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Cassava (Manihot esculenta Crantz) is a staple food and generates income for smallholder farmers in southern Ethiopia. Te
performance of cassava genotypes varies in diferent growing environments; thus, the evaluation of genotypes tested in various
environments plays an essential role in developing strategies to delineate environments, explore unstable genotypes in target
environments, and identify stable genotypes for multiple environments. In this regard, there needs to be more information on the
identifcation of mega-environments and stable genotypes with high yields for wide adaptation. Tus, this study aimed to identify
mega-environment and high-yielding cassava genotypes for multiple environments using AMMI and GGE biplots. A total of 25
genotypes were evaluated in six environments using a RCBD during the 2020–2021 cropping season. Te AMMI analysis of
variances revealed that environments, genotypes, and genotype-environment interaction had a signifcant (P≤ 0.001) infuence on
cassava fresh storage root yield (t·ha−1), showing genetic variability among genotypes by changing environments. Te genotype-
by-environment interaction showed a 61.36% contribution to the total treatment SS variation, while the environment and
genotype efects explained 28.16% and 10.48% of the total treatment SS, respectively. IPCA1 and IPCA2 accounted for 33.42% and
23.5% of the GE interactions SS, respectively.Te GGE biplot showed that the six environments used in this study were delineated
into three mega-environments, namely, the frst (Tarcha and Disa), the second (Wara and Areka), and the third (Jimma and
Bonbe).Tose mega-environments could be helpful for genotype evaluation and efective breeding.Te GGE biplot indicated that
the vertex genotypes were G16, G17, and G25.Tey are regarded as specifcally adapted genotypes since they are more responsive
to environmental change. Te GGE biplot also revealed that Tarcha was ideal, having the most discriminating and representative
environment, while G10 was the ideal and the overall winning genotype for the current study. Moreover, the genotypes G10 and
G14 were identifed as being the most stable, with a higher fresh storage root yield than the grand mean. Tus, G10 and G14 were
selected as superior genotypes that could be promoted to advanced yield trials to develop stable cultivars with better storage root
yield of cassava.

1. Introduction

Cassava (Manihot esculenta Crantz) is grown across the
tropics and subtropics for its thick and starchy storage roots
[1–3]. Cassava is a woody herbaceous plant that thrives in

low fertility and acidic soils and requires little labor demand
than other major food crops [4]. It is estimated to be the
major source of daily energy for over 800 million people
worldwide, with over 500 million of these people living in
Sub-Saharan Africa [2, 5]. In 2019, global cassava production
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reached 304 million metric tons with an average fresh
storage root yield of 11.13 t·ha−1 [2]. Te new genotype
should be superior to the released genotype, and the pro-
ductivity should be higher than the national productivity [6].
In Ethiopia, cassava is an essential food crop that provides
food security and income as well as a signifcant percentage
of the daily diet for humans [7, 8]. Cassava is consumed as
a boiled root and processed into four, which is mixed with
cereals such as tef, barley, and wheat for bread or injera
preparation [8, 9].

A signifcant genotype by environment interaction for
quantitative traits such as yield can reduce the usefulness of
subsequent analyses, restrict the signifcance of inferences
that would otherwise be valid, and severely restrict the
possibility of choosing superior genotypes [10–12].
According to Rodrigues et al. [13] and Rodrigues [14], ge-
notype environment interaction is defned by the change in
the genetic ranking of genotypes with respect to the envi-
ronment; for example, a genotype that performs well in well-
watered conditions may perform poorly in dry conditions.
Te ultimate objective of plant breeders in a crop im-
provement program is to develop genotypes that can be
adapted to a wide variety of diverse environments [15]. Yield
stability analysis can be performed to fnd genotypes whose
performance holds stable across a range of environments
[15, 16]. Hence, comparing performance across environ-
ments can assist in identifying the cassava genotypes that
perform best in the target environments and those that are
most adaptable to multiple environments.

Plant-breeding programs typically conduct rigorous
genotype performance evaluations across environments
[17]; the occurrence of genotype by environment interaction
(GEI) is unavoidable in such multienvironment trials [18].
Te efects of genotype and environment interactions are
statistically nonadditive, demonstrating that diferences in
yield among genotypes depend on the environment [19]. As
a result, selection strategies based on a genotype’s mean yield
in a particular environment are inefective [20]. Tis has
resulted in a greater focus on phenotypic stability in
breeding programs [21] as well as a better understanding and
application of various stability approaches. According to
Ssemakula and Dixon [22], signifcant GEI variation reduces
the relationship between genotype and phenotypic values
and lowers yield estimation accuracy. It is also one of the key
reasons why formal breeding has not been able to help
smallholder farmers in marginalized areas that have limited
resources [18].

Plant breeders already have a number of statistical ap-
proaches for analyzing genotype-yield adaptability and
stability, which can help them with the difcult task of
discovering superior genotypes in the context of signifcant
G×E interaction [23]. According to Agyeman et al. [24],
AMMI and GGE biplot analyses are two widely used
methods for overcoming the problems in multienvironment
trial data analysis. Te AMMI and GGE biplot models are
characterized as powerful tools for analyzing and com-
menting on multienvironment data structures in breeding
operations [25, 26]. Tese two statistical analyses (AMMI
and GGE) are of more interest to agricultural researchers

since they apply to any two-way data matrix, such as the
number of genotypes tested in a number of locations, and
such data can come from many trials [27]. Analysis of
variance (ANOVA) and principal component analysis
(PCA) are used in these analyses [28]. Te diference be-
tween GGE biplot analysis and AMMI biplot analysis is that
the GGE biplot analysis is based on environment-centered
PCA, whereas the AMMI biplot analysis is based on double-
centered PCA [29]. As a result, the AMMI and GGE biplot
models facilitated visual comparison and identifcation of
superior genotypes for widely adaptable environments and
each target set of environments [17].

Despite the fact that cassava is usually adapted to a wide
range of environmental conditions, most cultivars are re-
ported to have narrow adaptability and large genotype by
environment interaction (GEI) efects [30, 31]. Tis high-
lighted the importance of extending research eforts to look
at the diferences in storage root yield among cassava ge-
notypes across environments. In Ethiopia, the so far eval-
uation of performance of cassava genotypes in contrasting
environments is limited. Terefore, the objectives of this
study were to (1) estimate the magnitude of genotype by
environment interaction, (2) identify stable genotypes with
high storage root yield, and (3) identify mega-environments
to guide future testing strategies.

2. Materials and Methods

2.1. Description of Study Area. Te feld experiment was
conducted at six environments in the 2020-2021 main
growing season. Tese locations were diferent in soil type,
altitude, and mean annual rainfall (Table 1). Hence, each
location was considered as an individual environment.

2.2. Experimental Materials. Twenty fve cassava genotypes
were used in the study. From the total genotypes, 4, 16, and 5
were landraces, promising and released, respectively
(Table 2).

2.3. Experimental Design and Management. Te experiment
was laid out in 5× 5 simple lattice designs. Mature cassava
cuttings, measuring 25–30 cm long, were planted in a single
row plot of 7m long with an interrow spacing of 1m and
intrarow spacing of 1m (7m2) on the top of the ridge at an
angle of 45° to the ground surface. All cultural practices were
conducted as recommended by Markos et al. [33] and
farmers’ practices in the area. Te middle fve plants within
a row were marked and sampled for the root yield data
collection. Te fresh storage root yield per plot was weighed
and then converted to tons per hectare (t·ha−1).

2.4. DataAnalysis. Statistical analyses were conducted using
GenStat [34] and GEA-R described by Angela and Vargas
[35]. Prior to doing the combined analysis of variance across
environments, each environment’s data were subjected to
the analysis of variance (ANOVA) and normality test.
Bartlett’s tests of homogeneity of variances were used to
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determine the homogeneity of the error variances of the
individual location experiments, and then the combined
analysis of variance across sites was performed after con-
frming the homogeneity of the variances. Te AMMImodel
was used to generate a combined ANOVAwith genotypes as
fxed factors and environments as random variables.

2.4.1. AMMI Analysis. A fresh storage root yield analysis
was performed for the additive main efect and multipli-
cative interaction (AMMI) model. In the validity test, the
simple lattice design MS component of the block within
replication is less than the residual error in all locations;
therefore, the analysis of variance was a combined analysis
based on the randomized complete block design (RCBD). As
described by Gauch [36], the AMMI analysis was used to
adjust the main or additive genotype and environmental
efects by analysis of variance and themultiplicative efects of
the GE interaction by the principal component analysis.
Gauch [36] suggested the following model for the AMMI
analysis of variance (ANOVA).

Yij � μ + Gi + Ej + 
n

k�1
λκαiκcjκ + eij, (1)

where Yij � is the yield of the ith genotype in the jth envi-
ronment; μ� is the grand mean; Gi and Ej are the genotype
and environment deviations from the grand mean, re-
spectively; λk � is the eigenvalue of the PCA analysis axis k;
αik and cjk � are the genotype and environment principal
component scores for axis k; n is the number of principal
components retained in the model, and eij is the error term.

2.4.2. AMMI Stability Value (ASV) Analysis. Purchase et al.
[37] suggested an ASV measure to quantify and classify
genotypes according to their yield stability because the
AMMI analysis does not provide a quantitative measure of
stability. Te ASV is a measure of a genotype’s stability. Te
lower the value, the stronger the stability, according to
weighted IPCA1 and IPCA2 scores [37]. Te ASV was
determined using the following formula:

AMMI Stability value (ASV) �

��������������������������������������������

IPCA1sumof squares
IPCA2 sumof squares

(IPCA1 score) 

2

+(IPCA2 sc)2




, (2)

where (IPCA1 sum square/IPCA2 sum square) is the weight
given to the IPCA1 value by dividing the IPCA1 sum of
squares by the IPCA2 sum of squares.

2.4.3. Genotype Selection Index (GSI) Analysis. Using the
formula GSI�RASV+RY, the genotype selection index was
computed [38]. Here, RASV stands for AMMI stability value

Table 1: Description of the test environments.

Location Altitude (masl) Annual rainfall
(mm)∗ Soil type

Temperature (0°C)
pH

Minimum Maximum
Jimma 1753 1432 Eutric Nitosol 12.00 26.20 5.30
Tarcha 1250 1392 Nitosol 17.00 30.00 5.80
Disa 1244 1151 Alisols 18.00 31.30 5.60
Areka 1800 1530 Nitosol 14.00 25.00 5.20
Wara 1499 1400 Nitosols&alisols 16.50 28.50 5.47
Bobe 1701 1450 Nitosol 15.00 26.00 4.25
Source: climate data were taken from National Meterology Agency (NMA) [32].

Table 2: Description of cassava genotypes used for the study.

Genotype name Genotype code Status
AAGT108 G1 Released
Hawassa-04 G2 Released
Qulle G3 Released
156 G4 Promising
MM 96/9361 G5 Promising
F-100 G6 Promising
M-94/0125 G7 Promising
1062630 G8 Promising
Bajk-1 G9 Landrace
1061630 G10 Promising
196/624 G11 Promising
191/0427 G12 Released
AAGT 192 G13 Promising
200 G14 Promising
AWC-5 G15 Landrace
1980510 G16 Promising
Umvure G17 Landrace
Kello G18 Released
45/72 white G19 Promising
5532-4 G20 Promising
Gamo dhaske G21 Landrace
46330/12 G22 Promising
1070539 G23 Promising
1038 G24 Promising
869 G25 Promising
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ranking and RY stands for genotype mean yield ranking
across environments. According to the author, GSI com-
bines mean yield and stability into a single criterion, with
a low score indicating stable genotypes with a high mean
yield. As a result, the GSI with the lowest value is thought to
be the most stable, with the highest storage root yield. Te
higher the IPCA score, either positive or negative, the better
suited a genotype is to specifc environments.

2.4.4. GGE Biplot Analysis. Temodel for a GGE biplot [25],
based on singular value decomposition of the frst two
principal components, is

Yij − μ − âj � ë1 ı̂i1 çj1 + ë2 ı̂i2 çj2 + εij, (3)

where Yij � is the measured mean of genotype i in the en-
vironment j, μ� is the grand mean, âj� is the main efect of
environment j, μ − âj� is the mean yield across all genotypes
in the environment j, ë1 and ë2� are the singular values for
the frst and second principal components, respectively,
ı̂i1 and ı̂i2� are eigenvectors of genotype i for the frst and
second principal components, respectively, çj1 + çj2� are
eigenvectors of environment j for the frst and second
principal components, respectively, and εij � is the residual
associated with genotype i in the environment j.

3. Results and Discussion

3.1. AMMI ANOVA. Te AMMI model’s analysis of vari-
ance for twenty-fve cassava genotypes evaluated in six
environments were found that environments (E), genotypes
(G), and genotype environment interaction (GEI) had
a signifcant (P≤ 0.001) infuence on the cassava fresh
storage root yield (t·ha−1) (Table 3). Additionally, the
analysis of variance of the AMMI model indicated that the
frst two AMMI (IPCA1 to IPCA2) were very highly sig-
nifcant (P≤ 0.001). Tis demonstrated that there was
a signifcant variation in yield performance among the
cassava genotypes across the tested environments due to the
presence of strong genotype by environment (G×E) in-
teraction. As a result, stable genotypes or entries for a spe-
cifc environment may be possible. Tis fnding is in line
with several studies that have identifed signifcant in-
teractions between cassava genotypes and the environment
[16, 30, 39–43].

Te total sum of squares factors explained (%) showed
that cassava storage root yield was infuenced by genotype by
the environment (G×E) interaction efect (61.36%), envi-
ronment efect (28.16%), and genotype efect (10.48%)
(Table 3). Te GEI sum of squares factor was roughly 6 times
larger than the genotype sum of squares factor, indicating
that genotypic response varied signifcantly across envi-
ronments. Terefore, there is a high possibility of cultivar
development for a specifc environment since the GE in-
teraction, the sum of squares, contributed more to the total
variation. In agreement with these results, Hmwe et al. [43]
reported that the genotype by the environment interaction
efect accounted for the largest total sum of square, followed
by genotype and environment. However, this was contrary

to fndings from Noerwijati and Prajitno [40], who reported
that the environment is the most contributing, followed by
the genotype by the environment interaction efect and the
genotype efect, while Adjebeng-Danquah et al. [16] re-
ported that the environment contributed a greater pro-
portion of the treatment sum of squares, followed by the
genotype efect and genotype by the environment in-
teraction. Both studies reported that the cassava storage root
yield was strongly infuenced by environmental factors. Tis
indicates that there is a large diference in storage root yield
in diferent environments. However, the large environ-
mental infuence is irrelevant to genotype evaluation, while
genotype (G) and genotype-by-environment interaction
(GEI) are relevant to genotype evaluation [40].

For crossvalidation of the yield variation explained by
the GEI, the AMMI with IPCA1 and IPCA2 is the best
predictive model [20]. In this study, IPCA1 (33.42%) and
IPCA2 (23.5%) each explained a signifcant portion of the
G×E interaction. Te IPCA1 and IPCA2 sums of squares
combined to contribute 57.17% of the overall GEI, with the
frst two terms having a sum of squares greater than ge-
notypes. Te model explained the entire genotype by en-
vironment interaction component well enough [44]. Tis
indicates that the AMMI model with the IPCA1 and IPCA2
was acceptable for crossvalidation of the root yield variation
loaded by GEI in the current data set, as it eliminates the
majority of the actual variation.

Te environment mean storage root yield averaged
across the genotypes ranged from 32.88 t·ha−1 at Jimma to
60.39 t·ha−1 at Tarcha, while genotype mean storage root
yield, averaged across the environments, ranged from
38.50 t ha−1 (AAGT108� #G1) to 55.84 t·ha−1 (156� #G4)
(Table 4). Some genotypes in the GEI were of a crossover
type, as evidenced by genotype yield rankings that difered
across environments (Table 4). Tere was inconsistency in
the top-ranking storage root yield across environments.
Tus, genotypes G11, G7, G12, G25, G17, and G4 were the
top-ranking genotypes at Tarcha, Jimma, Wara, Disa, Areka,
and Bonbe, respectively (Table 4).

3.2. AMMI Biplot. Te AMMI 1 biplot space (Figure 1) is
divided into four sections, ranging from low-yielding en-
vironments in Sections 1 (upper left) and 4 (low left) to high-

Table 3: AMMI analysis of variance for fresh storage root yield
(t·ha−1) of 25 cassava genotypes evaluated in six environments.

Source of variation DF SS MS (%) SS explained
Total 299 87450 292.5
Treatments 149 70823 475.3
Genotypes (G) 24 7520 313.3∗∗∗ 10.48
Environments (E) 5 19796 3959.2∗∗∗ 28.16
Block within E 6 2758 459.7
Interactions (G°×°E) 120 43507 362.6∗∗∗ 61.36
IPCA 1 28 14555 519.8∗∗∗ 33.42
IPCA 2 26 10365 398.6∗∗∗ 23.5
Residuals 66 18588 281.6
Error 144 13870 96.3
Key: ∗∗∗� highly signifcant at 1%.
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Table 4: Mean fresh storage root yield (t·ha−1) of 25 genotypes across environments.

Genotypes Environments

Code Name Tarcha Jimma Wara Disa Areka Bonbe Over
all mean

G1 AAGT108 33.60 23.50 50.75 37.50 37.34 48.30 38.50
G2 Hawassa-04 45.90 25.00 46.67 20.00 57.20 45.23 40.00
G3 Qulle 33.95 22.30 40.34 25.00 38.25 46.63 34.41
G4 156 72.50 23.90 47.25 66.25 54.17 71.  55.84
G5 MM 96/9361 73.55 60.17 54.95 47.50 28.84 55.40 53.40
G6 F-100 73.40 56.84 44.45 35.00 55.00 50.15 52.47
G7 M-94/0125 58.95 63.76 57.75 37.50 45.80 49.65 52.24
G8 1062630 73.45 26.00 50.75 37.50 67.00 58.28 52.16
G9 Bajk-1 78.70 17.67 58.34 60.00 51.55 45.50 51.96
G10 1061630 67.50 30.17 52.50 62.50 31.70 60.15 50.75
G11 196/624 79.7 30.84 55.84 30.00 61.25 46.67 50.71
G12 191/0427 54.45 22.00 75.58 58.75 52.50 39.80 50.51
G13 AAGT 192 27.00 34.30 53.34 55.00 68.34 54.85 48.80
G14 200 69.65 26.17 46.67 41.25 43.75 61.25 48.12
G15 AWC-5 65.90 40.67 28.70 55.00 36.34 39.96 44.43
G16 1980510 54.65 62.17 26.25 35.00 38.34 69.30 47.62
G17 Umvure 61.60 19.17 40.25 40.00 77.5 49.00 47.92
G18 Kello 62.50 26.17 46.00 50.00 54.34 40.25 46.54
G19 45/72 white 78.35 25.00 52.50 35.00 40.04 44.90 46.10
G20 5532-4 65.55 36.83 52.97 46.25 32.50 36.40 45.08
G21 Gamo dhaske 57.70 32.50 51.10 47.50 44.00 34.13 44.49
G22 46330/12 31.25 56.67 50.75 33.75 40.00 53.65 44.34
G23 1070539 55.36 25.67 64.75 31.25 45.00 36.40 43.07
G24 1038 65.70 18.33 26.25 30.00 51.25 65.34 42.81
G25 869 68.90 16.30 33.25 75.  41.67 23.34 43.08
Mean 60.39 32.88 48.32 43.70 47.00 49.02 47.01
LSD (5%) 17.52 18.67 22.39 24.52 14.65 22.22
CV (%) 13.69 26.78 21.75 26.00 14.47 21.22
F value ∗∗ ∗∗ ∗ ∗ ∗∗ ∗∗

Key: ∗, ∗∗ � signifcant diference at 0.05 and 0.01 level, respectively, LSD� least signifcant diference, and CV� coefcient of variation. Bold indicates the
highest mean yield among genotypes within environment and over all environments.
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Figure 1: AMMI 1 biplot showing the main and interaction (IPCA1) efects of both genotypes and environments on mean fresh storage
root yield.
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yielding environments in Sections 2 (upper right) and 3 (low
right). Figure 1’s biplot clearly demonstrates that the points
for the environment are more scattered than the points for
genotypes, showing that variability due to environments is
greater than variability due to genotype diferences, which is
in line with ANOVA (Table 3). Te points for the usually
adapted genotypes on the biplot would be on the right hand
side of the grand mean levels (suggesting high mean per-
formance) and near to the IPCA� 0 line (this suggests
negligible or no GE interaction). In this regard, thirteen
cassava genotypes, for example, G4 and four environments
such as Tarcha, were positioned on the right side of the
perpendicular vertical line in the AMMI biplot (Figure 1).
According to the current study, these genotypes and envi-
ronments were considered as high-yielding genotypes and
environments. Tese results are supported by previous
studies by Tumuhimbise et al. [31], Morais et al. [42], Hmwe
et al. [43], and Esuma et al. [45] who reported that yield
stability among genotypes was evaluated using mean per-
formance and the IPCA score by graphically constructing
the AMMI-1 biplot into four quadrants. Tey also discov-
ered that genotypes and environments ranging from low to
high yield were distributed in four quadrants.

TeX-coordinate denotes themain efects (genotype and
environment means), whereas the Y-coordinate denotes the
interaction efects (IPCA1) in the AMMI 1 biplot (Figure 1).
Te diferences between genotypes in terms of direction and
magnitude along the X-axis (yield) and Y-axis (IPCA 1
scores) are signifcant in the AMMI 1 biplot. A biplot assay is
interpreted, and if main efects have an IPCA score near to
zero, it implies negligible interaction efects (stable), but
a greater score (absolute value) shows instability and is
specifcally adapted to certain environments [46]. When
a genotype and its environment have the same sign on the
IPCA axis, their interaction is positive; when they have
diferent signs, it is negative [47]. According to the AMMI
model, genotypes with root mean yield greater than the
grandmean and an IPCA score of virtually zero are generally
adaptable to all environments. However, genotypes with
a highmean performance and a high IPCA score are thought
to be more adaptable to their environments [44].

According to Figure 1, G18, G19, and G25 (adaptive
group 1 or characterized by low-yielding environments with
stable genotypes) showed specifc adaptability for Disa en-
vironment having a fresh storage root mean yield below the
grand mean. Te frst adaptive group’s genotypes and en-
vironments have the same sign on the IPCA axis, indicating
that their interaction is positive. G4, G8, G9, G11, G12, and
G17 (adaptive group 2 or characterized by high yielding/
ideal environment with an unstable genotype) were found to
have specifc adaptability for environments such as Tarcha,
Wara, and Areka, with a higher fresh storage root mean yield
than the grand mean and high positive interaction. Geno-
types G5, G6, G7, and G16 were in adaptive group 3
(characterized by a high-yielding environment). Tey
revealed a specifc adaptation for the Bonbe environment
with a higher fresh storage root yield than the grand mean
yield and positive interaction. Te genotypes, G1, G2, G3,
G15, and G22 (adaptive group 4, or defning a low-yielding

environment with an unstable genotype), were identifed as
having sole adaptability for the environment of Jimma. At
IPCA= 0, the genotypes G10, G13, G14, G20, G21, G23, and
G24 (adaptive group 5 or stable genotypes) showed high
stability and general adaptability; G20, G21, G23, and G24
had fresh storage root yields close to the grand mean yield,
while G10, G13, and G14 had higher storage root mean
yields than the grand mean and negligible interaction. In
general, genotype G10 was screened with general adapt-
ability for all environments (close to IPCA= 0 or in-
signifcant interaction) with a high fresh storage root yield of
more than the grand mean yield and was the overall winner
with less variable yield across the environments, suggesting
its eligibility as one of the leading genotypes for the current
study. Agyeman et al. [24], Morais et al. [42], and Hmwe
et al. [43] supported this study by discovering that genotypes
with high yield were least interactive with the environment
(low IPCA score), indicating that they were broadly adapted
genotypes with high yield in all environments, whereas
unstable genotypes with high yield were adapted to specifc
environments. Similarly, several studies for diferent crops
reported that genotype-adaptive grouping in four quadrants
was estimated on the basis of mean yield and the magnitude
of IPCA1 scores [48–51]. Also, they observed the stable,
unstable, and overall winning genotypes.

On the other hand, some environments stood out as
having a small contribution to the interaction (Wara);
a moderate contribution (Disa, Areka, and Bonbe); and
a large contribution (Tarcha and Jimma) (Figure 1). Tarcha,
Wara, and Bonbe environments, produced a higher mean
storage root yield than the grand mean (47.01 t·ha−1), in-
dicating that these were ideal sites to acquire high means.
With a high positive IPCA 1 score, the environments with
the most potential (Tarcha, Wara, and Areka) demonstrated
diferential performance of genotypes for fresh storage root
yield (Figure 1). Te low-yielding environment (Jimma) had
the lowest yield but a negative IPCA1 score, indicating that
all genotypes performed poorly in this environment. Similar
observations were reported by Kadhem and Baktash [49],
Erdemci [50], and Wardofa et al. [51], who observed high-
yielding and low-yielding environments with varied con-
tribution interactions.

3.3. AMMI Stability Value (ASV). To determine the geno-
types’ stability, an AMMI stability value was calculated
(Table 5). In a two-dimensional scatter graph of IPCA1
(interaction principal component analysis axis 1) scores
against IPCA2 scores, ASV is the distance from zero. Te
proportional diference between the IPCAs (1 : 2) can be
used to compensate for the diference in stability mea-
surements of the two principal components, which can then
be computed using the Pythagorean theorem to the efect of
the AMMI stability value [37]. According to Purchase [52],
the AMMI stability value (ASV) does not give a quantitative
stability metric but rather quantifes and ranks genotypes
based on their yield stability. In this sense, genotypes with
lower ASV values are thought to be more stable, while those
with higher ASV values are thought to be unstable. Genotype
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G14 was the most stable, with an ASV value of 0.58, fol-
lowed by genotypes G24 and G21 with ASV values of 0.78
and 0.88 in fresh storage root yield, respectively, and the
genotypes G9, G16, G22, and G25 were the most unstable,
with ASV values of 4.23, 5.74, 5.49, and 5.78, respectively
(Table 5). A similar procedure was used by Adje-
beng–Danquah et al. [16], Tumuhimbise et al. [31], and
Esuma et al. [45], who found a more stable genotype with
a lower ASV value.

3.4. Genotype Selection Index (GSI) Analysis. Stability is not
the only parameter for selection because the most stable
genotypes would not necessarily give the best yield per-
formance.Te term “high stability” only has signifcance if it
is linked to average performance [53]. Hence, there is a need
for approaches that incorporate both mean yield and sta-
bility into a single index [38]. Te lowest GSI value is
considered the most stable, with a high mean yield.
Terefore, G14 and G10, with a GSI value of 12, were the
most stable genotypes with a high fresh storage root yield,
followed by G4, G11, and G8, with GSI values of 14, 14, and
16, respectively, indicating that they were stable (widely
adaptable) and high-yielding. Based on the value of the
genotype selection index, the genotypes G2, G3, G17, G22,
and G25 were unstable genotypes (Table 5).Tis fnding is in
line with previous studies, which stated that stable genotypes
with high yields were identifed by analysis of the genotype

selection index based on the ranking mean yield and ranking
AMMI stability value [31, 45, 54].

3.5. GGE Biplot

3.5.1. Which Won Where View of GGE Biplot. Te polygon
view of the GGE biplot graphic analysis is presented (Figure 2)
for the identifcation of winning genotypes by visualizing the
interaction patterns between genotypes and environments [55].
It is helpful in identifying crossover and noncrossover genotype-
by-environment interactions as well as the possible existence of
diferent mega-environments in multilocation yield trials
[19, 56]. As displayed by (Figure 2) genotypes, G3, G5, G13, G16,
G17, G22, and G25 were the vertex genotypes. Tese genotypes
perform best or worse in some or all environments because they
are the furthest from the biplot’s commencement [55], and they
are regarded as specifcally suited genotypes since they are more
responsive to environmental change. Tey thrive in environ-
ments that are part of their specifc sector in the GGE’s polygon
view-biplot [55]. At Tarcha and Disa, G25 was the most suc-
cessful genotype, while G16 at Bonbe and Jimma and G17 at
Wara and Areka. As a result, G25 won in Tarcha and Disa
environments, while G16 and G17 won in Bonbe and Jimma
and Wara and Areka environments, respectively. On the other
hand, the vertex genotypes G3, G5, G13, and G22 were the
poorest genotypes in almost the entire test environments be-
cause they were the furthest from the biplot’s origin on the
opposite side of the environments. Similar results were reported
by Agyeman et al. [24], Akinwale et al. [30], Noerwijati and
Prajitno [40], and Sholihin [57], who characterized genotypes’
which-won-where patterns. Tey found that some genotypes
performed better in a specifc environment than others and that
some genotypes performed worst in some environments.

Te biplot was divided into seven sections by the equality
lines in Figure 2. Te environments were distributed across
three sectoral areas, whereas the genotypes were distributed
throughout all the seven. Te three mega-environments
were, namely, frst (Tarcha and Disa), second (Wara and
Areka), and third (Jimma and Bonbe). Tis suggests that
comparable genotypes do better in a homogeneous envi-
ronment. Terefore, the identifed mega-environments
could be useful in managing the genotype-by-
environment interactions and then generalizing the results
to similar agroclimatic locations. Te genotypes that are
located near the sector’s vertex are the most yielding ge-
notypes in that sector [56]. Two environments (Tarcha and
Disa) were found in the frst sector (I). Tis sector
encompassed nine genotypes: G4, G9, G11, G12, G14, G15,
G19, G20, and G25 (Figure 2). Te frst sector’s vertex ge-
notype was G25, indicating that this was the better genotype
for these two environments and that environments within
the same sector had the same winning genotype, while it was
not clearly separated since G4 and G9 were also very near to
the side of that vertex, the second sector (II) contained fve
genotypes without any environment, and G5 was the vertex
genotype (Figure 2). Te third sector (III) contained two
environments (Jimma and Bonbe) and two genotypes, G7
and G16. Te vertex and best-yielding genotype for this

Table 5: Grand mean fresh storage root yield (FSRY) t·ha−1, RY,
ASV, GSI, RASV, IPCA1, and IPCA2 of 25 cassava genotypes
across environments.

Genotypes FSRY RY ASV GSI RASV IPCA1 IPCA2
G1 38.50 24 1.72 31 7 −0.8313 −1.2568
G2 40.00 23 2.86 40 17 −0.7991 −2.6335
G3 34.41 25 2.34 37 12 −1.2845 −1.4919
G4 55.84 1 2.35 14 13 1.6625 0.2291
G5 53.40 2 4.17 23 21 −1.9305 3.1704
G6 52.47 3 2.50 17 14 −1.6865 0.8082
G7 52.24 4 4.02 24 20 −2.8103 0.7640
G8 52.16 5 2.03 16 11 0.8827 −1.6108
G9 51.96 6 4.23 28 22 2.9934 0.4963
G10 50.75 7 1.25 12 5 0.6708 1.9761
G11 50.71 8 1.30 14 6 0.7334 −0.8003
G12 50.51 9 2.85 25 16 1.8497 −1.1771
G13 48.80 10 3.53 29 19 −0.8493 −3.3262
G14 48.12 11 0.58 12 1 0.3538 0.3055
G15 44.43 18 2.70 33 15 0.0983 2.6960
G16 47.62 13 5.74 37 24 −3.9447 1.5038
G17 47.92 12 3.48 40 18 1.4424 −2.8272
G18 46.54 14 1.83 23 9 1.2957 −0.2178
G19 46.10 15 1.73 23 8 1.0541 0.9025
G20 45.08 16 1.93 26 10 0.1970 1.9061
G21 44.49 17 0.88 20 3 0.5194 0.4981
G22 44.34 19 5.49 42 23 −3.8854 −0.5730
G23 43.07 21 1.07 25 4 0.2584 −1.0047
G24 42.81 22 0.78 24 2 0.1662 −0.7483
G25 43.08 20 5.78 45 25 3.7438 2.4114
Key: RY� ranking mean storage root yield, ASV�AMMI stability value,
GSI� -genotype selection index, and RASV�AMMI stability value ranking.

International Journal of Agronomy 7



section was G16. Without any environment, the fourth (IV),
the ffth (V), and the sixth (VI) sectors contained one, four,
and two genotypes, respectively (Figure 2). Under these
sectors, the vertex genotypes were G3, G13, and G22.
However, these were not the highest yielding genotypes in
any environment; rather, they were the poorest genotypes in
all or some environments. As a result, these genotypes are
thought to be well suited to their environment. Te last
sector (VII) comprised two environments (Wara and Areka)
and one (G17) vertex genotype. GEI variation was lower in
the genotypes near the origin than in the vertex genotypes.
Tus, the G8, G11, G14, G21, and G24 genotypes were close
to the biplot origin, indicating roughly average performance,
and their GEI variation was lower than that of the vertex
genotypes. Tis fnding was similar to that of Noerwijati and
Prajitno [40], Esuma et al. [45], Sholihin [57], Akter et al.
[58], and Bakare et al. [59], who reported that the testing
environment was delineated into diferent mega-
environments with winning genotypes and sectors con-
taining various numbers of genotypes.

3.5.2. Relationship among Environments. Te GGE biplot
demonstrates in Figure 3 that the frst (PC1) and second
(PC2) principal components combined explained 51.67
percent of the total variation, indicating that this biplot can
be used to separate interrelationships across the environ-
ments. Te angle between the biplot origin and the markers
of test environments is connected to the correlation co-
efcient [25]. Furthermore, the length of an environmental
vector confers a high level of genotype discrimination [19].
In the present study, environments Tarcha and Jimma were

the most discriminating (holding more information) about
the genotypes having the longest vectors from the origin,
followed by Disa and Areka, which were medium dis-
criminating, and environments Bonbe andWara, little or no
discriminating about the genotype diferences (Figure 3).
Nondiscriminating (noninformative) test environments
provide minimal information about genotypes and should
not be used as test environments [53]. Furthermore, the
biplot vector view is primarily used to fnd test environments
with acute, obtuse, and right-angle relationships, re-
spectively, with positive, negative, and zero correlation
between environments [56].

Based on the angle test between environment vectors, the
six environments were clustered into three groups. Te frst
group was discovered to have a small angle between envi-
ronments Jimma and Bonbe, Tarcha with Disa and Wara,
and Areka with Disa and Wara, that there was a highly
positive correlation between them and that they provided
similar information on genotypes (Figure 3). It implies that
the environment provides unnecessary information on their
ability to discriminate between genotypes. Obtaining reliable
information on environment similarity and clustering
should allow breeders to employ fewer test environments,
reducing testing costs and enhancing breeding efciency.
Te second group possesses the large angle revealed between
the environments of Jimma and Tarcha, Disa, Wara, Areka,
and Bonbe with Tarcha, Disa, Wara, and Areka. Hence, they
were negatively correlated. Te presence of wide obtuse
angles among the test environments is an indication of
strong crossover GE, and the largest angle is slightly larger
than 90°, implying that the GE is moderately large. Te third
group, which had the right angle, was formed between Disa
and Areka. Tis indicates that these two environments have
little or no correlation between them and the genotype
performing diferently. Akter et al. [58], Lule et al. [60], and
Baraki et al. [61] reported similar fndings in the relationship
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among environments characterized based on the angle
method. Tey found that some environments between them
had large angles or low or negative correlations, whereas the
associations with small angles had strong positive correla-
tions and ofered similar data on genotypes.

3.5.3. Evaluation of Genotypes Based on the Ideal Genotype.
Te GGE biplot model is an interesting application for the
evaluation of genotypes relative to an ideal genotype. Several
authors Diriba [53], Yan and Tinker [56], and Farshadfar
et al. [62] described that an ideal genotype has a high mean
performance as well as high stability across environments.
According to Nimlamai et al. [63], the ideal genotype with
high mean performance and high stability was identifed by
using the ideal position (the center of the concentric circle).
An ideal genotype has large PC1 scores (high mean yield)
and small (absolute) PC2 scores (high stability). Even though
such an “ideal” genotype may not be present in reality, it
might be used as a benchmark for genotype evaluation [64].
Concentric circles were formed in a GGE biplot graph based
on genotype-focused scaling to better visualize the distance
between genotypes and the ideal genotype [56, 65]. In early
breeding cycles, genotypes that are far from the ideal ge-
notype can be ruled out, while genotypes that are close to it
can be considered in subsequent tests [55]. A genotype is
more desirable if it is closer to the “ideal” genotype, which is
located in the frst concentric circle of the GGE biplot
graphic [64, 66].

According to the GGE biplot graph (Figure 4), genotype
G10 was positioned in the frst concentric circle. Terefore,
G10 was the ideal genotype position, followed by G15, G4,
G20 G19, G14, and G11, making it more desirable than other
cassava genotypes. In spite of this, G1, G2, and G3 improved
cultivars were more undesirable than other cassava geno-
types, and they were adapted to specifc environments. G14,
G21, and G24 were placed near the biplot origin, and they
were less sensitive to an environmental change. Tis is
similar to what Akinwale et al. [30], Erdemci [50], and
Naheif and Alaa [67] reported as one ideal genotype and
some other desirable genotypes located in the frst and next
concentric circles, respectively. Similarly, Noerwijati and
Prajitno [40] identifed ideal genotypes using diferent ap-
proaches; their criteria were that an ideal genotype should
have large PC1 scores (high mean yield) and a small absolute
PC2 score (high stability), but this approach was not able to
identify desirable genotypes.

3.5.4. Evaluation of Environments Relative to Ideal
Environments. According to Yan and Tinker [56], an ideal
environment has the highest discriminating capability and
representativeness, which are important properties of a test
environment. Yan and Kang [55] defned an ideal envi-
ronment as one that is highly diferentiating for the tested
genotypes while at the same time representative of the target
environments. In this regard, Tarcha had a smaller angle
with the average environment axis (AEA), while Wara,
Bonbe, and Areka had a large angle with the average en-
vironment axis (Figure 5). Bonbe andWara were close to the

center with very short vectors (Figure 5) and provided less
helpful discriminating information about the genotypes. As
a result, Tarcha was the most representative environment,
whereas Wara, Bonbe, and Areka were the least represen-
tative. Also, Tarcha had the highest discriminating capability
of the genotypes (Figure 5). As a result, Tarcha is the most
favorable environment for the selection of superior
genotypes.

In the environment-focused GGE biplot, the ideal en-
vironment is positioned in the frst concentric circle, and the
desired environments are defned as those that are closest to
the ideal environment. In this regard, Tarcha is in the frst
concentric circle and has been in the ideal environment
(Figure 6). Tarcha’s PC1 score was high, while its PC2 score
was low. Hence, genotype evaluation in the Tarcha envi-
ronment maximized the observed genotypic variation
among genotypes for the fresh storage root yield of the tested
cassava genotypes and should be regarded as the most
suitable to select widely adapted genotypes. Disa’s envi-
ronment was close to the ideal environment (Tarcha), and
this environment has been identifed as a desirable envi-
ronment (Figure 6). On the other hand, the Jimma and
Areka environments were located far away from ideal en-
vironments, so they might be regarded as undesirable en-
vironments (fewer representatives) for selecting widely
adapted cultivars but can be used for selecting specifcally
adapted cultivars. Tis variation among environments can
be associated with soil fertility, rainfall, and other envi-
ronmental variability across the environments. Te com-
position of genotypes afects a location’s discriminating
capacity, but the presence of GEI makes fnding an ap-
propriate test location more difcult [25]. Te test
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environments should have high PC1 scores to discriminate
genotypes in terms of the genotypic main efect and low PC2
scores in an absolute value to be more representative of the
overall locations [44]. As far as the testing environment is
concerned, the environment obtained directly concurs with
that described by [27, 50, 58, 67]. In their study, they

classifed the testing environment as ideal, desirable, dis-
criminating, and representative, where the ideal environ-
ment was situated in the frst concentric circle, and the
desirable or potential environment was closest to the ideal.
In the same way, they reported that the ideal environment is
the most discriminating and representative environment.
Furthermore, they suggested that the most representative
environments can be used for widely adapted genotype
selection, while nonrepresenting environments can be useful
for specifcally adapted genotype selection.

3.5.5. Ranking of Genotypes Based on Mean Yield and Sta-
bility Performance. In the GGE biplot, the assessment of
mean root yield and stability of genotypes (Figure 7) was
conducted by using the average environment (tester)
coordinate (AEC) methods [31, 68]. Te average envi-
ronmental (tester) coordinate (AEC) is defned by the
average PC1 and PC2 scores for all the environments
[55]. Te AEC X axis (PC1) line passes through the biplot
origin with an arrow indicating the positive end of the
axis and indicates the mean yield performance axis of
genotypes. Te line, which passes through the origin and
is perpendicular to the average environmental axis,
measures the stability of genotypes (PC2) in either di-
rection (Figure 7). Stable genotypes had the smallest
perpendicular lines and were close to AEC (PC1) with
PC2 scores of almost zero. On the other hand, any di-
rection on the axis away from the biplot origin suggests
increased GE interaction and decreased stability. Te
best genotypes for selection criteria are those with both
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high mean yield and high stability. In this regard, in the
present study (Figure 7), the single arrowed line was
pointed to higher yield across environments. Terefore,
genotype G5 had the highest mean yield, followed by G10
and G4. Genotype G18 had a mean yield similar to the
grand mean, and G3 had the lowest mean yield. Fur-
thermore, genotypes G14 and G10 were the most stable,
while G22 and G16 were highly unstable. Mostly, ge-
notype G22 was a highly unstable and poor-performing
genotype in the environments where genotype G5 was
the winner but not in the Areka environment. Te
present study’s fndings are in line with the report made
by [24, 30, 69–71]. Tey ranked genotypes based on mean
performance and stability across environments. In this
way, they found some genotypes to be the most stable
with a high mean yield and some unstable high yielders,
while some other genotypes were unstable with a poor
yield and a stable low yielder.

4. Conclusions

According to the combined analysis of variance, the
degree of GEI had the greatest infuence on cassava fresh
storage root yield performance, followed by the envi-
ronmental efect, while genotype had the least efect on
the total treatment SS. Te AMMI and GGE biplot
models were good tools for visual multienvironment
trials data analysis and allowed the estimation of the
interaction efects of a genotype in each environment.
Te three mega-environments have been identifed that
could be helpful for genotype evaluation and productive
breeding. Te GGE biplot revealed that Tarcha was the
ideal and the most representative environment, while
G10 was the ideal genotype and overall winner.
According to the AMMI, GGE biplot model, and GSI
analysis genotypes, G10 and G14 were identifed as being
the most stable, with a higher fresh storage root mean
yield than other genotypes and the grand mean. As
a result, G10 and G14 were selected as superior genotypes
that could be exploited in a cultivar development pro-
gram as widely adaptable genotypes for all environments.
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