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Glycogen synthase kinase-3 (GSK-3) regulates multiple cellular processes, and its dysregulation is implicated in the pathogenesis
of diverse diseases. In this paper we will focus on the dysfunction of GSK-3 in Alzheimer’s disease and Parkinson’s disease.
Specifically, GSK-3 is known to interact with tau, β-amyloid (Aβ), and α-synuclein, and as such may be crucially involved in both
diseases. Aβ production, for example, is regulated by GSK-3, and its toxicity is mediated by GSK-induced tau phosphorylation
and degeneration. α-synuclein is a substrate for GSK-3 and GSK-3 inhibition protects against Parkinsonian toxins. Lithium,
a GSK-3 inhibitor, has also been shown to affect tau, Aβ, and α-synuclein in cell culture, and transgenic animal models.
Thus, understanding the role of GSK-3 in neurodegenerative diseases will enhance our understanding of the basic mechanisms
underlying the pathogenesis of these disorders and also facilitate the identification of new therapeutic avenues.

1. Introduction: GSK-3 Isoforms, Expression,
and Neuronal Regulation

Glycogen synthase kinase-3 (GSK-3) is a cellular ser-
ine/threonine protein kinase [1, 2], belonging to the glycogen
synthase kinase family [1]. It is involved in a number of
cellular processes, including the division, proliferation,
differentiation, and adhesion of cells [3]. Dysfunction of
GSK-3 is implicated in diverse human diseases, including
Alzheimer’s disease (AD), Parkinson’s Disease (PD), type
2 diabetes, bipolar disorder (BPD), and cancer [3, 4]. Two
isoforms of GSK-3 have been identified, namely, GSK-3α
and GSK-3β, which although encoded by different genes are
similarly regulated [5]. GSK-3α (51 kDa) differs to GSK-3β
(47 kDa) in that the former has a glycine-rich extension at
the amino-terminal end of the protein [5]. Both isoforms
are ubiquitously expressed throughout the brain, with high
levels of expression seen in the hippocampus, cerebral cortex,
and the Purkinje cells of the cerebellum [6]. The expression
ratio of these isoforms, however, favors GSK-3β [6, 7].

The crystal structure of GSK-3β reveals a catalytically
active dimer [8] conformation that progressively phos-
phorylates substrates with Ser/Thr pentad repeats [9].

Despite having disparate sequences, the isoforms have a
conserved functional domain and share similar substrates,
while remaining pharmacologically distinguishable [3]. The
independent deletion of GSK-3 isoforms in mice resulted in a
distinct profile of substrate phosphorylation [10], suggesting
different functions of GSK-3 isoforms in the brain.

The activity of GSK-3 is dependent on phosphorylation
at specific sites; phosphorylation of Ser9 of GSK-3β, or Ser21
of GSK-3α, inhibits activity [9], whereas phosphorylation
of Tyr216 on GSK-3β and Tyr279 on GSK-3α increases
activity [3]. It is thought that deactivation of GSK-3 has more
influence on activity rather than activation, as the enzyme
is constitutively active and the activation sites can undergo
autophosphorylation [11].

The most well-studied GSK-3 regulation pathway is
through Akt activation. Insulin stimulation, for example, can
activate phosphatidylinositol 3-kinase (PI3K), which phos-
phorylates Akt (protein kinase B) and in turn inhibits
GSK-3 [12–15]. A brief exposure to insulin, however, can
also transiently activate GSK-3β by phosphorylating Tyr216
through Fyn, a nonreceptor tyrosine kinase [13]. Other
kinases, such as protein kinase C (PKC), inhibit GSK-3
activity by phosphorylating Ser9 [14, 16, 17]. The inhibition
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by PKC is additive to the inhibition by PI3K [14]. Addition-
ally, within the brain, p38 mitogen-activated protein kinase
(MAPK) inactivates GSK-3β by direct phosphorylation at its
C-terminus [18].

Dephosphorylation of GSK-3 at inhibitory sites (thus
activating the protein), is coordinated by protein phos-
phatase 1 (PP1), protein phosphatase 2A (PP2A), and
protein phosphatase 2B (PP2B, calcineurin) [19–21]. PP1
preferentially acts as a phosphatase for GSK-3β, while PP2A
favors GSK-3α [19]. On the other hand, the overexpression
of GSK-3β inhibits PP2A, which may serve as a negative
feedback mechanism for GSK-3β activity [22]. GSK-3 and
its complex regulatory mechanisms have been extensively
studied in a number of neurodegenerative diseases as
outlined below.

2. GSK-3 in AD and Tauopathies

Alzheimer’s disease is characterized by the accumulation of
extracellular senile plaques and intracellular neurofibrillary
tangles (NFTs) within the brain (for a review, see [23]). The
major component of the plaques, which was first purified
and identified from AD brains in the 1980s [24] and later
shown to be a product of normal cellular metabolism [25],
is β-amyloid (Aβ). Aβ is proteolytically processed from
the amyloid precursor protein (APP) [26] via cleavage at
the β-secretase site by BACE1 [27], followed by γ-secretase
cleavage by presenilin (PS) [28]. The key component of the
NFTs on the other hand, is the tau protein [29–31], which
was originally identified as an intracellular microtubule
stabilizer [32]. Both Aβ and tau are, therefore, fundamentally
involved in driving the pathogenesis of AD. With respect
to this paper then, it is of note that both these proteins
may be modulated by GSK-3. The most well-characterised
interactions, however, occur with tau.

2.1. Tau. GSK-3 is one of the main kinases involved in
the phosphorylation of tau, a process that is crucial to the
function of the protein. The normal phosphorylation of
tau determines its affinity for microtubule binding [29, 33–
35], with pathological hyperphosphorylation resulting in the
dissociation of tau from microtubules and subsequent aggre-
gation to form NFTs (for a review, see [36]). GSK-3β has
been found to be associated with normal microtubule-bound
tau [37] as well as with the hyperphosphorylated tau deposits
in the AD brain [38, 39]. There are several lines of evidence
that support a direct functional link between tau phosphory-
lation and GSK-3. For example, in vitro and in cell culture
models, both GSK-3α and GSK-3β can phosphorylate tau
at various sites that are consistent with the epitopes found
to be hyperphosphorylated in AD brains [40–45]. The over-
expression of GSK-3β in animal models also promotes the
phosphorylation of tau, implicating it as an in vivo tau kinase
[46–49]. Conversely, the inhibition of GSK-3β activity by
either GSK-3 inhibitors or upstream Akt inhibitors reduces
tau phosphorylation [50–58]. GSK-3β thus affects tau func-
tion through interfering with tau phosphorylation, thereby
disrupting microtubule stability [59, 60], self-assembly of
microtubules [61, 62], the microtubule-dependent cell

processes [63], and regulation of organelle transport and
axonal transportation [64–66]. Interestingly, the overexpres-
sion of tau also increased GSK-3β activity, which perpetuated
the phosphorylation of tau [67].

In addition to effects on phosphorylation, the activa-
tion of GSK-3β may also facilitate the aggregation of tau
[68–71]. Furthermore, the in vivo overexpression of GSK-3β
accelerates tau-induced neurodegeneration [47, 49, 71, 72],
while the inhibition of its activity reduces tau toxicity [73–
75]. Conversely, in the absence of tau, the neurodegenerative
and cognitive phenotype observed in GSK3-overexpresing
mice is ameliorated, suggesting that tau may mediate GSK-
3β toxicity [76]. In addition, GSK-3 may regulate tau-mRNA
splicing [77] and expression [78] by disrupting transcription
[79].

2.2. β-Amyloid. Accumulating evidence suggests that GSK-
3 interferes with the biology of Aβ, which is believed to
be upstream of tau in the pathogenesis of AD [23]. Aβ
accelerates tau pathology [80, 81] and promotes tau phos-
phorylation by several mechanisms, including activation of
GSK-3β [82–84]. The use of Aβ antibodies both in vitro and
in vivo decreases GSK-3 activity, supporting the interaction
between Aβ and GSK-3 [85]. It has also been shown that
the activation of GSK by Aβ in primary hippocampal
cultures is specific to GSK-3β [86], and that the inhibition
of GSK-3β prevents Aβ-induced toxicity to neurons [82,
84, 87, 88]. Likewise, although both isoforms of GSK-3 are
hyperactivated in transgenic mice expressing mutant APP
(V717I) [89], the data from this model together with that
from a model expressing the intracellular domain of APP
[90] firmly support the notion that it is the activation of
GSK-3β by amyloid that results in downstream pathological
effects on tau. The Aβ-induced activation of GSK-3 also only
needs to be transient to result in tau hyperphosphorylation
and other effects such as mitochondrial trafficking impair-
ments [91]. Finally, tau null mice are protected against Aβ-
induced toxicity [92, 93] and GSK-induced toxicity [76],
which taken together with the discussed data highlight the
complex interaction between GSK, Aβ, and tau. This is
further complicated by the fact that GSK-3 is involved in APP
processing and subsequent Aβ production.

The amyloid precursor protein and PS1 are substrates of
GSK-3 [94–98], and GSK-3α is thought to regulate Aβ pro-
duction by interfering with APP cleavage at the γ-secretase
step [99]. Co-overexpression of GSK-3α and APP in CHO
cells increased the level of Aβ in a dose-dependent manner,
while selective reduction of GSK-3α protein expression by
RNAi decreased Aβ levels [99]. Although Phiel et al. [99]
showed an opposite role of GSK-3β in their study, GSK-
3β was later shown to decrease Aβ levels by an unknown
pathway [100]. Nevertheless, the genetic or pharmacological
deactivation of GSK-3 reduces Aβ and its associated toxicity,
ameliorates Aβ-induced behavioral deficits, and rescues
neuronal loss in APP-overexpressing mouse models [101–
103], thus strongly implicating GSK-3 in the pathogenesis of
AD.
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3. GSK-3 in Parkinson’s Disease

Parkinson’s disease is characterized by dopaminergic neuron
degeneration in the substantia nigra pars compacta (SNpc)
with Lewy body (LB) pathology, accompanied by clinically
defined parkinsonism [104]. As there is a potential role of
tau emerging in PD [105–107], then the function of GSK-3
in PD has also thus been investigated. The examination of
postmortem tissue from PD patients has revealed that GSK-
3β, phosphorylated at Ser9, is specifically localised within the
halo of LBs [108] and that GSK-3β activity is also elevated in
the striatum [109]. This latter finding has been recapitulated
in mouse models of PD [110]. Increased GSK-3 levels have
also been reported in peripheral blood lymphocytes in PD
patients [111], and polymorphisms in GSK-3β, which affect
its transcription and splicing, are also associated with disease
risk in PD when stratifying by tau haplotype [112, 113].

Mechanistically there is evidence to support an inter-
action between α-synuclein, a 16 kDa natively unstructured
protein that is fundamentally involved in the pathogenesis of
PD, and GSK. Aggregated α-synuclein species are the main
component of LBs and single nucleotide polymorphisms
and duplication or triplication of the α-synuclein gene
cause familial Parkinsonian degeneration [104]. α-synuclein,
which is a substrate for GSK-3β phosphorylation, may
also modulate the activation of GSK-3β [114]; GSK-3β
phosphorylation at Tyr216 (which activates GSK-3 activity)
is also abolished in cells lacking α-synuclein and in α-
synuclein knockout mice [110]. The potential role of GSK-
3β in PD has been elucidated in the 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP) model of PD, where the
inhibition of GSK-3β protects against MPTP toxicity in vitro
and in vivo [56, 110, 115] and decreases α-synuclein protein
expression [56]. Taken together, these data strongly implicate
GSK-3 in the pathogenesis of PD. The neuroprotective
possibilities of GSK-3 inhibition on Aβ, tau and α-synuclein
pathology have thus been explored in depth, most extensively
with lithium.

4. Lithium: A GSK-3 Inhibitor

Lithium, a monovalent cation, affects multiple cellular
processes in model organisms and humans (for a review, see
[116]). Importantly, it has been used as a mood stabilizer
and primary therapy for BPD since its discovery by Cade
in 1949 [117]. Although effective in many cases, lithium
exhibits a narrow therapeutic window, and side effects may
occur within the therapeutic dose range [118]. Lithium is
suggested to have several molecular targets in BPD, one
leading mechanism of action is the inhibition of GSK-3
[116].

Haplo-insufficiency of GSK-3β mimics behavioral and
molecular effects of lithium [119], while GSK-3β over-
expression mimics mania and hyperactivity in a mouse
model [120], supporting GSK-3β as a relevant target of
lithium action [121]. With an inhibitory Ki of 2 mM [121],
lithium inhibits both GSK-3α and GSK-3β directly through
competitive inhibition of Mg2+ [122], and indirectly through
the modulation of post-translational modifications of GSK-3

[123, 124] in a number of species [125]. Lithium is selective
for GSK-3α and GSK-3β and does not inhibit other protein
kinases tested in vitro and in vivo, including casein kinase II,
protein kinase A and C, MAPK, and CDK5 [121, 126]. When
utilized at therapeutic concentrations in various cell culture
models, lithium reduces tau phosphorylation [53, 127–129]
and the processing of APP to generate Aβ [99, 130, 131],
suggesting that lithium may have important implications in
both AD and BPD. However, some of these findings have
been disputed, with lithium shown to increase β-secretase
activity and to subsequently elevate extracellular Aβ levels
in CHO cells and rat cortical neurons [132]. In this case,
the activity of γ-secretase was unaltered, suggesting that the
lithium-induced elevation of Aβ was independent of GSK-
3 inhibition [132]. In addition, lithium treatment has been
shown to reduce tau protein and mRNA levels in cultured
cortical neurons [79].

Nevertheless, lithium has been assessed for its potential
efficacy in treating “AD-like” pathology in vivo. In wild-type
rats, lithium has been shown to reduce tau phosphorylation
and inhibit GSK-3 activity [133] and to also enhance spatial
memory [134, 135]. Using transgenic animals characterised
by progressive Aβ deposition, lithium treatment has been
consistently found to decrease Aβ levels and APP phos-
phorylation, as well as to reduce GSK-3 activity and tau
phosphorylation [99, 101, 136–138]. In contrast to previous
cell culture studies, however, β-secretase activity has been
unaffected [101, 132]. Lithium treatment has also been
shown to prevent Aβ toxicity [136], preserve dendritic
structure [101], facilitate neurogenesis [138], and rescue Aβ-
induced cognitive impairment [101, 137, 138].

Less clear, however, is the efficacy of lithium against
tau-mediated degeneration. Mice that overexpress disease-
linked tau exhibit reduced tau phosphorylation with lithium
treatment [55, 73–75, 139]. In addition, tau transgenic
models have attenuated axonal degeneration with lithium
treatment [55], but no motor or working memory recovery
[139]. Lithium-treated 3XTg mice (harbouring both tau
and Aβ pathology) have reduced GSK-3 activity and tau
phosphorylation, but no change in Aβ levels or working
memory [126]. However, in accordance with cell culture
studies [53, 127–129] GSK-3 activity remained the same in a
long-term (5 months) lithium trial [74], possibly suggesting
that the protection offered by lithium is GSK-3 independent.
The authors [74] alternatively suggested that lithium reduced
the tau lesion primarily by promoting its ubiquitination and
degradation rather than by inhibiting its phosphorylation
through GSK-3.

While these in vitro and in vivo studies reveal a beneficial
effect of lithium on tau and Aβ pathology, a number
of observational studies and case reports have provided
conflicting evidence, with both positive [140–144] and
negative outcomes [145, 146] on dementia reported. Despite
this, lithium has recently been evaluated as a therapy for
AD in a 10-week multicenter, randomized, single-blind, and
placebo-controlled trial [147]. GSK-3 activity was monitored
in lymphocytes at 1-2 week intervals, total and phospho-
rylated tau levels were assessed in the CSF, and Aβ(1−42)

levels were assessed in the CSF and plasma at the end of
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treatment. Cognitive function was assessed using the Mini-
Mental State Examination (MMSE), the Alzheimer’s disease
Assessment Scale-Cognitive subscale (ADAS-Cog) and the
Neuropsychiatric Inventory (NPI). The study concluded that
lithium was not an effective therapeutic for AD, as there were
no significant effects on any of the endpoint measurements.
A post-hoc examination on a subset of individuals did,
however, reveal an increase in serum BDNF that was inversely
correlated with decreased ADAS-Cog sum scores [148].
Further long-term studies are required to determine the
safety and efficiency of lithium or other GSK-3 inhibitors for
the treatment of AD.

In pursuit of GSK-3 regulation in PD, lithium has also
been tested in animal models of this disease. The data,
however, are not conclusive, with lithium shown to both
protect against the dopamine depletion resulting from MPTP
toxicity [149] and to also cause a decrease in brain dopamine
(DA) release [150] that leads to deficits in DA levels
[151]. Furthermore, lithium treatment does not prevent
dopaminergic neuron loss in the related 6-OHDA model
of PD [152]. There is, therefore, currently little evidence to
support lithium as a treatment strategy for PD. The data
on the use of lithium in other human neurodegenerative
diseases is also not compelling.

Lithium, for example, has also been investigated as a
therapy for one of the motor-neuron diseases, amyotrophic
lateral sclerosis (ALS), despite the lack of an established
connection with GSK-3. Although lithium was found to
delay disease onset and to reduce neurological deficits in
both ALS mouse models and a small human trial [153, 154],
other mouse and human trials have shown detrimental
effects [155, 156]. The potential utility of lithium in ALS, or
indeed in any of the neurodegenerative disorders outlined
above, remains unclear. It is likely that lithium has other
activities, independent of GSK-3, that may mediate its
pharmacodynamics.

5. Concluding Remarks

We have summarized the latest knowledge regarding GSK-
3 and its involvement in neurodegenerative diseases such
as AD and PD. Although extensive research has been
undertaken in the last decade, the role of GSK-3 in disease
pathogenesis has yet to be fully elucidated. The inhibition
of GSK-3 may be a potential target for AD, since it has
regulatory effects on both Aβ and tau. Similarly, GSK-
3 inhibition could interact with α-synuclein to affect the
pathogenesis of PD. The intriguing preclinical data, however,
has yet to be translated into an effective pharmacotherapy for
neurodegeneration, perhaps in part owing to the complex
regulation of GSK and its activity on multiple substrates.
Future endeavors should investigate alternative modulators
of GSK-3 and annotate more precise mechanisms of how the
isoforms of GSK-3 participate in neurodegeneration.
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