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A method with ultrahigh performance liquid chromatography Quadrupole-Orbitrap tandem mass spectrometry (UHPLC-Q-
Orbitrap-MS/MS) was applied for the quality evaluation of di�erent processing and drying of American ginseng, including natural
drying (ND), steam drying (SD), and vacuum freeze-drying (VFD). A total of 51 saponins were successfully identi�ed in three
processed products. �ree processed American ginseng products were well-di�erentiated in orthogonal partial least-squares
discriminant analysis (OPLS-DA).�e S-plot also identi�ed the marker compounds in each product, while themajor ginsenosides
of ND (malonyl (M)-Rd, M-Rb1, Rg1), SD (20 (S)-Rg3, 20 (S)-Rg2), and VFD (M-Rd, M-Rb1) were found.�e results indicate that
the method by vacuum freeze-drying can retain the content of rare ginsenosides and malonyl-ginsenosides. �e marker
compounds selected will bene�t the holistic evaluation of related American ginseng products.

1. Introduction

American ginseng (Panax quinquefolium L.) is well-known
for replenishing Qi in Chinese medicine [1, 2]. American
ginseng contains several bioactive compounds, including
polysaccharides, saponins, amino acids, volatile oil, and
mineral elements, while ginsenoside is one of the important
active ingredients [3–9].

Ginseng has three popular processes, including natural
air drying, steaming drying, and vacuum freeze-drying,
respectively [10–17].�e drying process a�ects the quality of
ginseng products and changes the content of ginsenosides.
�e essence of the change in ginsenoside content is the
transformation of ginsenosides during the drying process.
�ermal processing (natural air drying and steaming drying)
converts saponins of larger molecular weight into saponins
of smaller molecular weight. Ginsenoside M-Rb1, M-Rb2,
M-Rc, Re, Rg1, Rb1, Ginsenoside Rb2, Rc, Rd, Re, Rg1, and

Ginsenoside Rd, Rk1, Rg5, Rg3 are the major ginsenosides of
white ginseng, red ginseng, and black ginseng, respectively
[15, 18, 19]. Nonthermal processing (vacuum freeze-drying)
can keep the shape and color of ginseng consistent with its
fresh state, containing more natural active ingredients. �e
characteristic components in vacuum freeze-drying ginseng
were M-Re, M-Rb1, M-Rc, M-Rb1 isomer, M-Rb2, M-Rb3
and M-Rd isomer [11].

�e LC-MS technique combines the high separation
ability for complex samples with the high selectivity of high-
resolution mass spectrometry and the ability to provide
information (molecular weight and structural) and is widely
used to control quality standards for traditional Chinese
medicine [20–22]. �e composition of Chinese herbal
medicines has been rapidly analyzed by UHPLC-Q-Orbi-
trap-MS/MS and the changes in their chemical composition
before and after processing as an e�ective tool for identifying
active ingredients with improved sensitivity and accuracy.
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�e fragment information of tandemmass spectrometry can
be used to identify the structure of compounds [23–25].

Multivariate analysis methods were applied to analyze
whether di�erences existed between test samples and to de-
termine which compounds were altered for quality evaluation
of herbal medicines of di�erent origins, parts, and processing
methods [11, 23, 24, 26, 27]. Recent studies demonstrated that
the UPLC-QTOF/MS is an optimal application for holistic
evaluation of ginseng [18, 28]. Principal component analysis
(PCA) is distinguished from the compounds of di�erent drying
processes of Houttuyniae Herba [29].

�e common processed products of American ginseng
are dried American ginseng [30–32]. It is necessary to
control the drying process in the processing of American
ginseng [33–35]. In recent years, steamed American ginseng
and vacuum freeze-dried American ginseng have appeared
in the functional food market. However, the systematic
comparison of ginsenoside conversions of natural drying
(ND), steam drying (SD), and vacuum freeze-drying (VFD)
has not yet been studied.

In this paper, UHPLC-Q-Orbitrap-MS/MS analysis
combined with multivariate analysis approach was applied

to evaluate the composition of ND, SD, and VFD.�is study
aims to explore the trends of transformation of ginsenosides
and characterize and quantify the chemical ingredients in
three processed American ginseng products to standardize
the processing procedures reasonably.

2. Materials and Methods

2.1. Chemicals and Reagents. �e chemicals and reagents
used were as follows: methanol, acetonitrile, and formic acid
(HPLC grade, Fisher Scienti�c); reference ginsenosides Rh1,
Rg5, Rk1, Rg3, F2, Re, Rg1, Rb1, Rg2, Rc, Rd; and pseudo-
ginsenoside F11 (Shanghai Yuanye Biotechnology Co., Ltd.)
were obtained. �e purity of the standards was no less
than 98%.

2.2. Processed American Ginseng Samples. �e samples of
fresh American ginseng were �rst cleaned and then pro-
cessed by the experiment (steaming drying, natural air
drying, and vacuum freeze-drying). �e ND samples were
produced by drying at 50°C.�e SD samples were produced
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Figure 1: �e scheme of American ginseng products: natural drying (ND), steam drying (SD), and vacuum freeze-drying (VFD).
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in a ginseng steaming cabinet at 100°C for 3 h and allowed
to dry in an oven at 50°C. �e VFD samples were produced
by �rst prefreezing at −20°C for 12 h and then placing them
in a vacuum freeze-dryer (Ningbo Xinzhi Biotechnology
Co., Ltd., Zhejiang, China) to freeze-dry for 72 h, as shown
in Figure 1.

2.3. Preparation of Standard and Sample Solutions. A series
of reference mixtures with ginsenosides Rh1, Rg5, Rk1, Rg3,
F2, Re, Rg1, Rb1, Rg2, Rc, Rd, and pseudoginsenoside F11
were dissolved in 70% methanol-water to a �nal concen-
tration of 0.2mg/mL. Each of the stock solutions was
combined to obtain �nal concentrations.
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Figure 2: Base peak chromatogram of American ginseng of natural drying (ND), steam drying (SD), and vacuum freeze-drying (VFD) in
the negative ion mode.
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A �ne powder (0.1 g) was ultrasonically extracted with
70% methanol-water (5mL) for 45min. �e extraction was
�ltered through a 0.22 μm syringe �lter before analysis [36].

2.4. Instrument and Condition. A UPLC system (Ultimate
3000) was used for separations. A Supelco C18 column
(3.0× 50mm, 2.7 μm) was used at 35°C for separation and
eluted by the mobile phases (solvent A and B) were ace-
tonitrile and water containing 0.1% formic acid, separately.
�e gradient elution program with a 0.5mL/min ®ow rate

was as follows: 15%-15%A (0–2min); 15–30%A (2–15min);
30–95% A (15–25min); 95–15% A (25–27min); and 15–15%
A (27–35min). �e injection volume was 10 µL.

A Q-Orbitrap-MS/MS via an ESI source in the negative
ion mode. For the ESI source, sheath gas ®ow of 35 Arb, aux
gas ®ow of 10 Arb, sweep gas ®ow of 1 Arb, capillary voltage
of −3.5 kV, and capillary temperature of 350°C. A full MS
data were scanned with m/z 150–2000Da, 70,000 resolution,
automatic gain control (AGC) target, 1× 106, and maximum
injection time (IT), 100ms. �e dd-MS2 was scanned with
17,000 resolution, AGC target, 1× 105, IT, 50ms, loop count
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Figure 3: �e MS/MS spectrum of ginsenosides in the negative ion mode: (a) Rg1; (b) Rb1; (c) Ro; (d) M-Rb1; (e) PF11.
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5, isolation window 4.0m/z, and NCE, 25–55. -en, a Full-
MS/dd-MS2 mode was used for analysis.

2.5. Data Analysis. -e data were processed by SIEVE 2.1
(-ermo Fisher, San Jose, CA, USA).-en, the datasets were
multivariate analyzed by SIMCA-P software 11.5 (Umetrics,
Umea, Sweden). -e components with VIP values larger

than 1 and p< 0.05 were selected as analytical markers in the
OPLS-DA model and the t-test by SPSS 19.0 (Chicago, IL,
USA), separately.

3. Result and Discussion

3.1. Analysis of-ree ProcessedAmericanGinseng Products by
UHPLC-Q-Orbitrap-MS/MS. -e method of UHPLC-Q-

Table 1: Compounds identified from American ginseng by natural drying, steam drying, and vacuum freeze-drying.

No. Rt (min) Identification Formula Detected mass (Da) Mass error (ppm)
1 5.67 Vina-ginsenoside R4 C48H82O19 1007.5457a 2.5
2 9.04 Notoginsenoside R1 C47H80O18 977.5346a 1.9
3 10.03 Ginsenoside Rg1 C42H72O14 845.4914a 1.2
4 10.41 Ginsenoside Re C48H82O18 991.5504a 2.1
5 10.73 24 (S)-pseudo-ginsenoside F11 C42H72O14 845.4922a 2.1
6 11.45 Malonyl-ginsenoside Rg1 C45H74O17 885.4867b 1.6
7 11.51 Malonyl-ginsenoside Re C51H84O21 1031.5457b 2.4
8 12.69 20 (S)-notoginsenoside R2 C41H70O13 815.4819a 2.6
9 13.47 Ginsenoside F5 C41H70O13 815.4814a 2.0
10 13.85 Acetyl-Rg1 C44H74O15 887.5024a 1.6
11 14.80 Pseudo-RT2 C41H70O14 785.4661b 4.1
12 15.26 24 (R)-pseudo-ginsenoside F11 C42H72O14 845.4918a 1.6
13 15.72 Notoginsenoside R4/Ginsenoside Ra3 C59H100O27 1285.6464a 1.6
14 16.46 Ginsenoside Rh1 C36H62O9 683.4391a 2.2
15 16.61 20 (S)-ginsenoside Rg2 C42H72O13 829.4971a 1.9
16 16.89 20 (R)-ginsenoside Rg2 C42H72O13 829.4974a 2.3
17 17.01 Ginsenoside Rb1 C54H92O23 1153.603a 1.6
18 17.06 Malonyl-ginsenoside Rb1/Isomer C57H94O26 1193.5983b 1.8
19 17.13 Ginsenoside Rc C53H90O22 1123.5920a 1.2
20 17.20 Ginsenoside Ro C48H76O19 955.4933b 2.6
21 17.27 Malonyl-ginsenoside Rc C56H92O25 1163.5883b 2.4
22 17.29 Malonyl-ginsenoside Rb2 C56H92O25 1163.5892b 3.2
23 17.36 Ginsenoside Rb2 C53H90O22 1123.5923b 1.5
24 17.59 Ginsenoside Rb3 C53H90O22 1123.5924a 1.6
25 17.66 Malonyl-ginsenoside Rb3 C56H92O25 1163.5878b 2.0
26 17.73 Pseudo-RT1 C47H74O18 971.4800a 5.9
27 17.84 Ginsenoside Rd C48H82O18 991.5506a 2.3
28 18.07 Chikusetsusaponin IVa C42H66O14 793.4396b 2.0
29 18.10 Malonyl-ginsenoside Rd C51H84O21 1031.5458b 2.5
30 18.14 Gypenoside XVII C48H82O18 991.5502a 1.9
31 18.40 Pseudo-RC1 C50H48O19 1033.5521a 6.6
32 18.63 Quinquefolium III C50H48O19 1033.5529a 5.8
33 18.80 Ginsenoside Rg6 C42H70O12 811.4810a 4.8
34 18.90 Ginsenoside Rg4 C42H70O12 811.4807a 5.2
35 19.24 Ginsenoside F2 C42H72O13 829.4971a 1.9
36 19.58 20 (S)-ginsenoside Rg3 C42H72O13 829.4976a 2.5
37 19.63 Ginsenoside Rk3 C36H60O8 665.4231a 5.9
38 19.79 Ginsenoside Rh4 C36H60O8 665.4233a 5.6
39 20.01 Zingibroside R1 C42H66O14 839.4382a 5.1
40 20.27 20 (R)-ginsenoside Rg3 C42H72O13 829.4982a 3.3
41 20.34 20 (S)-ginsenoside Rs3 C44H74O14 871.5015a 5.3
42 20.60 Calenduloside E C36H56O9 677.3869a 5.5
43 20.68 20 (R)-ginsenoside Rs3 C44H74O14 871.5014a 5.3
44 20.88 Ginsenoside Rk1 C42H70O12 811.4859a 1.2
45 20.92 Ginsenoside Rg5 C42H70O12 811.4868a 2.3
46 21.19 20 (S)-ginsenoside Rh2 C36H62O8 667.4391a 5.4
47 21.42 20 (R)-ginsenoside Rh2 C36H62O8 667.4393a 5.1
48 21.62 Ginsenoside Rs5 C44H72O13 853.4913a 4.7
49 21.85 Ginsenoside Rs4 C44H72O13 853.4913a 4.7
50 23.18 Ginsenoside Rk2 C36H60O7 649.4276a 6.9
51 23.33 Ginsenoside Rh3 C36H60O7 649.4294a 4.2
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Orbitrap-MS/MS was applied for determination [23, 37, 38].
�e identi�cation of the extracts of ND, SD, and VFD
samples in the negative ion mode is shown in Figure 2. �e
compounds were separated distinctly in 30min by UPLC.
�e distinct samples of several peaks demonstrated the
di�erent intensities at 15–25min. �e ratio of Rg1 and Re
was changed with steaming treatment, and the content of
Rg1 in SD samples was signi�cantly decreased at 10min.
Meanwhile, the content of minor ginsenosides was increased
at 18–22min. A slice of studies performed showed that the
major ginsenosides (Re and Rg1) were converted to minor
ginsenosides (Rh4, Rk1, Rk3, 20 (S)-Rg3, Rg5, and 20 (R)-Rg3)
by heat treatment [39]. �e content of malonyl-ginsenosides
in VFD samples was higher than in SD samples.�ese results
demonstrated the change in ginsenoside composition of ND,
SD, and VFD samples.

�e Q-Orbitrap-MS accurately measured the com-
pounds’ mass values [24]. Meanwhile, the fragmentation
pattern of standards was compared to identi�ed ginseno-
sides from three processed American ginseng products.

�e full-scan MS was used to con�rm the molecular
weight. Ginsenosides were easily ionized into [M −H]− and
[M+HCOO]− ions in the negative ion mode. All molecular
ions were unambiguously identi�ed within the mass ac-
curacy of 10 ppm. �e di�erent tandem MS spectra of the
various aglycone types are shown in Figure 3. In
Figure 3(a), fragment ion at m/z 475 indicated the suc-
cessive losses of two glucose residues. In Figure 3(b), the
successive losses of four glucose residues were observed
from fragment ion at m/z 459. �e losses of two glucose
residues and a β-d-glucuronic acid (176Da) were observed
from fragment ion at m/z 455 in Figure 3(c). In Figure 3(d),
the loss of a malonyl residue was observed from malonyl-
ginsenoside at m/z 1107, and the fragment ion at m/z 459
was similarly produced by successive loss of four glucose
residues. In Figure 3(e), the loss of a rhamnose residue
(146Da) was observed from fragment ion at m/z 653. In
total, 51 ginsenosides were identi�ed from ND, SD, and
VFD by comparing standards and literature records of the
tandem MS spectra (Table 1).
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Figure 4: �e OPLS-DA/S-plot of ND vs. SD, ND vs. VFD, and SD vs. VFD.
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a[M + COOH]− ;
b[M −H]− .

(1)

3.2.Multivariate Statistical Analysis. �e statistical methods
were applied to display the di�erences in ginsenosides in-
tuitively. After data preprocessing of the ND, SD, and VFD
samples, the dataset was conducted to discover the marker
compound by multivariate statistical analysis.

�e distinct ginsenoside composition of samples from
ND, SD, and VFD was characterized in detail. �e OPLS-DA
model was e�ectively used to observe three processed
American ginseng products (Figure 4). An excellent pre-
diction ability was considered to the parameters of SD vs. ND
(R2 Y� 0.865, Q2� 0.999), VFD vs. ND (R2 Y� 0.822,
Q2� 0.998), and VFD vs. SD (R2 Y� 0.848, Q2�1).�e score
plot was used to discriminate between the groups of two
selected samples (ND vs. SD, ND vs. VFD, and SD vs. VFD).
�e samples of ND were compared to the other samples by
OPLS-DA, separately. By comparing the S-plot of ND and SD,
the components observed from the lower left quadrant and
the upper right quadrant were elevated in SD and ND,

respectively (Figure 4(b)). �e marker components were el-
evated in SD (20(S)-Rg3, 20(S)-Rg2, and an unknown
compound) and ND (malonyl (M)-Rb1, M-Rd). Four com-
ponents (20(S)-Rg3, 20(S)-Rg2, M-Rb1, and M-Rd) were
identi�ed as marker compounds in SD and ND. By com-
paring the S-plot of ND and VFD, it was performed that four
unknown compounds and two compounds (M-Rb1, Rg1)
were elevated in VFD and ND, respectively (Figure 4(d)). �e
ginsenosides of M-Rb1 and Rg1 were identi�ed as marker
compounds in ND and VFD. By comparing SD and VFD, it
was performed that two malonyl-ginsenosides (M-Rd,
M-Rb1) and three compounds (20(S)-Rg3, 20(S)-Rg2, and an
unknown compound) were elevated in VFD and SD, re-
spectively (Figure 4(f)). Four ginsenosides of M-Rd, M-Rb1,
20(S)-Rg3, and 20(S)-Rg2 were identi�ed as marker com-
pounds in VFD and SD. �e repeated emergence of marker
compounds was in di�erent groups, including the SD group
(20(S)-Rg3 and 20(S)-Rg2) and the ND group (M-Rb1).
Meanwhile, the marker compounds could display various
pharmacological activities such as antitumor (20(S)-Rg3)
[40], against cardiocerebrovascular diseases (20(S)-Rg2) and
a�ect the central nervous system (M-Rb1) [41, 42].
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-e VIP value was used to select the marker compounds
[29]. -e features with VIP values larger than 1 were
highlighted as marker candidates. -e compounds with the
statistically significant difference (p< 0.05) were screened
for marker compounds by ANOVA. To visualize the ten-
dency of marker compounds, the intensities of 22 marker
compounds were constructed as a heat map. -e compo-
sition change was shown in different colors by the ND group,
the SD group, and the VFD group (Figure 5). Between the
SD and ND groups, the contents of ginsenoside-Rb1, -Rh1,
-Rg3, -Rg2, -Rg4, -Rh4, –F2, and -Rg5 in SD samples were
increased, and the contents of malonyl-ginsenoside-Rg1,
-Re, -Rc, -Rb1, -Rb2, -Rd, and ginsenoside-Re, -Rc, -Rg1,
-Rb3, -Rd, -Ro, 20-(S)-PF11, and 20-(R)-PF11 in ND samples
were significantly higher. Comparing the groups of ND and
VFD, the contents of malonyl-ginsenoside-Rg1, -Re, -Rc,
-Rb1, -Rb2, and -Rd in the VFD group were significantly
increased. Meanwhile, the contents of ginsenoside-Re, -Rc,
-Rg1, -Rb3, -Ro, -Rd, 20-(S)-PF11, and 20-(R)-PF11 in the ND
samples were significantly increased. -e malonyl residue of
malonyl-ginsenoside in ND and VFD was well preserved
without heating treatment. Similar to ginseng, it was observed
that the content of malonyl-ginsenosides in American ginseng
was increased by a vacuum freeze-drying approach [11]. -e
thermal sensitivities of malonyl-ginsenosides were less affected
by the vacuum freeze-drying technology.

-e malonyl-ginsenoside of chemical transformation is
related to heat and pressure treatment [24]. Meanwhile, the
alteration of three processed American ginseng products is
possibly related to the degree of enzymatic activity, moisture,
and microstructure [43]. -e content of moisture can result
in a rapid transformation by promoting corresponding
microbiological growth, enzymatic and nonenzymatic re-
actions in American ginseng. -e active compounds are
cleaved by enzymes with steam and high temperatures [9,
44]. As a result, the content of ginsenoside Rb1 in SD samples
was higher than in VFD and ND samples. -e content of
ginsenoside Rg1 in ND and VFD samples was higher than in
SD samples; it probably converted into 20(S)-Rg3, 20(R)-
Rg3, Rk1, and Rg5 by heat treatment [39]. Malonyl-ginse-
nosides in VFD and ND samples were higher than in SD
samples, and they were probably converted into malonic
acid through decarboxylation by heat treatment. In sum-
mary, these factors all lead to the transformation of ginse-
nosides in the three processed products. -e composition
and content of components in various processed products
can affect their pharmacological activity, and it is necessary
to elucidate the change of ginsenosides.

3.3. Quantification of Ginsenosides from -ree Processed
American Ginseng Products. -e 12 compounds’ EIC was
identified by the reference compounds in Figure S1 and
Table S1 (Supplementary material). -e standard curve was
used to determine the actual amount of the three processed
American ginseng products in Figure S2 and Table S2
(Supplementarymaterial).-e quantification was based on 12
ginsenosides for products (n� 3) and the amount of ginse-
nosides was calculated in Table S3 (Supplementary material).

Previously, Huang et al. has reported the 59 ginsenosides
of protopanaxadiol, the concentrations of ginsenosides Rk1,
Rg5, Rh1, 20(R)-ginsenoside Rg2, and 20(R)-ginsenoside Rg3
are highest in red American Ginseng, these results have been
matched to ours [10]. For ginsenosides analysis, the content
of ginsenosides Rg1, Re, Rb1, Rc, Rd, and 24(R)-pseudo-
ginsenoside F11 is the highest in ND. As our results, the
concentrations of ginsenosides Rg1, Re, Rb1, Rc, Rd, and
24(R)-pseudo-ginsenoside F11 are highest in ND, and this is
matched to another paper [18]. Ginsenoside Rh1 is not
detected in ND and VFD.

4. Conclusions

A successful method was performed for the chemical
components of three processed American ginseng products
using UHPLC-Q-Orbitrap-MS/MS. -e 5 ginsenosides as
characteristic marker compounds could be applied to elu-
cidate the composition of ND, SD, and VFD samples by
multivariate statistical analysis. -e results will be useful to
visualize the tendency of marker compounds in
manufacturing. Furthermore, this study effectively provided
a means for assessing and controlling different processed
American ginseng products.
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