the
receiver and transmitter within the given environment.

5.2. Signal Processing. In the following, the processing of CIRs is
described in a simplified manner. Usually, CIRs are obtained by
transmitting a pseudo-random sequence s(t) known to both the
transmitter and receiver. This property can be exploited to esti-
mate the signal propagation channel. A convolution of s(t) with
the CIR that results in the received signal y(t) is a straightforward
model for the signal’s propagation.

y tð Þ ¼ s tð Þ∗h tð Þ þ ny tð Þ; ð14Þ

where ∗ denotes convolution. ny(t) represents the noise com-
ponents, modeled as zero-mean white Gaussian noise.

We denote the continuous-time CIR of an L-path base-
band wireless communication channel as follows:

h tð Þ ¼ ∑
L

i¼1
hiδ t − τið Þ; ð15Þ

where δ (t−τi) is the Dirac delta function representing a
delayed multipath replica of the transmitted signal arriving
at time τi with power |hi|

2. In particular, hi= aie
jθi, where ai

and θi denote the amplitude and phase of the ith replica. We
note that h(t) fully describes the communication channel
between the transmitter and receiver.

The complex received signal consists of the in-phase (I)
and quadrature (Q), Ii= ai cos (θi), and Qi= ai sin (θi), deter-
mine the in-phase and quadrature.

x tð Þ ¼ xI tð Þ þ xQj tð Þ: ð16Þ

The signal samples x(t)2C, t= 0,…, t−1 are a time series
of complex raw samples that are characterized as a data
vector. This study considers simple data representation as a
fast Fourier transform (FFT) converted the CIR into a

discrete CFR. The FFT is a mathematical operation that
converts signals from the time domain to the frequency
domain. In order to reduce the number of calculations
required for the FFT, discrete Fourier transform is used [26].

X ið Þ ¼ 1
N

∑
N−1

n¼0
x nð Þ ⋅ e−j2πniN : ð17Þ

Here, X(i) characterizes the frequency content of the time
samples x(n) associated with the original signal x(t).

The result of the transformation, the FFT vector, consists
of two sets of values: one that carries the real component and
another that holds the imaginary component. Next, we con-
vert the FFT vector to amplitude Ai by performing:

Ai ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ii2 þ Qi2

p
: ð18Þ

The last step in this phase is splitting the dataset into a
training set and a test set, where each set is composed of the
following:

Dataset Xset;Ysetf g: ð19Þ

The set of CFR vectors for each node is termedXset, and the
classification label for each node’s CFR vector is termed Yset.

5.3. Training Authentication Model. This section explores the
utilization of DL architectures in the authentication model to
address the inherent high dimensionality of CIRs. The ratio-
nale behind this selection is grounded in the various advan-
tages that DL architectures offer, particularly in addressing
the challenges associated with high-dimensional pattern
identification, as substantiated by previous research findings
[27, 28].

5.3.1. CNN Model Description. In the following section, we
outline the visible and hidden layers of the proposed CNN
model structure, as depicted in Figure 4. We begin by loading
the CFR input sample in the visible layer. Subsequently, we
reshape the sample in both the training and test sets to a fixed
size of (1, 1, 8,188). The hidden layers consist of two convo-
lution layers. The first convolutional layer comprises 256
neurons, followed by a Dropout layer. The second layer is
a convolutional layer composed of 128 neurons, followed by
a Dropout layer. Following a flattening layer, the combina-
tion of dropout regularization and the max norm has dem-
onstrated excellent performance in preventing overfitting.
The penultimate layers in CNN structure are the dense
layers, which include neurons fully connected with all feature
maps in the convolution layers. The first dense layer contains
64 neurons, and ReLU activation functions are applied to
accelerate convergence during the training process. Finally,
the last dense layer utilizes softmax activation to perform
node classification.

5.3.2. LSTM Model Description. The proposed LSTM model
with different layers is demonstrated in Figure 5. First, the
CFR of the signal is fed to all neurons of the LSTMmodel for
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classification. The first layer contains 256 neurons, whereas
the second has 128 neurons, and tanh activation functions
are used in both layers. The flattened layer receives the 128-
dimensional vector, the final output of the second LSTM
layer. The penultimate layers in the LSTM structure are the
dense layers, consisting of neurons fully connected with all
feature maps in the LSTM layers. Then, the first dense layer
contains 64 neurons, and ReLU activation functions are
used. A dense softmax layer is the final layer that places
the nodes’ categorized features into one of eight output
classes.

5.3.3. RBMs Model Description. The proposed RBMs model
structure is a composite of one layer of an RBMs structure
and a support vector machine (SVM) layer, as illustrated in
Figure 6. RBMs represent a form of probabilistic modeling
based on unsupervised nonlinear feature learning. Standard

RBMs are binary; the input and output only have “0” and “1”
states, where “0” indicates that the unit is inactive and “1”
means that the unit is active [29]. In the proposed model, we
utilized Bernoulli RBMs, where all units are binary stochas-
tic. This requires that the input data be either binary or real-
valued, falling between 0 and 1 [30]. Consequently, we nor-
malized the dataset before training the model. After the fea-
ture extraction in the RBMs layer, the obtained features are
sent to the softmax layer. Typically, good results come from
feeding an RBM or a hierarchy of RBMs’ features into a
linear classifier like a linear SVM or a perceptron [30].
Hence, we incorporated an SVM classifier in the last layer
to optimize authentication performance.

6. Evaluation Results and Discussion

This section delineates the implementation details of the mod-
els. Subsequently, it provides an exposition on the performance
evaluation of the proposed models for authentication. Further-
more, an examination and comparative analysis of the authen-
tication and convergence rates between the proposed DL
models and traditional ML algorithms are conducted. Addi-
tionally, training and validation loss profiles are assessed to
identify an optimal structure configuration. Finally, strategies
to mitigate the issue of model overfitting are discussed.

6.1. Dataset Description. To obtain a CIR dataset within an
industrial environment, authentic datasets sourced from the
NIST [4] were utilized. The CIRs were acquired within the

Input sampled
CFR 1 × 8,188

Input sampled
1 × 1 × 8,188

Conv2D layer
256 neurons

ReLU

Reshape Dropout Dropout

Conv2D layer
128 neurons

ReLU
Flatten
layer

Dense layer
64 neurons

ReLU

Dense layer
8 neurons
soft max Output

one-hot
8 class

FIGURE 4: The proposed CNN structure.

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

Input sampled
CFR 1 × 8,188

LSTM layer
256 neurons

tan h

LSTM layer
128 neurons

tan h Flatten
layer

Dense layer
64 neurons

ReLU

Dense layer
8 neurons
softmax

Output
one-hot
8 class

FIGURE 5: The proposed LSTM structure.

Input sampled
CFR 1 × 8,188

RBM layer
256 neurons SVM layer

softmax
Output
one-hot
8 class

FIGURE 6: The proposed RBMs structure.
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confines of a standard industrial site, specifically a machine
shop. The machine shop, an indoor environment, possesses
outer dimensions measuring approximately 12 by 15m, with
a ceiling height of roughly 7.6m. The distance between the
transmitter and receiver was at most 50m. Channel-sounding
tests were conducted using two portable devices, a transmitter
and a receiver, strategically positioned within the factory. The
capture of the CIR transpired as the receiving equipment
moved from one acquisition point to another during the CSI
measurements, resulting in each record denoting a distinct
position. Consequently, the maximum distance between suc-
cessive acquisitions is restricted to 1m. The specific parameter
configuration of the utilized dataset is detailed in Table 1.

6.2. Implementation Details. The proposed models have been
implemented using Python, with Keras and TensorFlow
employed for the CNN and LSTM models. Additionally,
Sklearn was utilized for implementing the RBMs, SVM,
and KMeans models. The training of these models was con-
ducted on a workstation equipped with an NVIDIA graphics
card and a high-performance CPU, such as the Intel Core i7,
paired with 16GB of RAM.

The dataset used for our evaluation analysis comprises
10,000 samples systematically partitioned into two distinct
subsets: the training set, which consists of 8,000 samples
(80%), and the test set, encompassing 2,000 samples (20%).
Within this dataset, there are eight nodes, with three nodes
designated as authorized. Additionally, the dataset includes
five unauthorized nodes, which are classified as three mali-
cious nodes and two identified as unknown. The training set
was further divided into training and validation sets at a ratio
of 7 : 1. The model training process was executed with
parameters as outlined in Table 2, providing a comprehen-
sive overview of the diverse hyperparameters employed in
configuring the proposed models.

6.3. Evaluation Metrics. Evaluating the WPLA model’s per-
formance involved assessing several key performance indi-
cators, including accuracy, precision, recall, and F1-score.
The subsequent section outlines the definitions and formulas
associated with these metrics.

The metrics are characterized by true positives (TP), true
negatives (TN), false positives (FP), and false negatives (FN).
Accuracymeasures the classifier’s ratio of correctly predicting a

node class. Precision represents the ratio of all positively pre-
dicted classes that are both positive and correct. Recall, or
sensitivity, gauges the proportion of the model’s predicted pos-
itive and correct classes relative to the total number of actual
positive classes. The F1 score offers a balanced assessment by
amalgamating precision and recall into a unified metric.

Accuracy ¼ TP þ TN
TP þ FN þ FP þ TN

; ð20Þ

Precision ¼ TP
TP þ FP

; ð21Þ

Recall ¼ TP
TP þ FN

; ð22Þ

F1score¼ 2 ×
Precision × Recall
Precision þ Recall

: ð23Þ

6.4. Comparative Analysis. A comparative analysis of the
WPLA model used both DL architectures and traditional
ML algorithms. This was undertaken to enhance the accuracy
of evaluating the proposed authentication methodology. Each
model’s performance was assessed within a consistent frame-
work, with uniform data dimensions set at 8,188. Figure 7 and
Table 3 show that the DLmodels outperform their traditional
ML counterparts. Specifically, SVMs and KMeans, represen-
tative of traditional MLmodels, exhibited comparatively infe-
rior authentication performance.

In instances where DL architectures result in a 40%
enhancement in performance, it is noteworthy that the model

TABLE 1: NIST dataset parameters configuration of the channel
measurement system.

Parameter Parameter setting

The center frequency GHz 5.4
Receiver/transmitter antenna
polarization

Omni-directional,
V Pol

The receiving antenna gain −3.5
The transmitting antenna gain 3.6
The transmitting power 1.25W
The sampling rate MHz 80
The channel impulse response in the
time domain

8,188× 1 complex
vector

TABLE 2: Deep model configuration.

Hyperparameters DL models

Loss function Categorical crossentropy
Optimizer Adam
Learning rate 0.001
Epochs 100
Batch size 512
Dropout rate 0.5

0
1 5 10
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KMeans
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FIGURE 7: Accuracy rates comparison of different models.
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based on LSTM exhibits superiority over other models. The
authentication accuracy rate attained a commendable 99%
within the iteration range of 1–100. Another model proposed
in this study, CNN, demonstrated comparable performance to
the LSTM model, achieving an authentication accuracy rate of
98%. Conversely, the RBMs model achieved authentication
rates in the range of 87%. In contrast, traditional ML algo-
rithms SVM and KMeans demonstrated 69% and 24% authen-
tication accuracy rates, respectively. The unsupervised KMeans
model consistently produced 30% and 20% accuracy rates. In
this comparison study, it is important to note that all models
were given the same amplitude-form training and test sets,
except for the RBMs and SVM models, whose inputs were
normalized using L2.

Gaussian white noise is deliberately introduced into the
extracted CFR data to assess the robustness of the proposed

authentication models. This simulation aims to evaluate the
model’s performance under varying signal-to-noise ratio
(SNR) conditions, and the associated authentication evalua-
tion results are presented in Figure 8 and Table 4. High scores
across a variety of metrics, consistently ranging between 98%
and 99%, are evidence that the CNN model’s performance
exhibits resilience to SNR variations.

In contrast, the LSTM model’s performance shows sensi-
tivity to SNR changes. This sensitivity becomes apparent
compared to the CNN, particularly under varying SNR con-
ditions. Notably, the LSTMmodel demonstrates superior per-
formance at 0 dB compared to CNN; however, this advantage
decreases with changes in SNR. Specifically, at −15 dB, the
LSTMmodel shows an accuracy of 87%, precision of 89%, and
recall of 86%. Similarly, the RBM model shows sensitivity to
changes in SNR. Positive and incremental effects on all

TABLE 3: Result comparison for different DL and ML models.

Models Accuracy Precision Recall F1

CNN 0.985 0.9851 0.9843 0.9847
LSTM 0.9954 0.9954 0.9954 0.9954
RBMs 0.8752 0.9095 0.8896 0.8995
SVM 0.6947 0.8014 0.7936 0.7975
KMeans 0.2425 0.1215 0.1939 0.1494
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FIGURE 8: Result comparison under different SNRs: (a) accuracy, (b) precision, (c) recall, and (d) F1-score.
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metrics are observed at SNR levels 5, 10, 15, and 20 dB, cul-
minating in an F1-score of 92% at 20 dB. Conversely, delete-
rious effects on all metrics are noted at SNR levels of −5, −10,
−15, and −20 dB, resulting in an F1-score of 72% at −20 dB.

6.5. Models Assessment. The evaluation of the performance of
the proposed models is conducted by utilizing a loss func-
tion. This function serves to quantify the errors induced by
the model precisely. A diminished loss value indicates a
reduction in errors within the model’s predictions, whereas
an elevated loss value signifies increased errors. The assess-
ment of how well a DL model aligns with the training and
validation sets is facilitated by examining metrics termed
training and validation losses. These losses are derived by
aggregating the errors for each sample within the respective
training and validation sets. Furthermore, the training and
validation losses are measured after each epoch. This iterative
measurement process aids in ascertaining whether adjust-
ments to the model are warranted.

Within the models of CNN, LSTM networks, and RBMs,
the loss function employed was categorical cross-entropy,
expressed as follows:

L¼ −∑
N

i¼1
ti ⋅ log pið Þ; ð24Þ

where pi refers to the softmax probability, ti signifies the
ground truth in the form of one-hot encoding, and the train-
ing batch size is indicated by N.

The evaluation of the discrepancy between the actual and
predicted probability distributions for each class in the given
problem is quantified through cross-entropy as a scoring
metric. The attainment of a minimized score corresponds
to an optimal cross-entropy value of 0. The evolution of

TABLE 4: Result comparison under different SNRs.

Model SNR (dB) Accuracy Recall Precision F1-score

CNN

0 0.9850 0.9843 0.9851 0.9847
5 0.9978 0.9978 0.9979 0.9978
−5 0.9964 0.9962 0.9965 0.9964
10 0.9971 0.9971 0.9971 0.9971
−10 0.9926 0.9926 0.9928 0.9927
15 0.9981 0.9979 0.9981 0.9980
−15 0.9922 0.9919 0.9929 0.9924
20 0.9969 0.9969 0.9971 0.9970
−20 0.9931 0.9921 0.9932 0.9926

LSTM

0 0.9954 0.9954 0.9954 0.9954
5 0.9101 0.9011 0.9191 0.9100
−5 0.8867 0.8683 0.9009 0.8843
10 0.9258 0.9208 0.9325 0.9266
−10 0.8786 0.8599 0.8962 0.8777
15 0.9358 0.9315 0.9399 0.9357
−15 0.8774 0.8628 0.8946 0.8784
20 0.9397 0.9364 0.9436 0.9400
−20 0.9014 0.8924 0.9129 0.9025

RBMs

0 0.8841 0.8976 0.9151 0.9063
5 0.8354 0.7891 0.8947 0.8386
−5 0.7904 0.7277 0.8749 0.7945
10 0.8574 0.8280 0.9100 0.8671
−10 0.7904 0.7195 0.8788 0.7912
15 0.8936 0.8803 0.9301 0.9045
−15 0.7421 0.6618 0.8445 0.7421
20 0.9016 0.9022 0.9334 0.9175
−20 0.7250 0.6311 0.8407 0.7210
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FIGURE 9: The cross-entropy loss over epochs for the CNN model.
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cross-entropy loss over epochs for both the training and
validation datasets is represented in Figures 9–11. Regarding
the CNN and LSTM models, the depicted figures illustrate a
consistent reduction in training and validation losses, sug-
gesting an optimal fit. This observation implies a well-
configured model, as there is an absence of discernible signs
of overfitting or underfitting. Conversely, in the case of the
RBMS model, the diminishment in both training and valida-
tion losses is comparatively less noticeable.

Table 5 displays that the prediction rate for both the CNN
and LSTM models approaches 100% when the parameters are
suitably selected. Notably, the CNN model exhibits the fastest
training time compared to the other models. Conversely, the

LSTMmodel demonstrates a notably reduced average training
and prediction time, only 5 s per epoch and 1 µs per sample.

7. Conclusion

In the realm of IWSN, we present aWPLAmodel. This model
autonomously learns from the frequency domain to improve
identification performance and efficiency. Utilizing intelligent
classifiers, both DL architectures and traditional ML algo-
rithms are employed for physical layer authentication. The
findings indicate that the proposed models show excellent
performance, resulting in significantly improved authentica-
tion accuracy. High scores across various evaluation metrics
indicate that the CNN model demonstrated exceptional per-
formance, displaying resilience to SNR variations.

Finally, DL architectures provide practical solutions to
training time and performance challenges, thereby offering
a significant advantage in enhancing security systems. Despite
these advancements, there remains considerable potential for
further improvement in wireless communication security sys-
tems through DL architectures. Our future research initiatives
will focus on establishing a generative adversarial network
model to evaluate the capabilities of the proposed authentica-
tion model.

Abbreviations

CSI: Channel state information
CIR: Channel impulse response
CFR: Channel frequency response
DL: Deep learning
CNN: Convolutional neural network
LSTM: Long short-term memory
RBMs: Restricted Boltzmann machines
NIST: National institute of standards and technology
FFT: Fast Fourier transform.
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networked-control-systems-group/measurement-data-files
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TABLE 5: Training information and accuracy comparison between
DL models.

Models CNN LSTM RBMs

Number of trainable parameters 2,138,056 8,853,576 2,096,384
Training time per epoch (s) 3 5 6
Training time (s) 300 400 625
Prediction time (µs/sample) 4 1 9
Prediction rate 0.9960 1 0.8665
Prediction loss 0.0188 0.00005 1.9056
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