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A conceptual model was developed based on the two basic spatial elements of area-wide integrated pest management (AW-IPM),
a core area and a buffer zone, to determine the minimum size of the protected area for the program to be technically feasible
and economically justifiable. The model consisted of a biological part (insect dispersal) and an economic part. The biological
part used random walks and diffusion equations to describe insect dispersal and to determine the minimum width of the buffer
zone required to protect the core area from immigration of pests from outside. In the economic part, the size of the core area
was calculated to determine the point at which the revenues from the core area equal the control costs. This model will need to
be calibrated and validated for each species and geographic location. Tsetse flies and the Mediterranean fruit fly are used as case
studies to illustrate the model.

1. Introduction

Classical integrated pest management (IPM), which aims
at managing pests by the integration of biological, cultural,
physical, and chemical tools in a way that minimizes
economic, health, and environmental risks [1], has remained
a dominant paradigm of pest control for the last 50 years.
The different control tactics can be integrated on a field-by-
field basis or by using an area-wide approach [2]. Area-wide
integrated pest management (AW-IPM) is the integrated use
of various control tactics against an entire pest population
within a delimited geographical area to achieve economic

control [3]. The importance of this approach of “total
pest population management” has significantly increased for
many pests in the past decades, and it is now generally
accepted that AW-IPM leads, in many cases, to more
sustainable pest control especially for mobile insects [2]. A
powerful AW control tactic is the sterile insect technique
(SIT), which over the past decades has become accepted as an
efficient and cost-effective part of AW-IPM programs against
a selected number of insect pests of veterinary, human health,
and agricultural importance [4].

A recurrent concern for pest managers is the minimum
size of the target area that needs to be considered for an
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Figure 1: Schematic diagram of the expected changes in pest density from an infested area (high pest pressure), through the buffer zone (B),
into the core area (A) in the case of an eradication strategy. In the rolling-carpet approach, declines in pest density represent declines over
time, although the form of the slope is schematic.

AW-IPM program to be technically viable and economically
justifiable. Due to the lack of adequate practical experience
and the absence of models, decisions were sometimes
based on educated guesses rather than on sound, scientific
principles. Therefore, a conceptual mathematical model was
developed that can assist with estimating the minimum area
that needs to be considered to successfully apply a series of
control tactics according to the AW-IPM approach against
insect pests for which there are adequate biological input
data. To make the model applicable to a series of pest
species amenable to AW-IPM, it was developed in a generic
way with a minimum of identified assumptions included.
The prototype model creates a basis for a decision-support
tool to assess the minimum dimensions of an intervention
area required for the establishment of a pest-free area (as
described in the International Standard of Requirements for
the Establishment of Pest Free Areas (ISPM 4)) or areas
of low pest prevalence (as described in the International
Standard of Requirements for the Establishment of Areas of
Low Pest Prevalence (ISPM 22)). This model is sufficiently
general to be applicable to a variety of insect species; it
will be necessary to calibrate and validate it for any given
application. Even then, it will only be a supporting tool to
assist in making pest management decisions.

For the development of the model, two main situations
were considered: (1) the control area is fixed in size (the
“fixed-area model”) and there is no advancing pest control
front, and (2) the control area is expanding according to
the “rolling-carpet principle” as described in [5]. Hendrichs
et al. [5] describe the basic spatial elements of an AW-IPM
program. The first is the core area, in which the aim is
to reduce (in case of a suppression strategy) or eliminate

(in case of an eradication strategy) the pest species. The core
area may contain the actual resource of value, but in other
cases, removal of the pest from the core area may simply have
a strategic value by protecting crops situated elsewhere or
by protecting humans or livestock against disease vectors (in
case of a containment or a prevention strategy). The second
is a buffer zone that borders the core area on one or more
sides and within which control methods attempt to kill the
target insects within that zone, including those that enter the
zone from outside. The buffer zone is defined as the region
of an AW-IPM program that is large enough to prevent the
pest insect from moving from outside the buffer to the core
area before being destroyed by the control methods operating
within the buffer zone. In the case of the fixed-area model,
there is a core area to be protected and a buffer zone on all
sides of the core area. For the rolling-carpet model, there is
a buffer on only one side and pest free zones on the other
sides. The width of the buffer zone is central to determining
the minimum area of an AW-IPM program, since it defines
the smallest possible program.

2. Methods and Model Development

2.1. Fixed-Area Model. The fixed-area model considers a
rectangular core area, surrounded by a rectangular buffer
zone (Figure 1 (left half), Figure 3). This model reflects
a situation where the farmer wishes to maintain an area
(the core area) pest free or of low pest prevalence without
enlarging or moving the area that contains the resource of
value. The first aim of the model was to determine the
minimum width of the buffer zone given the biological
characteristics of the pest and the resources of the AW-IPM
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Figure 2: A barrier of sterile male insects theoretically stops a
“travelling wave” of fertile insects in a determinable fashion.
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Figure 3: Dimensions of the area under control: A is the core area;
T is the total rectangle (core + buffer); x is the width of the A area;
kx is the length as a multiple of the width; d is the width of the buffer
zone (B) (B = T − A).

program. The second aim was to estimate the minimum core
area that would result in a viable AW-IPM program.

Numerous simplifying assumptions were made: (i) there
is a single target pest insect; (ii) the model does not include
the initial process of pest density reduction in the core area
because of the difficulties of assessing that aspect, that is, the
model assumes that the core area is already a pest free area
(or an area of low pest prevalence); (iii) the host density
in all areas (the core area, the buffer zone, and outside the
buffer zone) was assumed to be at equilibrium; (iv) there
is a constant influx of pest insects from the region outside
the buffer zone; (v) no artificial movement of the target pest
insects by wind, storms, other disturbances, or accidental
introduction by humans into the core area occurs.

The rationale for simplifying the model is that managers
who aim at managing a pest population using an AW-IPM
approach would usually have only limited data on their pest
species. A model with a minimal number of parameters
(inputs) is, therefore, required if the model is to have a
wide applicability. The required parameters will have to be

determined for each species before the model can be used
since parameter values will vary for different species and
environments. The parameters are discussed further below.

The fixed-area model consists of two main components,
that is, a biological component (i.e., dispersal) and an
economic component (break-even analysis). The dispersal
part describes the movement of the insects across the buffer
zone and will determine the width of the buffer zone. The
economic component of the model will, given a certain width
of the buffer zone determined by the dispersal part, allow a
calculation of costs and revenues of the control program and
will determine the break-even size of the core area at which
control costs equal revenues.

2.2. The Rolling-Carpet Model. The same two components,
the required width of the buffer zone and the economic
requirement of making a profit, apply to the rolling-carpet
model, except that the total buffer zone to be supported is
located only on one side rather than on all sides around the
core area. This might be useful for a pest species confined to a
valley and in which the pest insects do not exist at the higher
elevations on the sides of the valley.

The rolling-carpet model extends the fixed-area model
by introducing a temporal element to the model, that
is, the success of the control program permits the core
area to be extended regularly when the buffer zone moves
onwards. With reference to the scheme shown in Figure 1,
the buffer zone will be moved to the right across the
control zone to a point where all the area behind the new
buffer zone is pest free (or an area of low prevalence is
created). This outward movement of the buffer zone will be
accompanied by an outward movement of the eradication
zone of low prevalence and the population reduction zone.
This process could potentially be repeated until an entire pest
population has been tackled (this would obviously require
sufficient resources to maintain suppression and surveillance
activities). This concept was referred to as the rolling-carpet
principle [5], since it envisages a gradual movement of the
buffer zone across the landscape. In practice, the movement
would be more likely to occur in a step-wise manner.
The implementation of an AW-IPM program according to
the rolling-carpet principle will increase the benefit of the
program over time in view of the gradual increase in the
size of the core area. The eradication of the New World
screwworm Cochliomyia hominivorax Coquerel from Mexico
to Panama [6] is a large-scale example of an AW-IPM
action program implemented according to this rolling-carpet
principle.

The rolling-carpet model does not require any new
parameters beyond those required for the fixed-area model,
since the essential features of the buffer zone are unaltered
by its movement. The only change will be to the economic
analysis, since the temporal increase in size of the core area
will incur increasing maintenance costs but also increasing
benefits.

2.3. Dispersal Models. There are various mathematical
approaches for modelling pest dispersal [7]. Regression
models, in which insect density following release is regressed
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against distance and time, are relatively easy to develop
and solve, and can provide reasonably good predictions.
However, they are typically species specific and are not
mechanistically linked to insect dispersal behaviour. More
mechanistic models of dispersal include metapopulation
models, random walks, and diffusion, although metapopula-
tions constitute a special case of random walks, and random
walks can yield diffusion equations.

2.3.1. Simple Random Walks. A random walk in one dimen-
sion consists of a series of single steps either forwards or
backwards along a line. The steps are of length, δ, and the
time steps are fixed (= τ). The final location, x(n), after
n steps is the sum of n segments of length δ, some of
which are positive and some negative, and as a result the
expected position after many steps is the starting position if
the probability of going forwards or backwards both equal
0.5. To measure the mean displacement of the final position
from the starting position, the square root of the mean of the
squares of the final displacements of many random walks is
the standard measure used. This corresponds to the standard
deviation of the displacements. Since the process of taking a
random walk is a binomial event, the resulting distribution of
frequencies of x(n) is binomial, and for large n it approaches
the normal distribution. The mean square displacement can
be written as E(x2(t)) = (δ2/τ)t and it is convenient to define
a diffusion coefficient as D = δ2/2τ in units of cm2/sec [8].
This gives the mean square displacement of E(x2) = 2Dt,
for t time steps, and the root mean square is (2Dt)1/2. A
consequence of this is that if it requires t time steps to achieve
a certain displacement, then it is expected to require 4t time
steps to achieve twice the displacement.

If in each time unit, the animal moves in one of the four
cardinal directions and if the directions of successive moves
are statistically independent, this motion comprises a simple
random walk in two dimensions. Each dimension has a mean
square displacement of 2Dt, so in two dimensions the mean
square displacement is 4Dt, and in three dimensions it is 6Dt.

The diffusion coefficient, D, is in units of length squared
per unit time and thus is not an intuitive measure of anything
of common experience. It is usually estimated by noting the
movements of the object under study and tabulating the
linear difference between the initial and final positions as
well as the number of movements in a given time interval
and then computing the means of the squared net distances
travelled per unit of time taken over several such random
walks. Berg [8] gave an example of a small molecule in water
with a diffusion coefficient D = 10−5 cm2/sec. This particle
diffuses a distance x = 10−4 cm in t = x2/2D = 5× 10−4 sec.
It would diffuse one cm in t = x2/2D = 5×10−4 sec, or about
14 hours. If the distances moved and times for movement
are known, then D can be estimated from them by inverting
the above procedure. Thus, if an insect takes a random walk
and moves a root mean square displacement of x cm in t
seconds, as a result of n individual movements over a 2-
dimensional surface, then D can be estimated from these
data from D = x2/4t. Thus, if the n movements yield a root
mean square displacement of 24 cm in 10 seconds, then the

estimate of D is

D = x2

4t
= (24)(24)

4(10)
= 14.4 cm2/sec

(= 0.00144 m2/sec
)
.

(1)

Because this determination is nonlinear, it is important
not to divide x by t before squaring; that is, if the
displacement after ten seconds was 24 cm, then the expected
displacement after one second would not be 2.4 cm but
rather 2.4(

√
10) = 7.59.

2.3.2. Description of the Diffusion Model. In the limit, as both
the length and duration of each move approach 0, simple
random walks become diffusions, described by the partial
differential equation [9]

∂u

∂t
= D∇2u, (2)

where ∇2 is the Laplacian operator (i.e., the second partial
derivatives (of u) with respect to x and y: ∂2/∂x2 + ∂2/∂y2 in
the 2-dimensional case; see also [10, 11]). For a population
of insects released simultaneously at a point, (2) predicts an
expanding Gaussian distribution with variance 4Dt

f
(
x, y, t

) = 1
4πDt

exp

(

−x2 + y2

4Dt

)

. (3)

Although most insect motion is demonstrably nonrandom,
random walk and diffusion equations have been effective at
predicting longer-term patterns of insect movement [12–17]
because population-level averaging occurs.

A more realistic depiction of insect movement, consists
of a series of connected flights in which the distance (r) and
direction (θ) flown are random variables. If the distribution
of θ is uniform, we obtain the model in (2) and (3) above. If
the distribution of θ has a mode at 0 (or some other value;
i.e., is not uniform) there will be a tendency to persist in
the direction of the previous move, leading to a correlated
random walk. In the limit as the r tends to 0, the process
yields an equation known as the telegraph equation

∂U

∂t
= − 1

2λ
∂2U

∂t2
+

ν2

2λ
∇2U , (4)

where ν is the organism’s velocity and λ is its rate of change
of direction. For large elapsed times, the predictions of (2)
and (4) converge, differing by less than 5% for t > 10.5/λ.
Both models predict similar rates of spread for large values
of t. Holmes [18] compared predictions for diffusion and
telegraph equations for a variety of organisms, including the
cabbage butterfly (Pieris rapae (L.)), gypsy moth (Lyman-
tria dispar (L.)), European starling (Sturnus vulgaris (L.)),
collared turtledove (Streptopelia decaocto Frivaldszky), and
black death (Yersinia pestis (Lehmann and Neumann) van
Loghem), and predictions for the two models differed by
<8%. Similar convergence between the predictions of (2) and
other correlated random walk formulations were reported by
Kareiva and Shigesada [19]. Diffusion models thus provide
robust predictions of animal dispersal patterns. Here, we
describe the situation for a single buffer separating a pest
population from a protected area.
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2.4. The Biological Component: Width of the Buffer Zone. The
pest population will have a certain ambient density outside
of the buffer zone and will disperse from outside into the
buffer zone. Because control measures are imposed within
the buffer zone, the density of the pest will decrease from
the outer edge of the buffer to the inner edge. The width of
any buffer zone around a core area should be large enough
to bring the density of the pest to zero (in case of a pest
free area) or close to zero (in the case of an area of low pest
prevalence) in the core area (A) (Figure 1). The buffer zone
should, therefore, be wide enough to prevent a gravid female
insect and any of its offspring crossing the buffer zone.

If the population is growing and dying, as well as
diffusing, then an appropriate model would be

∂F(x, t)
∂t

= D∇2F(x, t) + gF(x, t), (5)

where g is the growth function. If g is linear and births and
deaths can be separated, then

∂F(x, t)
∂t

= D∇2F(x, t) + βF(x, t)− δF(x, t), (6)

in which βF(x, t) and δF(x, t) are the instantaneous birth
and death rates. We want boundary conditions such that at
the outside of the buffer zone, F(0, t) = F0, where F0 is the
density of insects at the outer edge of the buffer as a result
of the influx of insects, and at the inside edge of the buffer,
F(w, t) = a small proportion of F0 (e.g., 10−6), so that almost
all the insects have been killed before reaching the other side
of the buffer (of width w).

If we are manipulating the death rate within the buffer
by traps that are evenly spread out to cover the whole of the
buffer region, then (βF − δF) will be negative, because now
δ consists of the sum of natural and imposed mortality from
traps or any other control source. To simplify the treatment
here, we assume that we are dealing with a steady-state
situation in which the insects have been diffusing and the
buffer has been under control for a long time. In that case,
the time derivative is zero, since nothing is changing over
time; only the space derivative is still non-zero. This yields
the steady-state equation

D∇2F = (δ − β
)
F, (7)

and this has solutions proportional to e−γx, where γ2 =
(δ − β)/D [20]. Assuming F(x) = ce−γx, the boundary
conditions dictate that c = F0 and that F0e−γw = 10−6F0.
Taking logarithms, −γw = ln(10−6) = −13.8. This leads to
the minimum buffer width

w = 13.8
γ

= 13.8
[(
δ − β

)
/D
]1/ 2 . (8)

In this case, the diffusion coefficient is determined in the
same way as it was for random walks. If a decrease down
to 10−6 of the original density outside the buffer (F0) is not
satisfactory, then another small fraction can be chosen and
the 13.8 will be something else. The units of w in (8) are in
the units of D, and the units of β and δ must be the same

as those of D. Thus, if the units of β and δ are in terms
of numbers per week, then D should also be in terms of
distance2 per week.

If sterile insects are to be used as the control method, then
the simplest case to solve is the case in which the release of
sterile insects is proportional to the ambient population, in
which case β is to be manipulated [21], rather than δ, and the
development is similar. This case has the decrease in fertility
being constant because the sterile release rate is proportional
to the wild population, and thus the fertility (or sterility)
ratio is constant. If this ratio can be determined to be some
constant, β′, then it will have to be small enough that again
δ > β′ and then the determination of minimum buffer width
proceeds in the same way as above, with β′ replacing β and δ
only consisting of natural mortality in (8) above. The rest of
the calculations are identical to those in (6) to (8).

If sterile releases are to be maintained at a constant level
throughout the buffer region, then dropping x and t, the
equations will take the form [22]:

∂F

∂t
= D

∂2F

∂x2
+ βF

F

F + S
− δF,

∂S

∂t
= D

∂2S

∂x2
+ R(x)− δS,

(9)

where F and S are the densities of fertile and sterile insects,
δ is the rate of natural mortality of fertile or sterile insects,
and R(x) is the rate of sterile fly release. This model
appears intractable analytically, and would have to be solved
numerically for each particular situation. In the steady-
state case, the partial differential equations become ordinary
differential equations.

Equation (9) predict that sterile density rapidly achieves a
time-independent steady state under continuous release (the
sterile male curve in Figure 2). For many functional forms
g(F, S), (5) predicts that the fertile pest insect population will
propagate into a pest free area as a travelling wave. Below a
threshold release rate of sterile insects, these travelling waves
can propagate through the area under SIT. For sterile release
rates above this threshold, the travelling waves of expansion
of the fertile pest population stall upon encountering the
sterile barrier of the buffer. The fertile curves in Figure 2
depict the travelling wave at fixed time intervals (see also
[23]). As the wave nears the sterile insect buffer, the curves
plot ever closer together (finally plotting on top of one
another) indicating that the wave has stalled. The inflection
point of the stalled wave is a useful benchmark of the
penetration of the pest population into the protective buffer
zone. Within the buffer zone, the density of fertile pest insects
typically decays nearly exponentially from the inflection

point at a rate
√
δ f /D f , where δ f is the death rate of the fertile

insects andDf is the diffusion coefficient of the fertile insects.
Accurate densities can be calculated numerically using the
parameters above.

2.5. Parameters for Inclusion in the Diffusion Model. A
minimum set of parameters was identified for inclusion
in the diffusion model (Table 1). If SIT is a component
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Table 1: Biological dispersal model parameters used in the models
to estimate a minimum area for an area-wide IPM program,
including the sterile insect technique.

Parametera Units Description Notes

β day−1b Birth rate
May vary between
fertile and sterile insects

δ day−1 Death rate
May vary between
fertile and sterile insects

σ —
Sterile male
competitiveness

Dimensionless. Ranges
from 0 to 1

D km2day−1 Diffusion
coefficient

Scales the rate of
population spread. May
vary between fertile and
sterile insects

R
indc

km−2day−1
Sterile release
rate

A ind km−2
Ambient
population
density

Used to estimate density
dependence parameters

aAdditional parameters will be necessary to model density-dependent popu-
lation growth and will be species specific.
bDays
cIndividuals.

of the strategic approach, the parameters are the diffusion
coefficient, daily birth and death rates, ambient density of
the fertile population, competitive ability of the released
sterile insects, and sterile release rate as a multiple of the
ambient density of fertile insects. Three basic modes of insect
dispersal were identified (active, wind borne, and human),
but only active dispersal was included in the basic diffusion
model. The other modes were considered but, in view of their
complex and unpredictable nature, were not included.

2.6. An Excel Model to Approximate the Diffusion Model. An
alternative approach to modelling the minimum width of
the buffer zone is the use of direct stochastic simulation.
Whereas the diffusion equation approach runs until the
advancing wavefront is halted by the sterile releases, that
is, it reaches steady state, a simulation need not run until
steady state (which may take an unrealistically long time in
relation to seasonal variation). Such a simulation model has
been written (by SG, and available from him on request)
using Excel VBA. The simulation runs as a macro in Excel
and allows the user to vary most of the relevant biological
parameters. Rather than run to steady state, the simulation
ends after a user-defined number of days (typically a year or
more).

As with the diffusion equations, the simulation model
uses a normal distribution of movement lengths. Instead
of solving the diffusion equations, the simulation tracks
the movements of thousands of individuals (representing
both wild and sterile flies) on a grid consisting of 20000
lattice squares, each 20 m by 20 m. Sterile individuals are
released at user-determined points in the middle portion
of the lattice (to simulate the buffer zone). Initially, wild
flies are found only on one side of the buffer (the infested
area) and as the simulation proceeds, the daily distribution

of wilds and steriles is graphed. At the end of the simulation,
the penetration benchmark is recorded as the density of
wild flies in the production area. The simulation uses a
similar parameter set to that used in the diffusion equations
(Table 1), but allows all the parameters to be varied by the
user. The simulation uses a Leslie matrix projection [24] to
establish a stable age distribution for the wild population.
The simulation also includes an age-related accelerating
death rate (Gompertz function). The diffusion coefficient,
D, of the simulation can be calculated from the observed
positions of flies as they spread from the sterile point releases.
By adjusting the variance of the daily dispersal distance used
in the simulation, the simulated D can be set to match the D
used in the diffusion equation models.

2.7. The Economic Component: Size of the Core Area

2.7.1. First Approach: Variable Width and Length of the Core
Area. The size of the buffer zone (B) is determined by
biological parameters related to dispersal ability of the pest
(Figure 3). For the core area (A), an economic approach was
adopted for assessing its minimum size depending on the size
of the buffer zone, as determined by the diffusion model.
This is because there seems to be no obvious biological
constraints on the size of the core area whereas there will
be obvious economic constraints resulting from the costs
incurred in maintaining the protective buffer zone. The size
of the core area can be calculated resulting from the “break-
even point” (if it exists) at which the revenues equal the costs.
For any larger core area, the revenues obtained will exceed the
costs of maintaining the core area and buffer zone, including
control costs, surveillance, and quarantine, resulting in a net
profit.

In a basic model, a rectangular protected area (A) is
assumed with minimal assumptions (Figure 3). The strategy
here is to compute cost and revenue curves for core areas and
buffer zones of different sizes and note where they intersect
(i.e., the break-even point).

Costs of the Control and Associated Efforts in Relation to Size
of the Buffer and Core Area. The area of the smaller rectangle
(A), core area, is

A = kx2, (10)

where x is the width of the inner rectangle, kx is the length,
and k is the ratio of length to width of the inner rectangle.
The area of the larger (T) rectangle is

T = kx2 + 2dx(k + 1) + 4d2, (11)

where d is the distance between the inner and outer
rectangles. The area of the buffer zone (B) equals T − A and
is

B = T − A = 2dx(k + 1) + 4d2. (12)

The cost of control in the buffer is
[
2dx(k + 1) + 4d2]q, (13)
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where q is the cost of control and associated activities per unit
area. The cost of control in the core area (A) is

kx2wq, (14)

where w is the reduction in effort within A due to there
being fewer, or no, pests there. The cost of additional controls
and associated activities such as surveillance, quarantine,
sanitation, and staffing are contained within w.

Each of these costs is assumed to be a fixed cost
per hectare. Emergency response programs, including extra
surveillance have not been included. The total cost is a
quadratic function of x

Tc =
{[

2dx(k + 1) + 4d2]q
}

+
{
kx2wq

}
. (15)

Revenue of the Resource of Value. The revenue of the resource
of value will be related to the area in the following way. The
revenue of the core area = [value per unit area] × [size of the
protected area] = (v)(kx2), where v is the value per unit area.

The revenue of the buffer zone = ev[2dx(k + 1) + 4d2],
where, ev is the reduced value of goods from the buffer zone.
The benefit of the buffer zone is expected to be zero or low as
commercial production may not exist or production is small
and targeted to the core area. Thus, e takes on values between
zero and one. The total revenue is thus

Tb = ev
[
2dx(k + 1) + 4d2] + vkx2. (16)

Break-Even Point. The break-even point can be calculated
from the intercept of cost and benefit curves from above.
Cost = Revenues when

{[
2dx(k + 1) + 4d2]q

}
+
{
kx2wq

}

= vkx2 + ev
[
2dx(k + 1) + 4d2].

(17)

Widths of the Core Area and the Buffer Zone. In order to make
a profit, the following quadratic inequality must be satisfied

P = k
(
v − qw

)
x2 + 2d(k + 1)

(
ev − q

)
x + 4d2(ev − q

)
> 0.
(18)

Costs: q cost per unit area for buffer zone B,

w lower cost per unit area for core area A.

Revenues: v value of resource per unit area for core area A,

e lower value per unit area for buffer zone B.

Profit: P equals revenues minus cost.

Four cases have been identified involving v, q,w, and e
based on inequality (14) above (Table 2). If v > qw and ev >
q, then all terms will be positive and the inequality is always
satisfied (k,d, and x must be positive to be realistic) and thus
any size of core area will be profitable. On the other hand,
if v < qw and ev < q, then all terms will be negative, and
the inequality can never be satisfied, and thus there is no size
of core area that is profitable. If v > qw and ev < q, then
the term in x2 will eventually dominate if x becomes large

Table 2: Inequalities between factors determining the profitability
of a control program. The letters stipulate the following: q: cost per
unit area for the buffer zone, B; w: cost per unit area for the core
area, A, as a proportion of q; v: value of the resource per unit area
for the core area, A; e: value of the resource per unit area for the
buffer, B, as a proportion of v.

v > qw and ev > q v > qw and ev < q

Always profitable Break-even exists

Parabola upright; roots negative
or complex

Parabola upright; one positive
root

v < qw and ev > q v < qw and ev < q

Break-even exists Never profitable

Parabola inverted; one positive
root

Parabola inverted; no positive
roots

enough, and there is thus a break-even point and the core
area can be profitable above this size. If v < qw and ev > q,
then the inequality is satisfied for small values of x, and may
also be satisfied for large values, depending on the relative
sizes of (v − qw) and (ev − q).

These four inequalities determine whether or not a
break-even point exists or whether there is no size of the core
area that is unprofitable (upper left of Table 2) or profitable
(lower right). One can maximize the profit function in
inequality (18) by differentiating with respect to x. We get
that profit is maximized when

x = d(k + 1)
(
q − ev

)

k
(
v −wq

) , (19)

which is only positive in the two cases in Table 2 where a
break-even point exists.

It is worthwhile to ask if there is a value of k that will
maximize profit. Inequality (18) indicates that profit is a
linear function of k. Thus, any profitable set of parameter
values (i.e., v > qw and ev > q) will be made more profitable
by increasing k, and any unprofitable values (i.e., v < qw
and ev < q) will be made more unprofitable by increasing
k (if x is held fixed). The case where v > qw and ev < q
will be unprofitable for small k, but once k increases past the
break-even point, higher values of k will increase profit and
no optimum exists. The last case, where v < qw and ev > q,
is unrealistic, as here the buffer zone is profitable, but the
core area is not, so that small values of k will yield a profit,
but larger ones will not; again no optimum exists, except for
k = 0.

If the size of the core area is kept at a fixed value, then it
is easy to show that a value of k = 1 maximizes profit. This
is done by substituting x/k for the width of the core area,
and leaving the length at kx, so that the area remains at x2

for all k > 0. One then computes a new profit function and
differentiates it with respect to k and finds that the derivative
is zero at k = 1.

2.7.2. Second Approach: Predetermined Width of the Core Area.
Another approach to the problem of finding the minimum
area for an AW-IPM program to be feasible would be by
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predetermining the width of the core area, rather than the
shape of it. The core area might be in a valley where the width
is constrained by the width of the valley, and thus in the
economic model, one could predetermine x and then solve
for k, rather than the other way around. Similar results were
obtained with four separate cases. The four cases appear the
same as those found before, but the intermediate cases are
not identical, as the size of the buffer zone is not the same
here when k goes to zero, because the width remains at x
whereas the width went to zero in the previous treatment as
the size of the core area decreases. This approach also results
in (18) for the break-even point, and inequality (19). If we
then solve for k

k >

(
2dx + 4d2

)(
q − ev

)

[
x2
(
v −wq

)− 2dx
(
q − ev

)] . (20)

This also yields four cases, two of which involve no minimum
size for the core area, being profitable for all areas or
unprofitable for all areas. The other two involve either the
buffer zone being profitable and the core area unprofitable
(which is unrealistic) or the buffer zone being unprofitable
and the core area profitable.

If q > ev, so the buffer zone is not profitable, then in
order for the system as a whole to be profitable, we need

x >
2d
(
q − ev

)

(
v −wq

) , (21)

and then the value of k is found from the equation above.
Thus, the width of the core area needs to be a certain multiple
of the width of the buffer zone in order for any value of k to
yield profitability.

These two approaches are compatible in the sense that
they yield the same minimum areas but by different methods.
If one chooses k and then finds x by the first method, one gets
a certain value of x. If one substitutes this value of x into the
equation and solves for k using the second method, then one
calculates the value of k that was used the first time. However,
they will not, in general, yield the same results because of the
differing constraints used. In the first method, the shape of
the core area is predetermined by choosing k; in the second
method, the shape is calculated by choosing x, and will not
usually be the same as that chosen for the first method. A
numerical example will illustrate this.

Use parameter values as follows (the choice is somewhat
arbitrary): d = 1.0, q = 10.0, w = 0.2, v = 20.0, e = 0.1.
Choosing k = 1.6, we calculate x for the break-even point
by the first method to be 2.0. Choosing x = 2.0, we calculate
k by the second method to be 1.6. Thus, the two methods
are consistent. However, if we had chosen x to be 3.0, then
using the second method we would find that k = 0.70. Thus,
the two methods may produce different (but still compatible)
results.

This second approach to the economic model resulting in
inequality (15) is more suited to the rolling-carpet scenario,
as the width (x) is fixed and the length (determined by k)
will vary. The solution of (14) for k will give the break-even
point, above which the core area plus buffer zone can show
a profit. Unless logistical constraints pose a limit, this value

of k is perhaps the one to plan on achieving when setting
up the rolling-carpet scenario. The difference here is that the
buffer zone is only on one side (the front), as the other sides
are assumed to be pest-free. As shown in Figure 1, however,
there are three zones outside the core area in which control is
imposed, and thus the total buffer zone may be comparable
to that of the fixed-area model.

3. Case Studies

3.1. Tsetse Flies. Yu et al. [25] simulated the dispersal of
tsetse flies using a 2-dimensional random walk model. In
this model, both distance moved and direction of movement
were random variables. Hourly distances moved were taken
from Dean et al. [26], varying between 0.8 and 4.08 m. The
mean distance moved per week was taken from data of
Jackson [27] as 334 m, and hourly distances were adjusted
accordingly, as the data from Jackson were judged to be
better than those of Dean et al. The resulting hourly
distances were fitted to a Weibull distribution. Yu et al.
[25] assumed that both birth and death rates were random
variables and that the death rate was determined by both
natural mortality and one of three control measures tested,
being (i) insecticide application, (ii) vegetation clearing and
wild animal depopulation, and (iii) the use of tsetse traps.
Birth rates varied between 0.0 and 0.1 per day. Ninety-
nine percent of adult tsetse died by 84 days of age. The
99% confidence upper bound for the lifetime straight-line
distance travelled was calculated to be 1.71 km. Only a
small proportion of them would have travelled in any given
direction. They simulated the movement of flies into an
uninhabited area. To do this they assumed that 5110 adult
tsetse were uniformly distributed over an area of 100 km2 and
were moving randomly as indicated above. Their simulations
indicated that the upper 99% confidence limit for movement
was 18.7 km by the year 10. They then considered two
adjacent areas, one tsetse-infested and the other tsetse-free.
To prevent tsetse from moving from the infested area to the
noninfested area, a protective buffer was simulated, and two
measures were considered: the width,w, of the buffer, and the
probability of a fly successfully crossing into the noninfested
area. The probabilities of successful crossing were in the
order of 1% for a buffer width of 1000 m using any of
the three control methods. When control methods were
combined, these probabilities were reduced. However, since
the lifetime displacement was determined to be 1.71 km, the
buffer would likely need to be at least that wide. In fact, the
buffer widths would have to be increased considerably to
guarantee that less than one insect successfully invaded the
tsetse-free area.

If sterile releases (SIT) were to be used in the buffer zone,
the birth rate in Yu et al.’s model would have to be modified
according to the usual sterility function [28], which would
introduce a nonlinearity into the birth rate and complicate
the computations. This could be circumvented by assuming
that the sterile release rate would decrease as the population
density decreased throughout the buffer zone; this would be
simpler to compute (21) and gives a conservative estimate
of the buffer width (i.e., an overestimate), as the latter
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use of SIT is less efficient than the release of constant
numbers. Alternatively, the standard approach to SIT could
be calculated numerically.

We have only dealt with the dispersal model and buffer
here, as the economic component is fully explained in the
section on the Mediterranean fruit fly. Also, the parameter
values used here were for illustrating the procedure and
should not be assumed to be realistic in any real control
program.

3.2. The Mediterranean Fruit Fly. The Mediterranean fruit
fly, Ceratitis capitata (Wiedemann), was chosen as an
example pest because numerous AW-IPM programs that
include the SIT have successfully targeted this species. These
provide some practical experience against which to assess
the model outputs. In addition, the Mediterranean fruit fly
is relatively well studied in terms of its biology [29, 30],
mobility and dispersal [31–35], ecology [36, 37], and so
forth. The parameter values assumed here may vary with
location and are presented only to illustrate the procedure.

Background information is as follows. (a) Insect densi-
ty—4000 fertile insects/ha at peak; (b) birth rate—six-fold
increase per generation; (c) mortality—10% per day for
adults; (d) adult lifespan—ten days; (e) time from egg to
adult—about 30 days in tropical and subtropical conditions
and 45 days in temperate regions; (f) dispersal rate—
maximum of 1.5 km per lifetime. However, D (the diffusion
coefficient) used in the diffusion model is measured in terms
of km2/day, which has no simple biological meaning. The
dispersal parameter, D, is obtained from D = 1.52/8(l),
which in this case is 2.25/8(10) = 0.028. This leads to a
minimum buffer width of about two km; (g) core area as
a pest free area or an area of low prevalence (the target
pest density is potentially different); (h) assumed costs—
the cost of the SIT package (production, packing, and
transport to the releases site is $500/million sterile insects)
for the eradication phase is about $130 per ha per year
assuming a sterile fly density of 5000 males per hectare and
weekly releases throughout the year amounting to 52 releases
(+30% for other eradication and surveillance measures).
The cost is substantially reduced during the fly-free phase
or maintenance phase (to ca 1/5 of the cost during the
eradication phase) since only surveillance and quarantine
activities are conducted to maintain the fly-free status. The
cost of insecticide-bait treatments for initial suppression
prior to the release of sterile flies is about US $120 per ha per
year assuming a cost of $12 per treatment per hectare and 10
treatments per year. (i) Assumed revenue—$5000/ha (at 10
tonnes/ha and $500 per tonne, which is an average of many
fruit commodities) in the core area A and $0 in the buffer
zone.

Recent studies of medfly dispersal suggest that a 2 km
buffer zone is a reasonable starting point for the models
presented here. Meats and Smallridge [35] studied dispersal
of medfly across a grid of 3750 surveillance traps at
distances up to 10 km. They found that 90% of released flies
remained within 0.4–0.7 km of the release point. Their results
were consistent with a number of earlier studies that had
investigated dispersal over shorter distances (up to 0.7 km;

references in Meats and Smallridge [35]). Furthermore,
Wong et al. [32] found little difference in dispersal of wild
and irradiated medfly. Therefore, most wild medfly entering
a 2 km buffer zone will die before crossing the zone, and
any offspring produced in transit should suffer lowered
fertility due to matings with the overflooding sterile flies.
The actual number of wild flies crossing the buffer zone will
then depend on the details of density, lifespan, fertility, and
movement of the wild flies. The dispersal model will provide
a calculated value of the dispersal coefficient D, which will, in
turn, determine the calculated width, d, of the buffer zone, B.

The economic analysis will provide the calculated size
of the core area A. The Excel worksheet referred to earlier
was parameterized for the Mediterranean fruit fly, although
it would be suitable for other species simply by using
appropriately different parameter values. The proportions of
flies, being released at a source, that are expected to disperse
to various distances in one day are tallied, based on the Excel
worksheet. When run for one year, it predicted that two km
would seem to be a reasonable buffer width based on the
parameter values assumed here.

Using the values given above, we can assign values to
the parameters in the economic model as follows. Assume
that a square core area is desired, so that k = 1; also,
d = 2. Costs per unit area for the buffer (q) are $130/ha/yr
+ 30% + $120/ha/yr = $28900/km2. Costs for the core, w,
are zero. Benefits, v, in the core area are $5000/ha/yr =
$500000/km2/yr. Benefits from the buffer, e, are zero. The
quadratic relationship between the width of the core area
A and the net profit (inequality (14)) is then (500000)x2 +
2(2)(2)(−28900) + 4(4)(−28900) = 0 for the breakpoint,
which gives a break-even point at a width of 1.2 km of the
core area A for a biological buffer distance of 2 km. The units
of x and d must be the same. This conforms to the upper
right case in Table 2.

4. Discussion

It will be important to consider a risk of incursions into the
core area, which result in pest density rising above the chosen
threshold density in the core area A. The latter depends on
the strategy chosen, that is, if the aim of the program is
to establish a pest free area then the threshold density is
zero, but if the core area is aimed to be an area of low pest
prevalence, the chosen threshold density could be the agreed
threshold between the exporting and importing country.

There are several factors which may contribute to incur-
sions into the core area: inadequate width of the buffer zone,
high dispersal rate of the pest insect, human introductions,
wind-borne incursions, varying control efficiency, failure in
the execution of the operation, and size of the core area A.

There is a distinct relationship between the risk of
introductions and the size of the protected (core) area. The
risk of human introductions increases with the size of the
core area A, since the probability of an introduction into a
large area is greater than that into a small area simply based
on assumed random movement of humans. It is recognized
that human activity is not random, but a larger area would
likely be used by more humans than a small area. Similarly,



10 International Journal of Agronomy

the risk of wind-borne incursions would increase with the
size of the core area A for the same reason as for humans.

If a large core area is partitioned into a set of smaller
subareas, then the edge subareas should be more vulnerable
to incursions than the centre. This suggests the need for large
core (A) zones and increased surveillance near the perimeter
of the core area A.

The diffusion approach is useful for relatively homo-
geneous buffer areas with no obstacles to dispersal or
other factors that interfere with insect movement. If such
obstacles do exist, then the use of the diffusion equations
becomes less precise. Also, if there are prevailing winds
that affect insect movement, they will have to be factored
into the calculations of buffer width. A modification of the
simple diffusion equations that would accommodate this
is to use a diffusion equation with a term for drift, the
so-called Fokker-Planck equation (14), which is somewhat
more complicated than the simple diffusion equation with
growth. The application of diffusion to the tsetse case gave
an estimate of between one and two km width for the
buffer zone. There appears to be little agreement on how far
tsetse can disperse, and the estimates from different species
and among investigators vary considerably. For example,
Brightwell et al. [38] reported 175 m/day as the root mean
square displacement. Yu et al. [25] gave 1.71 km as the
lifetime straight-line distance travelled for tsetse. Challier
[39] reported the average daily displacement to be 252 m.
Glasgow [40] reported the displacement after release to be
700 m in the first week and then 200 m each week thereafter.
With such a variety of figures to choose from, the derivation
of any definitive buffer width is elusive.

The economic model parameterized for the Mediter-
ranean fruit fly was used to demonstrate the relationship
between key variables. It is essential to recognize the
limitations of the approach that has been taken here, and
especially to use the model output values with caution. Any
improved model will still suffer from the inherent limitations
of its assumptions, but the preliminary nature of the current
model means that special care is needed in this area. The
approach taken was to develop parameter estimates that
produced a break-even value for the project.

The economic analysis can be easily produced using a
spreadsheet, allowing much faster calculation than the diffu-
sion models. Therefore, it is suggested that the following gen-
eral process could be used in the decision-making process.

(1) Obtain an estimate of the maximum dispersal range
of the pest. This provides an initial value for the width
of the buffer zone.

(2) The economic spreadsheet analysis can then be
performed to test the financial viability of the project,
using the approximate estimate of the size of the
buffer zone. The economic analysis will provide
an estimate of the minimum size of the core area
required to support the project.

(3) The diffusion model can then be run (using a
minimum core area estimate).

This process is likely to be the most efficient method of
combining the two elements of the model.

For the reasons outlined above, the model was kept as
simple as possible. However, various important complexities
could be added to future, more complex versions of the
model. Habitat heterogeneity can affect the dispersal rate of
an insect, which here has been assumed to be a constant.
Also, clumping of the pest distribution may affect the
efficiency of control. Wind and rainfall can increase dispersal
rates in insects, and, therefore, can increase the potential
introduction of the pest into a pest free area, although proper
surveillance systems could address these rare events, and an
appropriate response could be developed using additional
control. Directed dispersal by insects occurs within the buffer
zone but may take place in all directions in relation to wind.
For example, cross-wind or upwind dispersal may be used by
insects to detect mates or habitat. Downwind dispersal may
occur outside the boundary layer and is difficult to predict.
Finally, seasonal temperature differences also may have a
major effect on pest activity, survival, and efficiency of the
sampling device.

5. Conclusions

The preliminary testing of the conceptual model suggests
that it should be possible to estimate the minimum area
required for an AW-IPM program, with or without an
SIT component, to be technically feasible and economically
justifiable. Calculations using the assigned parameter values
suggested that for the Mediterranean fruit fly, the minimum
buffer width could be as small as 2 km (surrounding a core
production area of at least 43 ha). These results were in
general accord with expectations based on experience of past
AW-IPM programs that included the release of sterile insects.
As expected, high ambient pest densities (i.e., untreated
tropical and subtropical populations of Mediterranean fruit
fly inhabiting vast host areas like coffee plantations) rendered
SIT ineffective over much larger distances.

A possible limitation arises since the diffusion models
employed are equilibrium models. In temperate regions,
seasonality exerts a major effect on pest survival and activity.
While seasonal temperature effects could be included in the
model via variable birth and death parameters, the effect on
the speed at which the model approaches equilibrium has
not been determined. If it seems likely that seasonality will
prevent the model from reaching equilibrium, then the user
will have to be careful to only use the early generations of the
model in assessing the size of the buffer zone.

The portability of the model between organisms will
need to take account of the differences in values for key
parameters, the simplistic depiction of the pest biology
and the applicability of the assumptions to each species.
Any generic model will have limitations for certain insect
groups. Important complexities include inherited sterility
(Lepidoptera treated at lower doses), aggregation behavior
(some Coleoptera), or complex biology.
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