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The color filter array of the camera is an effective fingerprint for digital forensics. Most previous color filter array (CFA)-based
forgery localization methods perform under the assumption that the interpolation algorithm is linear. However, interpolation
algorithms commonly used in digital cameras are nonlinear, and their coefficients vary with content to enhance edge information.
To avoid the impact of this impractical assumption, a CFA-based forgery localization method independent of linear assumption is
proposed. The probability of an interpolated pixel value falling within the range of its neighboring acquired pixel values is
computed. This probability serves as a means of discerning the presence and absence of CFA artifacts, as well as distinguishing
between various interpolation techniques. Subsequently, curvature is employed in the analysis to select suitable features for
generating the tampering probability map. Experimental results on the Columbia and Korus datasets indicate that the proposed
method outperforms the state-of-the-art methods and is also more robust to various attacks, such as noise addition, Gaussian
filtering, and JPEG compression with a quality factor of 90.

1. Introduction

With the rapid development of image editing technologies,
digital image manipulation has become increasingly easy to
perform. Unfortunately, tampered images can introduce harm-
ful impacts through the rapid distribution on the Internet.
Consequently, image forensics aimed at forgery detection,
and localization or camera identification has attracted signifi-
cant attention in recent years [1]. In practical forensic applica-
tions, researchers are more interested in forgery localization,
i.e., locating tampered regions, rather than other goals [2].

Most forgery localization methods can be classified into
physics-based methods and statistical. The physics-based
methods study physical inconsistencies of images, such as
the direction of incident light [3], illumination color [4], or
shading and shadows [5]. These methods analyze the overall
image information with physical models. They are robust to
most image postprocessing, such as resizing and recompres-
sion. Although they perform well on quite controlled scenes,
they are seldomly applicable to real-world images [6].

The most successful and widespread forgery localization
methods are statistical. They depend on the inherent intrin-
sic fingerprints left on the image during the capture process,
such as noise level [7, 8], lens aberration [9], or color filter
array (CFA) [10, 11]. Although these efficient methods have
been widely used, their localization performance degrades
significantly for images undergoing postprocessing, such as
median filtering.

Fortunately,most postprocessing operations can be revealed,
such as resampling [12, 13], median filtering [14, 15], and con-
trast enhancement [16, 17]. Moreover, the various forgery local-
ization methods are considered as tools, and a fusion framework
combining different tools can avoid their drawbacks and limita-
tions in practical applications. Fontani et al. [18] employed
Dempster–Shafer theory to define a fusion framework for image
forensics, which can be easily extended incrementally with new
tools. Jeong et al. [19] proposed to identify the types of image
forgery using a set of mixed statistical moments. Furthermore,
Cozzolino et al. [20] fused the outputs of two fine-tuned algo-
rithms to exploit their respective strengths and weaknesses. This
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technique obtained the best score in phase 1 of the first Image
Forensics Challenge in 2013. Benefiting from the use of statistical
methods as tools in fusion framework for practical applications,
the improvement of single statistical method still makes sense.

In this paper, we propose a novel CFA-based forgery local-
ization method. Most previous CFA-based methods assume
that the interpolation algorithms used in digital cameras are
linear, thereby simplifying the model. However, the interpola-
tion algorithms used are often nonlinear [21], which reduces
the performance of these methods in practical applications. For
the nonlinear interpolation algorithms, the coefficients may
vary with different image components, but the acquired pixel
domain used for interpolation can be assumed constant. The
interpolation process is similar to low-pass filtering making the
interpolated pixel value linearly relate to the acquired pixel
values in this domain. Therefore, we calculate the probability
that an interpolated pixel value is within the range of its
neighboring acquired pixel values within the predicted window
size, which is normalized to obtain a new feature. Finally,
the expectation–maximization algorithm and curvature are
employed for statistical distribution analysis to obtain the tam-
pering probability map. This method is independent of linear
assumption and insensitive to content, resulting in improved
performance. The experimental results show that the proposed
method outperforms the reference methods and is more robust
to attacks compared to other CFA-based methods.

Themain contributions of this paper can be summarized as
follows: (1) A content insensitive CFA fingerprint is proposed
for forgery of localization. (2) Curvature is used for automati-
cally determining whether the statistical feature can distinguish
between original and tampered regions. (3) Experiments using
publicly available datasets show that the proposed method out-
performs the reference methods.

This work has been organized as follows. Section 2
reviews the previous works of CFA in the image forensics
task. In Section 3, we present the theory of the novel CFA-
based forgery localization method. We describe the experi-
ment evaluation in Section 4 and conclude this work in
Section 5.

2. Related Works

Commercial digital cameras are equipped with a CFA in
front of the image sensor to capture images with only one
single color sample at each pixel location. In order to obtain a
three-channel color image, an interpolation algorithm is
employed to estimate the other two color samples. For the
most widely used Bayer CFA, the green pixels are sampled on
a quincunx lattice, the red and blue pixels are sampled on the
complementary locations. This CFA has four configurations:
RGGB, BGGR, GRBG, and GBRG. The top-left of the CFA
image with the RGBG configuration is illustrated in Figure 1.

Let us suppose that Sðx; yÞ :, with ðx; yÞ : 2Z2, is the
observed CFA image, and SGðx; yÞ : denotes the acquired
green signal constructed from Sðx; yÞ : as follows:

SG x; yð Þ ¼ S x; yð Þ x þ y;  even

0 x þ y;  odd

(
: ð1Þ

The green channel Gðx; yÞ : of a complete color image is
composed by acquired component and interpolated compo-
nent:

G x; yð Þ ¼
S x; yð Þ x þ y;  even

∑
N

μ;υ¼−N
αμ;υSG x þ μ; y þ υð Þ x þ y;  odd

8><
>: ;

ð2Þ

where αμ;υ denotes interpolation coefficients for the acquired
pixels within the ð2N þ 1Þ : × ð2N þ 1Þ : window.

The specific correlations introduced by CFA interpola-
tion can be quantified for image forensics. Popescu and
Farid [10] introduced the expectation–maximization (EM)
algorithm to estimate the interpolation coefficients and
obtained the probability of each pixel being correlated
with its adjacent pixels. The periodicity of the possibility
map deriving from the interpolation artifacts presented are
particularly prominently in the Fourier domain. Bammey
et al. [22] found a least square optimal filter instead of the
iterative EM algorithm. Furthermore, Fernández et al. [23]
estimated the interpolation coefficients with the ordinary
least squares algorithm and applied the discrete cosine trans-
form on small blocks for forgery localization. The main
advantage of these methods is that a wide range of modifica-
tions can be detected without previous training and knowl-
edge. However, they rely on the estimation of interpolation
coefficients, which significantly increases the computational
burden.

In addition, Choi et al. [24] defined different neighbor
patterns and estimated the CFA pattern with the number of
intermediate values in each channel. Moreover, they mea-
sured the hue changing by the intermediate value counting
approach to identify the image color modification [25]. Shin
et al. [26] identified the CFA pattern configuration based on
the relationship of the variance of acquired and interpolated
samples in the red, blue, and green channels. Jeon et al. [21]
differentiated the CFA pattern by the truncated sum of the
singular values. Besides, the prediction error is most widely
used, which is defined as follows [27]:

b6,1 g6,2 b6,3 g6,4 b6,5 g6,6

g5,1 r5,2 g5,3 r5,4 g5,5 r5,6

b4,1 g4,2 b4,3 g4,4 b4,5 g4,6 ...

...

g3,1 r3,2 g3,3 r3,4 g3,5 r3,6

b2,1 g2,2 b2,3 g2,4 b2,5 g2,6

g1,1 r1,2 g1,3 r1,4 g1,5 r1,6

FIGURE 1: Top-left portion of a CFA image obtained from the GRBG
Bayer configuration.
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e x; yð Þ ¼
SG x; yð Þ − ∑

Np

μ;υ¼−Np

α0μ;υSG x þ μ; y þ υð Þ x þ y;  even

∑
N

μ;υ¼−N
αμ;υSG x þ μ; y þ υð Þ − ∑

Np

μ;υ¼−Np

α0μ;υSG x þ μ; y þ υð Þ x þ y;  odd

8>>>><
>>>>:

; ð3Þ

where α0μ; υ denotes the predicted interpolation coefficients for
the acquired pixels within a ð2N 0 þ 1Þ : × ð2N 0 þ 1Þ : window.

Ferrara et al. [27] proposed a feature based on the pre-
diction error variance to measure the absence and presence
of CFA traces to obtain a fine-grained tampering possibility
map that can detect small forgery. Singh et al. [28] intro-
duced Markov random process to reduce the false detections
and computational complexity on the basic study of Ferrara
et al. [27]. Lu et al. [29] applied broad first search neighbors
clustering algorithm to detect copied regions and duplicated
regions in the copy–move images. Then they localized dupli-
cated regions based on the prediction error. Furthermore,
Chang et al. [30] detected photographic images and identi-
fied device classes based on the Fourier spectrum of the
prediction error variances.

Although these methods based on prediction error have
achieved good performance in various image forensics tasks,
their linear interpolation assumption degrades their perfor-
mance in practical applications. Most of the interpolation
algorithms used in cameras are nonlinear, and their coeffi-
cients vary with the gradient to enhance edge information.
As a result, these previous methods are sensitive to the con-
tent and sometimes even fail to extract CFA fingerprints
effectively.

3. The Proposed Method

Similar to most previous CFA-based splicing forgery locali-
zation methods, we study the familiar Bayer CFA in the
green channel. For each square of the green channel, the
number of acquired and interpolated pixels is equal. These
two kinds of pixels can be decomposed according to even
and odd locations. However, the interpolated pixels have
four locations in red and blue channels. Consequently,

CFA feature extraction by applying the green channel can
effectively reduce computation complexity. The proposed
forgery localization framework is illustrated in Figure 2.

Let Gðx0; y0Þ : be the pixel value at ðx0; y0Þ : of Gðx; yÞ:.
Equation (2) shows that the interpolated pixel value is a
weighted sum of its neighboring acquired pixel values, and
the weights have:

∑
N

μ;υ¼−N
αμ;υ ¼ 1 : ð4Þ

Let Nr be the real N used in the interpolation algorithm
of the camera. For example, Nr is equal to 1 for the bilinear
interpolation algorithm and Nr is equal to 2 for gradient-
based interpolation algorithm [10].

Let QNðx0; y0Þ : denote the values of the pixels at the quin-
cunx lattice centered of Gðx0; y0Þ : within the ð2N þ 1Þ : ×
ð2N þ 1Þ : window. The minimum and maximum values of
QNðx0; y0Þ : is defined as follows:

MinNx0;y0 ¼Min QN x0; y0ð Þð Þ
MaxNx0;y0 ¼Max QN x0; y0ð Þð Þ  : ð5Þ

When Gðx0; y0Þ : is the interpolated pixel and N ¼Nr , we
can conclude thatGðx0; y0Þ : ranges fromMinNx0; y0 to MaxNx0; y0 :

MinNx0;y0 ≤ G x0; y0ð Þ ≤MaxNx0;y0  : ð6Þ

The probability that Gðx0; y0Þ : satisfies Equation (4) is
defined as P int. When Gðx0; y0Þ : is the acquired pixel, P int
is denoted as PA; whenGðx0; y0Þ : is the interpolated pixel, P int
is denoted as PI . Obviously, PA<1 and PI ¼ 1.

Tampered image

Map of F1 Heatmap of L1

Statistical analysis with curvature

Final tampering map

Feature
binarization

Feature
chossing

Histogram of L1 GMM curve Curvature

Histogram of L2 GMM curve CurvatureMap of F2 Heatmap of L2

FIGURE 2: The framework of proposed CFA-based forgery localization method.
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Generally, since the in-camera interpolation algorithm is
unknown, Nr is also unknown. Therefore, the predicted win-
dow size is used, which is named Np. PI can have various
states with different relationships between Nr and Np.

As shown in Figure 3, the yellow window denotes the real
window including the acquired pixels used for interpolation,
namely Nr ¼ 3. The red windows denote the predicted win-
dows for interpolation, i.e., Np ¼ 1 and Np ¼ 4. Moreover, the
dark green cells denote bigger coefficients, and the pale green
cells denote smaller coefficients for the interpolation. For the
bigger red window (Np ≥Nr),QNðx0; y0Þ : contains all acquired
pixel values used for interpolation, and Gðx0; y0Þ : is linearly
correlated to it, resulting in PI ¼ 1. However, for the smaller
red window (Np<Nr), some of the acquired pixel values used
for interpolation are not withinQNðx0; y0Þ :, resulting in PI<1.

For most interpolation algorithms, the acquired pixel
values closest to the interpolated pixel have higher weights.
These neighboring values contribute significantly to the
interpolated value. Therefore, when Np<Nr , Gðx0; y0Þ : and
QNðx0; y0Þ : are still strongly correlated and PA<PI , which can
be used to distinguish between interpolated pixels and
acquired pixels. Additionally, since PI is mainly affected by
the difference between Nr and Np, it is constant for the same
interpolation algorithm. Specifically, PI can be used to dif-
ferentiate various interpolation algorithms, and it is insensi-
tive to the content.

To obtain P int, we define the comparison result Cpðx0; y0Þ :

as follows:

Cp x0; y0ð Þ ¼ G x0; y0ð Þ −MinNx0;y0
À Á

MaxNx0;y0 − G x0; y0ð ÞÀ Á
 ;

ð7Þ

whereN ¼Np.When theGðx0; y0Þ : satisfies Equation (6),Cpðx0;
y0Þ : ≥ 0. When the Gðx0; y0Þ : does not satisfy Equation (6),
Cpðx0; y0Þ :<0.

Since the locations of the acquired and interpolated pix-
els are unknown, P int needs to be estimated on the even and
odd locations. For the green channel of an M ×M image:

F1 x0; y0ð Þ ¼ 1; x þ y odd and Cp x0; y0ð Þ ≥ 0

0; others

(
; ð8Þ

F2 x0; y0ð Þ ¼ 1; x þ y even and Cp x0; y0ð Þ ≥ 0

0; others

(
: ð9Þ

F1 and F2 are two obtained binarized comparison result
maps whose densities can be used to estimate PA and PI ,
respectively. Binarized comparison result maps F1 and F2
are divided into b× b sub-blocks at one-pixel step, and the
sums of these values in each block are denoted as B1ðx0; y0Þ :

and B2ðx0; y0Þ :, respectively. The density of F1 and F2, named
L1 and L2, are estimated by the following equations:

L1 x0; y0ð Þ ¼ B1 x0; y0ð Þ
b2

 ; ð10Þ

L2 x0; y0ð Þ ¼ B2 x0; y0ð Þ
b2

 : ð11Þ

To establish a simple and tractable model, we assume
that L1 and L2 are Gaussian distribution in the original
image. For the L1 of a forgery image, let M1 and M2 be the
hypotheses of the original and tampered regions. Since the
CFA fingerprints inM1 andM2 are different, we can describe
pixels belonging to M1 and M2 with the conditional proba-
bility density functions as follows:

Pr L1 M1jð Þ ¼N μ1; σ21ð Þ ; ð12Þ

Pr L1 M2jð Þ ¼N μ2; σ22ð Þ ; ð13Þ

where μ1 and μ2 are different, making the distribution of
L1ðx0; y0Þ : have two peaks, which can be regarded as a Gauss-
ian mixture model (GMM).

To analyze the distribution of L1, we introduce the EM
algorithm [31]. It is a famous iterative method to estimate the
means (μ1 and μ2), variances (σ1 and σ2) andmixing coefficients
(π1 and π2) of the component distributions by maximizing the
expectation of a complete log-likelihood function. With these
parameters, the GMM can be written as follows [32]:

Y t λjð Þ ¼ π1N t μ1j ; σ21ð Þ þ π2N t μ2j ; σ22ð Þ ; ð14Þ

where YðtjλÞ : is a GMM function fitted by parameters, λ¼
fπ1; μ1; σ1; π2; μ2; σ2g:, and for notational simplicity, we
denote it by yt , t is a 1D continuous-valued data vector,
Nðtjμ1; σ21Þ : and Nðtjμ2; σ22Þ : are the component Gaussian
densities. However, for the original image, Yt is assumed to

FIGURE 3: The blue cell indicates Gðx0; y0Þ: and the green cells indi-
cate QNðx0; y0Þ:, where N ¼ 3. The dark green cells have larger
interpolation coefficients. The yellow window indicates the real
window of interpolation, Nr ¼ 3; the red window indicates the two
prediction windows, the small one with Np ¼ 1 and the large one
with Np ¼ 4.
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be a Gaussian distribution with only one peak. Therefore, we
introduce the curvature of Yt to distinguish between GMM
and Gaussian distributions:

Kt ¼
Y 1ð Þ
t

��� ���
1þ Y 2ð Þ

t

� �
3=2  ; ð15Þ

where Y ð1Þ
t and Y ð2Þ

t are the first-order and second-order
derivatives of Yt . For the Gaussian distribution, the curvature
changes from negative to positive and then to negative.
Therefore, the curvature of the Gaussian distribution has
two positive and negative changes, while the curvature of
the GMM has more than three changes. The times of positive
and negative changes in Kt are counted and marked with
Lab1:

Lab1 ¼
1; Numk ≥ 3

0; Numk<3

(
; ð16Þ

where Numk is the times of positive and negative changes in
Kt . When Lab1 ¼ 1, the distribution of L1 has two peaks,
assuming a GMM distribution. Otherwise, the distribution
of L1 has only one peak, assuming a Gaussian distribution.

In the same way, we can get Lab2 from L2. Ultimately, we
choose the appropriate feature as the tampering probability
map through Lab1 and Lab2. When Lab1 ¼ 1 and Lab2 ¼ 0,
L1 is used; when Lab1 ¼ 0 and Lab2 ¼ 1, L2 is used; when
Lab1 ¼ 1 and Lab2 ¼ 1, both L1 and L2 can be used, and we
choose to use L1 empirically.

4. Experiment Evaluation

In this section, we conduct some experiments to evaluate the
performance of the proposed method. The experimental
evaluation contains Columbia Uncompressed Image Splicing
Detection Evaluation Dataset (Columbia dataset [33]) and
Realistic Tampering Dataset (Korus dataset [34]). The
Columbia dataset was acquired using four cameras (Canon
G3, Nikon D70, Canon 350D Rebel XT, and Kodak DCS
330), 15% of which were taken outdoors. The captured
images from two cameras were spliced to obtain 30 tampered
images, for a total of six combinations to get 180 spliced
tampered images. The sizes of these forgery images range
from 757× 568 to 1; 152× 768 and the number of pixels in
the tampered region is relatively large. The Korus dataset
contains 220 realistic forgeries created by hand in modern
photo-editing software (GIMP and Affinity Photo) and cov-
ers various challenging tampering scenarios involving both
object insertion and removal. The original images were cap-
tured by four different cameras (Sony alpha57, Canon 60D,
Nikon D7000, and Nikon D90) and the final forgery images
are 1; 920× 1; 080 px. Both datasets suffer a single image
manipulation without any postprocessing and are saved in
TIFF uncompressed format, which is beneficial to preserve
the image CFA features. We only considered the reference
methods that do not require training or other prior informa-
tion, including CFA1 [27], CFA2, CFA3 [35], BLK [36],

CAGI [37], NOI1 [38], and NOI5 [39]. For more details of
the reference methods and source codes, please refer to Zam-
poglou et al.’s [40] study.

4.1. Performance Criteria. Forgery localization can be regarded
as a special segmentation task, dividing each pixel into original
(background) or tampered (foreground). Among the various
evaluation criteria for segmentation tasks, mean intersection
over union (MIoU) is the standard and most frequently used
one [41]. It is the ratio between the intersection and the union
of two sets, defined as follows:

MIoU¼ 1
2

TP
TPþ FPþ FN

þ TN
TNþ FNþ FP

� �
 ; ð17Þ

where TP, TN, FN, and FP are statistics of the observed true
positives, true negatives, false negatives, and false positives,
respectively.

Another important criterion is the mean pixel accuracy
(MPA), the ratio of correct pixels is computed on a per-class
basis and then averaged over the total number of classes:

MPA¼ 1
2

TP
TPþ FN

þ TN
TNþ FP

� �
 : ð18Þ

At last, we evaluate the performance with the Matthews
correlation coefficient (MCC), the cross-correlation coeffi-
cient between the decision map and the ground truth,
defined as follows:

MCC¼ TP × TN-FP × FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FPð Þ TPþ FNð Þ TNþ FPð Þ TNþ FNð Þp :

ð19Þ

The MCC is robust to unbalanced classes. For some
forgery images on the Korus dataset, the tampered region
is much smaller than the original one, making it more appro-
priate to evaluate the performance of various methods
with MCC.

Since the criteria used work on binary maps, and most
methods only produce heatmaps with continuous values, a
threshold is needed to convert these heatmaps to the corre-
sponding binary maps. However, a single threshold algo-
rithm will bias the detection results of different methods.
Therefore, the threshold maximizing the criteria is taken.
In addition, some methods just distinguish between original
and tampered regions, and thus the output heatmap may
have an inverted polarity with the ground truth. Conse-
quently, we consider both the original and inverted truth
ground images, leaving the best image as the result.

Most previous work has averaged the criterion scores
over all test images to evaluate method performance on the
dataset, such as the averageMIoU score. However, it just
gives a general survey of the results on the dataset. For the
sake of discussion completeness, we propose the efficiency
ratio E based on the MIoU scores on the dataset:

IET Signal Processing 5



E ¼ Count MIoU>αð Þ
Count allð Þ × 100% ; ð20Þ

where CountðallÞ is the total number of the test images in the
experiment. CountðMIoU>αÞ: is the number of results greater
than the valid threshold α. Therefore, we can set the results of
CountðMIoU>αÞ : to be valid and evaluate the detection results
more precisely by controlling α.

4.2. Parameter Discussion. The proposed method is impacted
by two parameters Np and b. In this case, we assess the effect
of three prediction window sizes Np ¼ 1; 3; 5. Additionally, to
assess the impact of b for the proposed method, we evaluate
the performance for five block sizes: 5, 25, 45, 65, and 85. To
speed up the computation, we apply the Columbia dataset,
which has a lower image resolution compared to the Korus

dataset, and measure the performance with MIoU scores
and E.

Figure 4 represents the MIoU scores of four forgery
images when the method employs different parameters.
For these four detection results, the MIoU scores of the
detected results become higher when the block size increases.
The best results are obtained in this experiment when Np ¼ 1
and b¼ 85. It is worth noting that the improvement of
method performance when b¼ 85 over b¼ 65 is small. How-
ever, when b¼ 85, it increases the computational effort of the
method, therefore we set b to 65 instead of 85 in our subse-
quent experiments.

To evaluate the impact of parameters in detail, we first
evaluate the performance of the proposed method on the
Columbia dataset when b is 65 and Np takes different values
as in the previous experiment. Figure 5(a) shows the effi-
ciency ratio E at different threshold α for the three predicted

b = 85b = 65b = 45b = 25b = 5
0

0.2

0.4

0.6

0.8

1

Np = 1

Np = 3

Np = 5

Columbia 12

b = 85b = 65b = 45b = 25b = 5
0

0.2

0.4

0.6

0.8

1
Columbia 29

Np = 1

Np = 3

Np = 5

b = 85b = 65b = 45b = 25b = 50

0.2

0.4

0.6

0.8

1
Columbia 48

Np = 1

Np = 3

Np = 5

b = 85b = 65b = 45b = 25b = 5
0

0.2

0.4

0.6

0.8

1
Columbia 61

Np = 1

Np = 3

Np = 5

FIGURE 4: Comparison of peak MIoU scores for four tampered images from the Columbia dataset. Different block sizes b and prediction
window sizes Np are applied to the proposed approach. Columbia 12, 29, 48, and 61 represent the 12th, 29th, 48th, and 61st tampered images
in the Columbia dataset, respectively.
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window sizes. At each α, the proposed method with the
predicted window size of 1 outperforms the other two sizes.
For example, at the valid threshold of 0.5, the E achieves
76.11% when the predicted window size is 1, whereas the E
achieves 72.22% when the predicted window size is 3. At the
valid threshold of 0.8, the E achieves 40.55% when the pre-
dicted window size is 1, whereas the E achieves 32.77% when
the predicted window size is 3. The result of this experiment
shows that the proposed method performs better with small
predicted window size. Therefore, the Np used in the pro-
posed method should be set to 1.

We follow the same protocol for the proposed method to
assess the impact of block size b. In this case, we evaluate the
performance of the proposed method on the Columbia data-
set when Np is 1 and b takes different values as in the previ-
ous experiment. Figure 5(b) shows the efficiency ratio E at
different valid threshold for the five block sizes. We can
observe that the method performs poorly when the block
size is 5 and performs particularly well when the block size
is 65 and 85. In addition, when b is larger than 65, the
increase of b only slightly improves the method performance.
Finally, the b recommendation used in the proposed method
is set to 65.

4.3. Comparative Experiments.We compare the performance
of the proposed method with the reference methods with
three criteria on two datasets. To evaluate the comprehensive
performance of all methods, we conduct extensive experi-
ments on one dataset by using three criteria at a time. For
the proposed method, Np is set to 1 and b is set to 65. Table 1
shows the results with respect to averageMIoU, averageMPA,
and averageMCC on Columbia and Korus dataset.

We start our evaluation with a comparison of the overall
performance on the two datasets. Notably, for the proposed
method, the averageMIoU score on the Columbia dataset is
22.67% better than that on the Korus dataset; the averageMCC
score on the Columbia dataset is 70.82% better than that on the
Korus dataset. In fact, the complexity of the scenario on the
Korus dataset makes the test challenging. All methods achieve
much worse performance on this dataset than on the Columbia
dataset. Additionally, small tampered regions on the Korus
dataset affect the effectiveness of MIoU and MPA. Therefore,
it is reasonable to evaluate the performance of the Korus dataset
with MCC, which is robust to unbalanced classes. The Colum-
bia dataset, with large tampered regions, can be assessed with
the widely used MIoU. Regardless of the criteria, the proposed
method ranks first on both datasets.
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FIGURE 5: (a, b) Comparison of efficiency ratio E with different prediction window sizes Np and block sizes b.

TABLE 1: Experiment results for Columbia and Korus datasets.

Dataset Columbia Korus

Criteria MIoU MPA MCC MIoU MPA MCC

Ours 0.7659 0.8561 0.7255 0.6193 0.7814 0.4247
CFA1 0.6914 0.7806 0.6052 0.6154 0.7403 0.3957
CFA2 0.5776 0.7151 0.4554 0.5368 0.6726 0.2328
CFA3 0.7542 0.8507 0.7193 0.6155 0.7588 0.4055
BLK 0.4869 0.6384 0.2957 0.4935 0.6278 0.1352
CAGI 0.5817 0.7396 0.4706 0.5169 0.706 0.2229
NOI1 0.5011 0.6558 0.3263 0.5136 0.6504 0.194
NOI5 0.4041 0.6031 0.2119 0.3695 0.5793 0.0734
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Additionally, we can readily observe that the CFA-based
methods perform better than the other four methods. Experi-
ments in Popescu and Farid’s [10] study show that the CFA-
basedmethods perform particularly well on the Korus dataset,
similar to our experimental results. In fact, experiments in
Ferrara et al.’s [27] study show that the CFA-based method
has low false positive rate, with a 0% false positive rate in its
simulate tampering, which is an important advantage of CFA-
based methods. The images of the two datasets used in our
experiments are in uncompressed TIFF format, which per-
fectly preserves the CFA fingerprints. Therefore, the advan-
tages of CFA-based methods are clearly exhibits, making
them outperform other methods.

To visually compare the performance of the different
methods, Figure 6 shows an example heat map of the locali-
zation results. Overall, CFA1, CFA3, and the proposed
method outperform the other three methods in locating tam-
pered regions. In the first and second rows, the output of
CFA1 presents some false alarms that degrade the perfor-
mance of the results. Although the forgery localization of
CFA3 is rough, the few false alarms make its result scores
higher than that of CFA1. The CFA1 method detects detailed
parts of the tampered region, but there are many false alarms.
The CFA3 has few false alarms, but the results are coarse, and
detail is seriously lost. The proposed method detects the
details of tampered regions with few false detections.

4.4. Robust Analysis. The experiments in the previous section
have demonstrated the robustness of the proposed method to

complex scenarios. Subsequently, we test the robustness of
the CFA-based methods against various attacks. Since many
postprocessing of the whole image completely destroy the
CFA fingerprints, we consider only three attacks, namely
noise addition, Gaussian filtering, and JPEG compression.

Compared to the RTD dataset, the image resolution in
the Columbia dataset is lower. Therefore, this subsection uses
the Columbia dataset for the experiments to reduce the
computational cost. Three new datasets were generated by
attacking the Columbia dataset. (1) We added the familiar
Gaussian noise (20 dB) to images to obtain the noise addition
dataset. (2) The filtering operation is similar to the interpo-
lation process, and most of the filtering will destroy the CFA
fingerprints, such as median filtering and mean filtering. The
Gaussian filtering dataset is obtained by Gaussian filtering
with filter size of 3 and standard deviation of 0.29. (3) Ferrara
et al. [27] tested the sensitivity of their CFA-based method to
JPEG compression, the performance quickly drops when the
quality is less than 90. Therefore, we use the “imwrite” func-
tion in MATLAB to obtain the JPEG compressed dataset
with a quality factor of 90.

Figure 7 illustrates the efficiency ratio E under various
attacks. Obviously, the proposed method outperforms other
CFA-based methods under noise addition and JPEG com-
pression attacks. Figure 6 illustrates that the proposedmethod
gives fine localization results. Therefore, the proposedmethod
provides a highMIoU score, but it also sensitive to noise in the
extracted feature. For the images after Gaussian filtering
attack, the proposed method results in many high and low

CAGI NOI1 ProposedForgery image Ground truth CFA1 CFA2 CFA3

FIGURE 6: Example detection heatmaps from the Columbia dataset and Korus dataset. The 1st–3rd rows show the detection heatmaps from
the Columbia dataset. The 4th–6th rows show the detection heatmaps from the Korus dataset. From left to right: forgery image, ground truth,
and heatmaps from the six methods: CFA1, CFA2, CFA3, CAGI, NOI1, and proposed method.
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MIoU scores and a little of intermediate scores, i.e., high E
scores when α is greater than 0.6 and low E scores when α is
greater than 0.5 and less than 0.6. CFA3 gets coarse forgery
localization results, thus it is less sensitive to noise in the
extracted features. That is, although it gets a little of high
MIoU scores, it get a lot of intermediate scores. Therefore,
CFA3 has a high E score when α is greater than 0.5 and less
than 0.6, but the E score decreases rapidly when α is greater
than 0.6. For a more intuitive display, Table 2 shows results
with respect to averageMIoU score for the Columbia dataset
under various attacks. In all three new datasets, the proposed

method ranks first. Moreover, it is 12.31%, 18.65%, and
24.53% better than the second-best method (CFA3), which
is much larger than 1.55% on the Columbia dataset. Although
the performance of the CFA-based method is significantly
degraded under various attacks, the proposed method has
more significant advantages over other CFA-based methods.

5. Conclusion

In this paper, we propose a CFA-based forgery localization
method. Most previous CFA-based methods assumed the
interpolation algorithm is linear, which is impractical for
commercial cameras. In contrast, the proposed method is
based on the fact that an interpolated pixel value falls in
the range of its neighboring acquired pixel values, which is
valid for both linear and nonlinear interpolation algorithms.
The proposed method outperforms the reference methods
and is more robust to the tested attacks.

The CFA-based forgery localization method mainly con-
siders raw images. Although these images are rarely present
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FIGURE 7: Comparison of efficiency ratio E with Columbia dataset under various attacks: (a) noise addition, (b) Gaussian filtering, and (c)
JPEG compression.

TABLE 2: Average MIoU for Columbia dataset under various attacks.

Noise addition Gaussian filtering JPEG compression

Proposed 0.4978 0.6081 0.6102
CFA1 0.3958 0.4319 0.4292
CFA2 0.404 0.4442 0.4137
CFA3 0.4432 0.5125 0.49
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in daily life, they still exist in certain fields, such as copyright
protection. For raw images, the CFA-based method has a low
false detection rate and outperforms most methods. There-
fore, the CFA-based forgery localization methods are still
useful tools in practical applications. In the future, we will
try to combine the CFA-based method with various other
methods to make them applicable for practical applications.
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