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Amyloid proteins constitute a chemically heterogeneous group of proteins, which share some biophysical and biological
characteristics, the principal of which are the high propensity to acquire an incorrect folding and the tendency to aggregate. A
number of diseases are associated with misfolding and aggregation of proteins, although only in some of them—most notably
Alzheimer’s disease (AD) and transmissible spongiform encephalopathies (TSEs)—a pathogenetic link with misfolded proteins is
now widely recognized. Lipid rafts (LRs) have been involved in the pathophysiology of diseases associated with protein misfolding
at several levels, including aggregation of misfolded proteins, amyloidogenic processing, and neurotoxicity. Among the pathogenic
misfolded proteins, the AD-related protein amyloid β (Aβ) is by far the most studied protein, and a large body of evidence has been
gathered on the role played by LRs in Aβ pathogenicity. However, significant amount of data has also been collected for several
other amyloid proteins, so that their ability to interact with LRs can be considered an additional, shared feature characterizing the
amyloid protein family. In this paper, we will review the evidence on the role of LRs in the neurotoxicity of huntingtin, α-synuclein,
prion protein, and calcitonin.

1. Introduction

Lipid Rafts (LRs) are highly dynamic, nanoscale domains of
the plasma membrane, enriched in cholesterol and sphin-
golipids (Figure 1). They were originally defined on the basis
of their resistance to solubilization in nonionic detergents,
which allows their separation and isolation from the rest of
the plasma membrane, using sucrose-density gradients [1].
Although their existence has initially been questioned [2, 3],
it is now generally agreed that LRs are special membrane
domains that act as platforms for the organization and
interaction of proteins [4]. They are involved in several
cell functions and play crucial roles in signal transduction,
phagocytosis, protein sorting, and cell polarity. Besides
the role in cell physiology, they are also involved in cell
pathology. For example, certain pathogens, such as viruses
and bacteria, as well as their toxins, interact with the host
cells through LRs [5, 6]. In the pathogenicity of amyloid

proteins, LRs have been implicated in amyloidogenesis, in the
process of protein aggregation, in the mechanisms of inter-
action between the cell membrane and amyloid proteins,
and in their neurotoxic effect. This paper will first provide
an overview on the principal milestones in the history
of amyloid proteins. After considering the mechanisms of
neurotoxicity of misfolded proteins, it will then focus on the
role played by LRs in the interaction between neuronal cells
and four amyloid proteins: huntingtin (htt), α-synuclein (α-
syn), prion protein (PrP), and calcitonin (CT).

2. The Amyloid Protein History:
Breakthrough Discoveries

The history of amyloid proteins has been for a long time,
with a few, though remarkable, exceptions, the history of
Aβ. Aβ was first isolated in 1984 from brain blood vessels
of AD patients and individuals with Down’s syndrome
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Figure 1: Schematic representation of an LR in the cell membrane, enriched in gangliosides and cholesterol. Glycosylated and non-
glycosylated transmembrane proteins and GPI-anchored proteins are also sketched.

[7, 8]. In 1985, Colin Masters identified Aβ as the principal
component of amyloid plaques, the hallmark of AD, and
in collaboration with Konrad Beyreuther identified the
amino acid composition, the molecular mass, and the NH2-
terminal sequence of the peptide [9]. In addition, they
recognized that the protein was identical to that described
for the amyloid deposited in the congophilic angiopathy of
AD and Down’s syndrome [9]. In the same year, the first
evidence was provided that prion proteins (PrP) assemble
into filaments within the brain to form amyloid plaques
into scrapie-infected hamsters [10]. The discovery of prions
dated back to 1982, when the Nobel Prize winner Stanley B.
Prusiner described them as novel proteinaceous infectious
agents causing scrapie [11]. At the beginning of the 1990s,
experiments on primary neuronal cultures showed that
aggregated Aβ peptides were neurotoxic in vitro, suggesting
a link between amyloid formation and neurodegeneration
[12]. Since then, primary hippocampal cell cultures have
been considered as an ideal cell culture model to study
neurotoxic properties of amyloid proteins. In the same years,
breakthrough discoveries on the genetics of AD (for a review,
see [13]) led to formulate “the Aβ cascade hypothesis.”
According to this theory, the 1–42 and 1–40 Aβ peptides,
deriving from the proteolytic cleavage of the amyloid β
precursor protein, operated by the β and γ secretases, are the
principal culprits in the development of AD [14, 15]. In the
1990s, the understanding of pathogenic mechanisms of AD
dramatically advanced due to the introduction of transgenic
animal models, which have provided invaluable insights into
several aspects of AD pathophysiology (for a review, see
[16]), although mice that precisely model all aspects of AD
are not yet available [17]. In the same years, studies on
other misfolded proteins started to accumulate. In 1993, the
HTT gene, associated with Huntington’s disease (HD), was
identified [18]. It was shown that, in the mutated htt protein,
a polyglutamine tract was abnormally expanded, leading
to high aggregation propensity. In 1997, Spillantini et al.
identified α-syn as the fibrillary component of Lewy bodies
(LBs) in Parkinson’s disease (PD) and dementia with LBs

[19]. In the same years, the first data suggesting a common
neurotoxic mechanism of all amyloid proteins were provided
[20]. Although aggregation was considered a critical process
in the pathogenicity of Aβ from the beginning, it was not
until the end of the 1990s that attention focused on the
role of amyloid oligomers more than amyloid fibrils [21].
These studies also identified in the synapse a special target
of soluble oligomer toxicity [22], providing a biological
explanation to the well-known clinical-pathological obser-
vation that dementia in AD has a good correlation with the
synapse loss, while the amyloid burden is a poor predictor of
cognitive decline [23, 24]. Furthermore, they demonstrated
that Aβ oligomers can impair long-term potentiation (LTP),
an experimental form of synaptic plasticity resulting in long-
lasting increase in the strength of synaptic transmission,
which is the electrophysiological counterpart of learning and
memory [25].

In the same period, attention shifted from the insoluble
amyloid fibrils to the soluble oligomeric aggregates also for
other amyloid proteins, which were found to be neurotoxic.
They included both disease-associated proteins, such as islet
amyloid polypeptide (IAPP), α-syn, PrP, and polyglutamine
[26], and non-disease-associated proteins, such as HypF-N,
a protein that is not associated with any amyloid disease
but displays an aggregation-prone behavior [27]. These
amyloid oligomers were found to form pores on model
membranes with ion channel properties [28], a mechanism
originally proposed for Aβ [29], and the induced Ca2+

dysregulation was proposed as a common pathogenetic
mechanism through which all amyloid proteins lead to
neurotoxicity [30].

One of the latest “coups de theatre” in the amyloid
history is the observation that PrPC is a high-affinity
cell-surface receptor for soluble Aβ oligomers on neu-
rons and is a mediator of Aβ oligomers-induced synap-
tic dysfunction [31]. This hypothesis, however, has been
challenged by several authors [32–34] and has become
a highly controversial issue, still far from being settled
[35].
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3. Amyloid Proteins: A Large Family
of Unrelated Proteins with Some
Shared Features

Though differing in the amino acid sequences, amyloid pro-
teins share the tendency to adopt an incorrect conformation
(protein misfolding) and the propensity to aggregate. Until
recently, there was a general agreement on the idea that
only a limited number of proteins can undergo aggregation.
However, it has been recently shown that the characteristics
that enable a protein to become amyloid are present in
almost all complex proteins and that the number of amyloid
proteins is limited because the region promoting aggregation
is generally hidden [36].

The process of aggregation is complex, depending on
characteristics intrinsic to the protein and to environmental
conditions and proceeds through several organization states,
including dimers, trimers, tetramers, low molecular weight
prefibrillar oligomers, and linear or annular protofibrils,
to reach the final insoluble fibrillar structure, rich in β
sheets. The term “amyloid” should more correctly refer
to the mature fibrils, which deposit in tissues and are
characterized by Congo red and Thioflavin T positivity. In
some diseases, such as systemic amyloidosis, these deposits
have a pathogenetic role, and the disease is caused by the
deposition of mature fibrils. In neurodegenerative conditions
associated with protein misfolding, however, it is now gen-
erally agreed that the pathogenic forms are not the mature
fibrils but the intermediate, soluble oligomeric aggregates
[21, 25, 37]. Oligomers of different amyloid proteins have
a remarkable structural similarity, evident at Transmission
Electron Microscopy (TEM) and Atomic Force Microscopy
(AFM), showing an annular morphology with sizes ranging
from 8 to 12 nm, a morphology sustaining the amyloid pore
hypothesis (see below). In addition, conformation-specific
antibodies have been raised, which cross-react with a number
of chemically unrelated misfolded proteins, recognizing
generic epitopes exposed in similar folding states of the
different proteins [38].

Among the shared features, we believe that three char-
acteristics deserve special attention: oligomeric aggregate
pathogenicity, synaptotoxicity, and propagation of protein
misfolding.

3.1. Pathogenicity of Oligomeric Aggregates. Besides AD, a
role for pathogenic oligomeric amyloid species has been
suggested for other protein misfolding diseases, most notably
for PD, HD, and PrP diseases.

PD is the second most common neurodegenerative dis-
ease affecting aging populations, after AD. The characteristic
symptoms of PD include rigidity, resting tremor, postural
instability, and bradykinesia. The disease characteristically
affects the substantia nigra, where dopaminergic neurons
accumulate proteinaceous aggregates, referred to as LBs and
degenerate. The majority of patients suffering from PD have
a sporadic form of the disease, apparently with no genetic
cause, while 5–10% of patients have mutations in a series of
genes referred to as the PARK genes [39]. Among the proteins
encoded by these genes, α-syn has been the object of consid-

erable interest, since it constitutes the principal component
of LBs [19]. Intracellular, α-syn-positive inclusions are also
present in dementia with LBs and multiple system atrophy,
which, together with PD, are collectively referred to as synu-
cleinopathies [19]. α-syn shows a distinctive propensity to
aggregate, a phenomenon associated with a conformational
change from random coiled to predominantly β-pleated
sheet [40, 41]. This characteristic is enhanced when α-syn is
mutated or overexpressed, as in some familiar forms of PD
and has been correlated to the pathogenesis of the disease
[41, 42]. It is assumed that the aggregation process proceeds
through progressive stages, from monomers, through par-
tially folded intermediates, up to mature fibrils. As for Aβ,
increasing evidence suggests that prefibrillar oligomers and
protofibrils, rather than mature fibrils, are the pathogenic
species in PD [41, 43]. Two mutations in the α-syn gene,
linked to autosomal dominant early-onset PD, have been
described to promote the formation of transient protofibrils
at a higher rate than wild-type α-syn [42], although both
wild-type and mutant α-syn have been shown to form pore-
like structures in synthetic vesicles and model membranes
[28, 44, 45]. The pore formation, inducing disruption of cel-
lular ion homeostasis, may be responsible for the neurotoxic
effect [44]. Although the question is still open [46], data
obtained in three established model systems for PD, such as
mammalian neurons, the nematode Caenorhabditis elegans,
and Drosophila melanogaster, show a strong correlation
between α-syn aggregates with impaired β-structure, neu-
ronal toxicity, and behavioral defects [47], further sustaining
a pathogenic role for α-syn oligomers in PD. Evidence
on a role of phosphorylation in the oligomerization and
neurotoxicity of α-syn has also been provided [48].

HD is a late-onset, autosomal dominant disorder clin-
ically characterized by chorea, cognitive impairment, and
psychiatric disorders. The mutation responsible for HD, an
expanded CAG repeat sequence in the HD gene, leads to a
polyglutamine expansion in the amino-terminal portion of
the htt protein. Although the physiopathology of the disease
has not been fully clarified, a role for protein misfolding
is suggested by the observation that HD occurs when htt
expands beyond around 35 glutamine residues, a modifica-
tion that facilitates protein aggregation and the acquisition
of β sheet structure [49]. In lymphoblasts from HD patients
and medium spiny striatal neurons of the YAC72 HD mouse
model, polyglutamine expansion in htt was accompanied
by cytosolic and mitochondrial Ca2+ overload, triggering an
apoptotic pathway [50, 51]. As for many other misfolded
proteins, htt aggregation is a complex process advancing
through a variety of different assemblies, eventually leading
to the formation of insoluble inclusion bodies. The different
aggregative intermediates have probably different biological
activities. As described for Aβ and other misfolded proteins,
the soluble aggregates, more than the insoluble inclusion
bodies, are probably the neurotoxic species [26].

Prion diseases, also known as TSE, are progressive,
mostly fatal neurodegenerative diseases. They include
Creutzfeldt-Jakob disease, Gerstmann-Sträussler-Scheinker
disease, kuru and fatal familial insomnia in humans, bovine
spongiform encephalopathy in cattle, scrapie in sheep,
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and chronic wasting disease in deer and elk. The central
pathogenic event in these diseases is the conversion of the
PrPC, a normal cellular isoform, into the abnormal PrPSc
(where Sc stands for “scrapie”). The conversion determines
an increase in the β-sheet content of the protein and
is accompanied by changes in biological and biochemical
properties of PrPSc, such as increased resistance to proteases
and propensity to form amyloid fibrils. The interaction
between PrPC and pathogenic PrPSc is supposed to deter-
mine a template-induced, progressive deposition of new
PrPSc, which accumulates in brain tissue as dense plaque-
like amyloid deposits, perivascular deposits, or diffuse, non-
fibrillary deposits, reminiscent of synaptotoxic oligomeric
β amyloid aggregates. Although the deposition of amyloid
plaques is a hallmark of prion diseases, recent studies suggest
that, in analogy to Aβ and other amyloid proteins, the soluble
oligomeric aggregates of PrPSc are the actual neurotoxic
species. For example, prefibrillar oligomers are neurotoxic in
vitro and in vivo [52], and soluble oligomeric species are most
efficient in transmitting TSE [53]. It has also been proposed
that the fibrillar form of PrP, which is typically observed at
autopsy, may actually be neuroprotective [54].

3.2. Synaptotoxicity. Amyloid proteins are, by definition,
neurotoxic. Neuronal cell damage induced by various amy-
loid proteins has remarkable analogies, especially consider-
ing one highly specific effect: synaptic dysfunction. Compro-
mised synaptic function is a key event in the pathogenesis of
AD. Quantitative evaluation of temporal and frontal cortical
biopsies revealed a significant decrease in the density of
synapses [55]. At autopsy, synapse loss, as demonstrated
by decrease in synaptophysin immunolabeling, showed a
clear-cut correlation with the severity of dementia [56].
Later on, it has been shown that synapse loss is an early
event in the pathophysiology of the disease [56]. More
subtle derangements of synaptic activity, induced by Aβ
oligomers, precede synapse loss. The studies by Selkoe
and collaborators have shown that natural Aβ oligomers,
secreted from cultured cells, when injected in rat brain,
potently inhibit LTP, enhance long-term depression (LTD),
and impair the memory of learned behaviors in rats [25, 57,
58]. Similar results were obtained from Aβ dimers isolated
from the brain of AD patients [59]. Evidence for a role
of synaptic dysfunction in PD, HD, and PrP diseases has
also been collected, showing modified synaptic activity as
a consequence of the interaction with misfolded proteins.
Synaptic dysfunction is an early symptom in α-syn-induced
pathology [60, 61]. α-syn is localized at synapses, where
it is involved in the modulation of synaptic transmission
and neuronal plasticity [62], in the regulation of the
size of different pools of synaptic vesicles [63], and in
the SNARE complex assembly [64]. Recently, it has been
demonstrated that α-syn directly regulates the dynamics
of actin microfilaments, whose integrity is fundamental
in synaptic vesicle mobilization, recycling, and exocytosis.
This regulatory activity was profoundly altered in the A30P
mutation, associated with familial PD [65]. Using paraffin-
embedded tissue blot and protein aggregate filtration assays,
it has been shown that the majority of α-syn oligomeric

aggregates are located at presynaptic terminals, suggesting an
impact on synaptic function [66, 67]. This is also sustained
by the observation that, in cultured neurons from brains of
transgenic mice overexpressing human α-syn, excessive α-syn
induced a decrease in other presynaptic proteins, leading to
morphologic and functional changes of synapses [68].

Studies in animal models of HD have clearly shown
that synaptic dysfunction precede neuronal loss [69–71].
Decreased pre- and postsynaptic markers and altered gluta-
mate release were found at the corticostriatal synapse before
the onset of motor symptoms [72]. Altered LTP and LTD
were early electrophysiological signs of aberrant synaptic
plasticity [73, 74]. In a Drosophila HD model, expanded full-
length htt was observed to increase neurotransmitter release
efficiency, leading to impairment of synaptic transmission
and altered Ca2+ homeostasis [75].

In prion diseases, synaptic alterations are among the
pathognomonic pathologic features, together with neuronal
loss, spongiform change, astrocytosis, and deposition of
amyloid aggregates. Immunocytochemical localization of
PrPSc has a dot-like appearance around neuronal cell bodies
and, along dendrites, reminiscent of synaptic protein local-
ization in synapses [76, 77]. There is evidence that synaptic
changes precede neuronal death [78–81], possibly sustained
by mitochondrial dysfunction [82]. Mice with prion diseases
can be cured at the stage of early synaptic dysfunction
and impairments at neurophysiological, behavioural, and
morphological levels are reversible [83]. Interestingly, the
fact that reversible changes precede extensive accumulation
of PrPSc deposits suggest that they may be caused by a
transient neurotoxic species [84], in analogy with the effects
of soluble oligomeric Aβ in AD.

3.3. Propagation of Protein Misfolding. In PrP diseases, the
key molecular event is the conversion of the PrPC into
the infectious PrPSc, which serves as template to produce
further, aggregation-prone PrPSc. Emerging evidence seems
to converge towards the theory that the ability to form auto-
perpetuating amyloid aggregation is not exclusive to PrPSc.
These findings suggest that several proteins, belonging to
the amyloid family, accumulate and propagate through a
nucleation-dependent aggregation, starting from what has
been defined as an “amyloid seed,” whose presence facilitates
further oligomerization of the proteins [85].

One of these proteins is Aβ. Injection of brain extracts
from human AD brains, but not from control age-matched
patients, in transgenic mice overexpressing the AβPP,
induced extensive Aβ deposition [86, 87]. The increased
Aβ production did not occur when AD brain extracts were
depleted of Aβ [87], suggesting that infused Aβ can act as
an amyloid seed. The process has also been characterized
in vitro, showing that homogenates from SHSY5Y cells,
which had uptaken Aβ, were capable of seeding amyloid
fibril growth [88]. Aggregation of α-syn is also a nucleation-
dependent process. In vitro biophysical studies have shown
that the process is accelerated by the presence of pre-
aggregated protein [89]. This mechanism has also been
demonstrated in cells, where α-syn aggregates, but not
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monomers, can induce the formation of LB-like aggre-
gates [90]. In addition, injection of preformed oligomeric
aggregates in cells overexpressing α-syn determines the
formation of highly filamentous intracellular, α-syn-positive
inclusions [91]. Cross-seeding between different amyloid
proteins has also been described. For example, pure α-syn
and tau facilitate each other aggregation [92]. Amyloid fibril
formation of α-syn is accelerated by preformed amyloid seeds
of other amyloid proteins, such as Escherichia coli chaperonin
GroES, hen lysozyme, and bovine insulin [93]. Susceptibility
of different peptides toward cross-seeding is related to the
intrinsic aggregation propensity of the peptides [94].

Cell-to-cell propagation of protein misfolding, charac-
teristic of prion diseases, has been described for α-syn in
cell cultures and animal models of PD [95]. Furthermore,
it has been observed that transplanted neurons in PD
patients develop in time LB and PD pathology, suggesting
the propagation of α-syn aggregation from host cells to graft
cells [96, 97]. This phenomenon may have important clinical
implications. For example, efficacy of stem cell therapies in
these diseases may be hampered by the risk of propagation of
protein misfolding from the host cells to transplanted stem
cells [98, 99].

4. Mechanisms of Amyloid Neurotoxicity:
The Role of Ca2+ Dysregulation

Although there is now wide agreement on the role played by
amyloid oligomers in neurotoxicity, the mechanisms through
which they induce neuronal cell dysfunction and, eventually,
cell death are not fully understood. A number of different
possibilities have been explored, including mitochondrial
dysfunction, lysosomal failure, and abnormal activation of
signalling pathways. These mechanisms may or may not
accompany a more general neuronal cell derangement, which
is a common effect of the interaction of amyloid proteins
with neuronal cells, Ca2+ homeostasis dysregulation.

In resting neurons, cytosolic Ca2+ concentration is
maintained around 100 nanomolar, while the extracellular
concentration is about 1 mM and that of intracellular Ca2+

stores, the endoplasmic reticulum (ER) and mitochondria, is
between 100 and 500 μM. Ca2+ entry from the extracellular
space occurs through ligand-gated, voltage-gated, and store-
operated Ca2+ channels, while Ca2+ release from intracellular
stores, mainly represented by the ER, are regulated by inositol
trisphosphate receptors and ryanodine (RyR) receptors.
Recently, it has been reported that presenilin I, an inte-
gral membrane protein whose mutations cause early-onset
inherited AD, also functions as ER Ca2+ leak channel [100,
101]. The tight regulation of Ca2+ concentration gradient
depends on the crucial roles played by Ca2+ ions in neuronal
cell processes, including neurotransmitter release, generation
of action potential, gene expression, synaptic plasticity,
and neurite growth. In addition, excessive intracellular
Ca2+ concentrations may activate a number of pathogenic
responses, whose overall effects are modulation of mem-
brane excitability and enzyme/kinase activity, induction
of gene expression, formation of reactive oxygen/nitrogen
species, mitochondrial dysfunction, and apoptosis/necrosis.

To explain the genesis of Ca2+ dysregulation in dis-
eases associated to misfolding and aggregation of amyloid
proteins, two main mechanisms have been postulated: the
activation of preexisting ion channels and the formation of
calcium-permeable amyloid pores.

4.1. Activation of Preexisting Ion Channels. Interaction with
several Ca2+-permeable channels has been described for
amyloid proteins, potentially leading to an intracellular Ca2+

rise. As usual, most evidence derives from experiments on
Aβ. The glutamatergic system has been thoroughly studied,
on the basis of the role played by glutamate receptors in
the excitotoxic neuronal cell damage, whose overstimulation
leads to excessive intracellular Ca2+ rise [102]. Several in vitro
studies showed that incubation of neuronal cultures with
Aβ oligomers increased Ca2+ influx through N-methyl-D-
aspartate (NMDA) receptors. The moderate-affinity, uncom-
petitive NMDA receptor antagonist memantine protects
against Aβ oligomer toxicity by attenuating intracellular
Ca2+ increase [103]. Currently, memantine is the only
approved treatment for AD, besides acetylcholinesterase
inhibitors, although the therapeutic efficacy is limited [104].
Aβ oligomers induce dynamin 1 degradation, which may
endanger synaptic integrity. This effect is mediated by
NMDA receptor activation [105]. Interactions of Aβ with
other Ca2+ permeable channels have been documented, such
as voltage-gated Ca2+ channels [106, 107]. An involvement of
nicotinic acetylcholine [108–110], catecholamine [111], and
serotonin receptors [112] has also been postulated in Ca2+

dysregulation following Aβ treatment.
Intracellular Ca2+ stores have also been implicated in

Ca2+ dysregulation. When presenilin is mutated, its function
as ER Ca2+ leak is disrupted, contributing to Ca2+ dysregu-
lation [100, 101]. Exaggerated intracellular Ca2+ levels have
also been put in relation to modulation of RyR receptors
[113].

A role for calcium-permeable channel has been described
for other amyloid proteins. Ca2+ influx via N-type voltage-
dependent Ca2+ channels has been described following α-
syn treatment in rat synaptosomes [114]. Overactivation of
NMDA receptors, followed by an abnormal neuronal Ca2+

signaling, is believed to play a role in HD pathogenesis
[50, 115, 116]. Activation of glutamate receptors has been
described to be induced by HypF-N [117].

4.2. The Calcium-Permeable Pore Hypothesis. To explain Ca2+

dysregulation, a different mechanism has been hypothe-
sized: amyloid oligomers may form nonselective calcium-
permeable pores. This ability, originally described for Aβ
[29], has also been described for other misfolded proteins
and has been proposed as a common property of the amyloid
protein family [28, 30]. Several pieces of evidence sustain
this hypothesis. Cribbs et al. [118] showed that both D- and
L-stereoisomers of truncated form of Aβ were neurotoxic
in vitro. This observation argues against a role for specific
ligand-receptor interaction in the mechanism of toxicity.
Morphological studies at TEM and AFM levels have shown
that oligomers of many amyloid proteins, such as Aβ and α-
syn [44], serum amyloid A, amylin [28], and CT [119], have
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a characteristic annular morphology, reminiscent of cation-
permeable membrane pores [120]. Furthermore, TEM anal-
ysis has also revealed the presence of Aβ pore-like structures
in the cell membrane of brains from AD patients but not
from age-matched healthy patients [121]. Treatment of SH-
SY5Y cells with a wide range of oligomeric, but not fibrillary,
amyloid proteins, including Aβ, PrP, IAPP, polyglutamine,
and lysozyme, induced increase in intracellular calcium. The
increase could not be attributed to activation of endogenous
Ca2+ channels, because the responses were unaffected by
the potent endogenous Ca2+ channel blocker cobalt [30].
Electrophysiological recordings using model membranes
showed heterogeneous single-channel conductances for sev-
eral amyloid proteins [28]. Finally, it has been proposed that
protein aggregates may mimic bacterial pore-forming toxin,
which permeabilize membranes forming oligomeric pores
characterized by β-sheet structure [122].

The different hypotheses are not mutually exclusive
and can cooperate towards Ca2+ dysregulation. Recently,
it has been proposed that amyloid oligomers may act at
two steps, separated in time, a first, very rapid step, where
Ca2+ increases due to glutamate receptor stimulation by
the oligomers, followed by a second, delayed step, where
oligomers permeabilize nonspecifically the cell membrane,
possibly via the formation of amyloid pores [117].

5. Lipid Rafts and Amyloid Neurotoxicity

From the original description [123], the concept of LR has
remarkably evolved. The introduction of high-resolution
imaging techniques (for a review, see [124]) and the progress
in lipidomics and proteomics methodologies have revealed
that LRs have a highly heterogeneous composition and
are characterized by an extremely dynamic structure. LRs
can now be defined as nanoscale assemblies of sphin-
golipid, cholesterol, and proteins, fluctuating in a more fluid
phospholipid matrix. By finely tuning lipid-lipid, protein-
lipid, and protein-protein interactions, they can coalesce,
forming more stable structures and providing functional
platforms for crucial membrane activities, such as signaling
and trafficking [124].

Considerable amount of data suggest the involvement of
LRs in the interactions between amyloid proteins and cell
membranes. Some crucial information has been obtained
through the use of biophysical techniques on model mem-
branes (for a review, see [125]), which will be briefly
illustrated. Most of the work focused on the interactions
between LRs and Aβ. However, compelling evidence has also
been obtained for htt, α-syn, PrP, and CT, which will be
reviewed here.

6. Using Model Membranes to
Study Amyloid Proteins

6.1. Model Membranes. The use of model membrane
systems has remarkably improved our knowledge on the
biochemistry of amyloid proteins, providing information
about the molecular mechanisms controlling aggregation,

the structure of aggregates (oligomeric or fibrillar), and the
interactions with cell membranes. Model membranes consist
of mono- or bilayers of lipids that can be placed in contact
with proteins of biological interest, such as the amyloid
proteins. The monolayer model membranes are obtained by
depositing at the water-air interface bidimensional molecular
films composed of phospholipids, gangliosides, and choles-
terol, with and without proteins (Languimur technique)
[126, 127]. On these systems, thermodynamic measurements
of compression at constant temperature (isotherms) provide
useful information on the lipid mosaic phase (solid, liquid,
or gaseous) and its modification due to the presence of
proteins. Liposomes are vesicular structures, composed of
bilayer model membranes. Mono- or bilayer membranes
can be deposited onto solid substrates and studied with
imaging techniques, such as Energy-Filtered TEM (EFTEM)
or AFM, at nanometric resolution [128, 129]. In liposomes,
which are suspended in a water solution, the conformation
of proteins interacting or not with the lipid bilayer can be
also investigated by Circular Dichroism Spectroscopy (CDS)
[119, 130].

6.2. Imaging Techniques. EFTEM represents a powerful tool
in the study of biological and nonbiological materials. The
use of fast electrons (80–120 KeV) and magnetic lenses allows
creating images of thin samples with horizontal resolution
in the order of 0.4 nm. This is due to the small wavelength
associated to electrons of this energy (about 0.005 nm). Using
this technique, it is possible to investigate the quaternary
structure and aggregation of misfolded proteins and their
interaction with model membranes. In this case the image
formation is obtained by negative staining with heavy metals
such as tungsten and uranium. This technique allows obtain-
ing horizontal resolution in the order of 1 nm. However,
using microscopes equipped with energy filters, it is possible
to improve the image quality and increase contrast even in
unstained samples and perform spectroscopic studies of the
transmitted electrons (Figure 2) [128, 131].

EFTEM can also be combined with immunolabeling
techniques to identify proteins by using specific antibodies,
conjugated with gold particles (Figure 3). This technique is
particularly useful to investigate binding of amyloid proteins
to lipid membranes [119].

In AFM, the surface of the sample to be analyzed is
scanned by a very sharp tip. The interaction forces occurring
between the tip and the atoms of the analyzed surface,
in the order of nanonewtons, cause the deflection of the
cantilever supporting the tip. Changes in the deflection of the
cantilever, due to the morphology of the sample surface, are
detected by the reflection of a laser beam. The microscope
can operate in static or dynamic mode if the tip is at rest
or oscillating vertically, respectively. The structural organi-
zation of liposomes or Langmuir films can be imaged by this
technique after deposition onto flat substrates of mica, with
a resolution up to 1 nm horizontally and 0.1 nm vertically.
Morphologic changes induced in model membranes by the
incorporation of pore-forming proteins, such as gramicidin
A [132], or LR components, such as gangliosides [133], can
be analyzed with this technique.
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(a) (b) (c)

Figure 2: EFTEM micrograph of a cluster of liposomes (a). The ESI maps show a higher (b) and a lower (c) concentration of Cs entrapped
in liposomes. Reproduced with permission from [131].

(a) (b)

Figure 3: Immunogold EFTEM micrographs of sCT in mature fibres ((a) bar = 200 nm) and liposomes, where sCT is inserted in the lipid
bilayer ((b) bar = 50 nm). Picture in (b) was reproduced with permission from [119].

6.3. CDS. CDS can be considered a special type of UV
absorption spectroscopy and consists in the measure of the
difference in the absorbance of left- and right-handed polar-
ized light by optically active molecules, detected in a selected
frequency range. This signal depends on the wavelength of
the incident light. A dichroic spectrum can be obtained
illuminating an optical active sample by light of increasing
wavelength. The optical activity of a molecule depends, in
the absence of magnetic field, on its chirality: in general, a
molecule having an asymmetric charge distribution interacts
in a different way with electromagnetic waves characterized
by opposite circular polarization.

This type of spectroscopy is generally used to investigate
the protein conformation and their change induced by
the aggregation process or the interaction with model
membranes [119, 132]. In the region of the near UV (250–
350 nm), it is possible to obtain information about the

tertiary structure of proteins. In this region the aromatic
amino acid and the disulfide bonds are excited, giving rise to
a dichroic signal depending on the overall three-dimensional
structure of the protein. An important application of this
technique is to analyze the “folded” state of the proteins;
if this is “molten globule” or the protein is incorrectly
folded, the near UV spectrum is practically flat. The near
UV spectrum is sensitive to small variations of the tertiary
structure, due to the interaction of the proteins with other
molecules, such as lipids. In the far UV region (190–250 nm),
the secondary structure of the proteins can be studied. In this
region the chromophore, which is the protein component
excited by the incident light, is the peptidic bond. A typical
dichroic spectrum for each type of secondary structure
exists, and the spectrum of a protein conformed with several
secondary structures is formed by the convolution of the base
spectra.
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7. LRs and htt

Some observations suggest that LRs may be implicated in
HD pathogenesis at different levels. From DNA microarray
analysis conducted in striatal cells expressing wild-type or
mutant htts, genes involved in cholesterol biosynthesis were
found to be altered by mutant protein. Since in these cells
mutant htt did not form aggregates or cause cell death, this
pattern of gene expression may reflect early events in the
pathogenetic mechanism [134]. Consistently, dysfunction in
the cholesterol biosynthetic pathway was described in mice
and cell culture models of HD [135]. In addition, abnormal
expression of the genes encoding glycosyltransferases, an
enzyme involved in the synthesis of gangliosides, were found
in the striatum of the R6/1 transgenic mouse, an animal
model of HD, and in postmortem caudate samples from
human HD subjects [136]. These observations indicate a
disruption in glycolipid metabolic pathways that may alter
LR formation. Biochemical analysis of cell membranes from
brains and primary neurons of wild-type and presymp-
tomatic HD knockin mice showed that wild-type and mutant
htt were recovered in LR-enriched membranes [137]. The
association with LRs was stronger for mutant than wild-type
htt. In addition, LR from HD mice had a higher content in
glycogen synthase kinase 3-beta (GSK). Since GSK activation
is involved in neuronal apoptosis, the authors speculate
that accumulation of mutant htt and GSK in LRs may
have a role in the mechanism of neurodegeneration in HD
[137].

8. LRs and α-syn

Although the mechanisms correlating α-syn aggregates to PD
pathogenesis remain unclear, there is substantial evidence
that binding of α-syn aggregates to lipid membranes is a
relevant factor. Oligomeric α-syn binds to model membranes
inducing permeabilization of synthetic vesicles, which is con-
sidered a potentially cytotoxic event [138]. Dimeric aggre-
gates of wild-type α-syn and its mutants, A53T and A30P,
seem to bind to and disrupt lipid membranes more easily
than monomeric forms [139], indicating that oligomeric
forms are likely to be the pathogenic species. However,
even monomeric α-syn can interact with model membranes,
undergoing a conformational change from a random coil
to an α-helical structure, which may facilitate aggregation
[140]. The lipid components seem to have a relevant role
in the interaction between α-syn and membranes. α-syn
binds to GM1 ganglioside, which are enriched in LRs. This
bound is attributed to specific interaction between α-syn
and glycidic residues of GM1, such as sialic acid [141]. In
addition, α-syn colocalizes with markers of LRs in Hela cell
cultures [142]. In the neuronal cells, α-syn is localized in
the synaptic terminals, as described above. LR disruption
was found to abolish the synaptic localization of α-syn
and redistribute it to different cell compartments [142].
Furthermore, association with synaptic LRs is also impaired
in the A30P mutation, suggesting that the physiological role
of α-syn, lost in the mutated protein, is mediated by LR
interaction [142].

9. LRs and PrP

The role of LRs has been the object of considerable interest
in prion infectivity. By using model membranes, it has been
shown that recombinant forms of the PrPs bind to model
LR membranes composed of phospholipids, cholesterol, and
sphingomyelin, but not to zwitterionic PC lipids, an artificial
model lacking LR components [143, 144]. Inhibitors of
the synthesis of cholesterol, a major component of LRs,
reduce prion formation in vitro [145, 146] and delay the
progression of experimental infection [147]. A large body
of evidence sustains that LRs are the site where conversion
from PrPC to PrPSc takes place [148]. A crucial role has been
detected for the PrPC glycosylphosphatidylinositol (GPI)
anchor, a complex machinery that has several physiological
roles, among which is the targeting of proteins to LRs.
Through the GPI anchor, PrPC binds to cell membranes
[149]. In absence of the GPI anchor, PrPC redistributes
into non-raft regions of the plasma membrane, and the
formation of PrPSc is reduced [150]. In addition, synthetic
analogues of the GPI anchor [151] and its enzymatic
modification [152] reduce the capacity of PrPSc to bind
and replicate within neuronal cell lines or primary cortical
neurons, suggesting that PrPSc conversion takes place in
LR-like microenvironment, following targeting of PrPC to
LRs. In vivo studies, however, have shown that the role of
the GPI anchor is probably more complex than initially
assumed. Enzymatic removal of the GPI anchor from PrPSc
did not reduce prion infectivity [153], while, in scrapie-
infected transgenic mice producing PrPC without a GPI
anchor, a high amount of infectious PrPSc was produced,
though in the absence of clinical symptoms [154]. How-
ever, when mice were engineered to express twofold more
anchorless PrP, scrapie infection did induce a fatal disease
[155].

10. LRs and CT

Calcitonin (CT), a 32-residue polypeptidic hormone secret-
ed by the C cells of the thyroid gland, belongs to a
family of structurally and functionally related regulatory
hormones, which also includes amylin, adrenomedullin,
and CT gene-related peptide. It plays an important role
in Ca2+ regulation and bone metabolism. For its activity
in reducing bone resorption, it is a therapeutic option in
the treatment of osteoporosis. The amyloid nature of CT
was unveiled when it was demonstrated that the protein is
the principal component of the amyloid fibrils deposited
in medullary carcinoma of the thyroid [156]. Later on, its
ability to aggregate in vitro was studied as a factor limiting its
efficacy as pharmaceutical agent [157–160]. The studies of
Schubert and coworkers [20, 161] firstly showed that CT, in
analogy with other amyloid proteins showing an aggregative
behaviour, was toxic to cells in culture. These observations
prompted investigators to use CT as a probe to study amyloid
formation and neurotoxicity [162–165]. Salmon CT (sCT),
which is neurotoxic as CT from other species [20, 159, 166],
is characterized by a slower aggregation rate [166], and this
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Arctic

Figure 4: EFTEM of sCTOs. Annular sCTOs show remarkable morphologic similarities with amyloid pores of mutant α-syn (A53T and
A30P) and Aβ (Arctic). TEM images of α-syn and Aβ were reproduced with permission from [169].

peculiarity is at the basis of its pharmacological use. We
have studied the process of sCT oligomerization, focusing
on the role of oxidation and time of aggregation [167, 168].
Recently, we showed that sCT oligomers (sCTOs) form Ca2+

permeable pores in liposomes [119], highly reminiscent
of the ion channels formed by other amyloid proteins,
such as Aβ and α-syn [169] (Figure 4). In addition, they
damaged neuritic tree and synapses in hippocampal neurons,
a behavior highly reminiscent of the effects induced by Aβ
[170] (Figure 5).

We used sCT to investigate if a specific neuronal cell
susceptibility to amyloid toxicity exists [170]. An issue that
has seldom been addressed, in fact, is why misfolded proteins
cause diseases so frequently in the CNS, in comparison
to other systems or districts. Furthermore, several amyloid
proteins, such as CT, are toxic to neuronal cells despite the
fact that they are formed outside the CNS. An exception
could be represented by amylin, an amyloid protein belong-
ing to CT family. This amyloid protein is considered as a
possible pathogenetic species in the development of diabetes,
supposedly by damaging pancreatic beta cells, thus exerting
a cytotoxic effect outside the brain [171]. If one considers,
however, that pancreatic β cells share the same histogenesis

of neuronal cells, being neural crest-derived neuroendocrine
cells, type I diabetes would not represent an exception.
The reasons for this peculiar vulnerability are presently
unknown, but several hypotheses may be formulated, which
are not mutually exclusive. (1) Neurons may provide a
particularly suitable environment for protein misfolding
processes, or be more prone to dysfunctions of the machinery
deputed to misfolded protein removal. (2) The abundant
presence of calcium-permeable ion channels, activated by
amyloid proteins, may render Ca2+ dysregulation a much
more probable event in neurons than in other cell types.
(3) Neuronal cells may be more sensitive to the toxic
potential of amyloid proteins, a likely event due to the
dramatic effects induced by Ca2+ dysregulation, as discussed
above. (4) Finally, it may be speculated that neuronal cell
membrane, due to its intrinsic characteristics, may be more
prone to pore formation by oligomers. To address the latter
hypothesis, we compared sCTO toxicity in mature, 14-day
in vitro (DIV) or immature, 6 DIV, hippocampal neurons
to that of cultured cells of different histogenesis: MG63
osteoblasts, NIH-3T3 fibroblasts (two immortalized cell
lines), and primary astrocytic cultures from rat fetal brain
[170].
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Control

(a)

Aβ

(b)

sCTO

(c)

Figure 5: sCTOs and Aβ oligomers similarly damage the neuritic
tree and synapses in mature hippocampal neurons. After sCTO or
Aβ treatments, the extension of the dendritic tree, immunolabeled
for microtubule-associated protein 2 (red fluorescence), is evidently
reduced, while the number of synapses, immunolabeled for synap-
tophysin (green fluorescence), is decreased.

Among the tested cell types, only mature hippocampal
neurons responded to sCTOs with an intense and sustained
rise in intracellular Ca2+ (Figure 6(a)) and an evident
increase in apoptosis. This increase could be due to leakage
of intracellular Ca2+ stores or sCTO-dependent stimulation

of preexisting Ca2+ channels, as previously proposed and
discussed above. The use of thapsigargin, a specific sarcoplas-
mic/endoplasmic reticulum Ca2+ ATPase pump inhibitor,
which depletes intracellular Ca2+ stores, showed that sCTO-
induced Ca2+ rise was mostly due to an extracellular influx
(Figure 6(b)). We then considered the activity of NMDA
receptor, which, among glutamate receptors, is the one that
has most frequently been considered to be involved in the
toxicity of amyloid proteins, as already discussed. MK801,
a specific NMDA receptor blocker, poorly affected sCTO-
induced Ca2+ entry. Furthermore, pretreatment with an
antibody against the subunit 1 of NMDA receptor (NR1),
used to mask possible sites of interactions between sCTOs
and the NMDA receptor, again failed to inhibit Ca2+ entry
(Figure 6(b)). Thus, the different behavior of cell types to
sCTO, in terms of Ca2+ rise, was conceivably unrelated to
an activation of preexisting Ca2+ channels and pointed to
the formation of calcium-permeable amyloid pores by CT
oligomers. We reasoned that the neuronal plasma membrane
has other distinctive characteristics, compared to other cell
types, such as, for example, a rich content in LRs. This
hypothesis was confirmed by our results, where mature
neuronal cells showed a much more elevated content in
LRs of the other cells types examined (Figure 6(c)). It has
also been demonstrated that LRs increase in the plasma
membrane during in vitro maturation in hippocampal
neurons [172]. This could explain why immature neurons
were insensitive to sCTO toxicity. Thus, content in LRs
higher than the other cell types could render neurons more
vulnerable to amyloid toxicity. To further corroborate this
hypothesis, we manipulated LRs in mature neuronal cells
in the attempt of modifying sCTO-induced intracellular
Ca2+ entry. Pretreatment of neurons with an antibody
against GM1, a ganglioside particularly abundant in LRs,
completely suppressed sCTO-driven Ca2+ rise, without alter-
ing NMDA receptor activity (Figure 6(b)). Furthermore,
LR disruption obtained by neuraminidase (NAA), which
removes sialic acid from gangliosides, inhibited Ca2+ rise and
protected against sCTO neurotoxicity, probably modifying
the plasma membrane area susceptible to the insertion
of the pore-like structures (Figure 6(d)). These results
strongly support the conclusion that the intense and pro-
tracted Ca2+ dysregulation observed after sCTOs treatment
is reliably due to the pore formation in a particularly
suitable environment, that is, the LR-rich neuronal plasma
membrane.

11. Conclusions

LRs are crucial sites in the cell membrane, where pivotal
events in the physiology of the cell take place. However,
they may also represent areas of fragility of the cell mem-
brane, providing a way into potential cell hosts, such as
pathogens and misfolded proteins. The high content in LRs
of mature neuronal plasma membrane may render these cells
particularly vulnerable to the cytotoxic attack of amyloid
proteins and represent one of the reasons for the high
vulnerability of CNS to misfolded protein diseases.
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Figure 6: (a) sCTO induces increase in intracellular Ca2+ levels in mature hippocampal neurons, but not in immature neurons, primary
astrocytes, 3T3 fibroblasts, and MG3 osteoblasts. Ca2+ levels were evaluated by optical fluorimetric recordings with Fura-2AM. (b)
Depletion of intracellular Ca2+ stores with thapsigargin did not affect sCTO-induced Ca2+ rise, suggesting that it was mostly due to an
extracellular Ca2+ influx. MK801, a specific NMDA inhibitor, as well as antibodies against NR1, failed to affect sCTO-driven Ca2+ influx,
suggesting that the NMDA receptor was not involved. On the contrary, pretreatment with an antibody against the ganglioside GM1,
aimed at blocking LRs, completely abolished sCTOs-induced Ca2+ increase. Pretreatment with anti-BSA IgGs, an unrelated antibody,
did not affect sCTO response. (c) Measure of the weight ratio between cholesterol in LRs (LDTI) and total cholesterol indicates that
plasma membrane of mature hippocampal neurons have a much higher content in LRs than the other cell types. (d) Pretreatment of
hippocampal neurons with NAA totally suppressed sCTO-induced Ca2+ increase. Reproduced with permission and partially modified from
[170].
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Abbreviations

AD: Alzheimer’s disease
Aβ : Amyloid β
AFM: Atomic force microscopy
CT: Calcitonin
CDS: Circular dichroism spectroscopy
DIV: Day in vitro
ER: Endoplasmic reticulum
EFTEM: Energy filtered TEM
GSK: Glycogen synthase kinase 3-beta
GPI: Glycosylphosphatidylinositol
htt: Huntingtin
HD: Huntington’s disease
LDTI: Low-density, triton-insoluble
LBs: Lewy bodies
LRs: Lipid rafts
LTD: Long-term depression
LTP: Long-term potentiation
NAA: Neuraminidase
NR1: NMDA receptor subunit 1
NMDA: N-methyl-D-aspartate
PD: Parkinson’s disease
PrP: Prion protein
RyR: Ryanodine
sCTOs: sCT oligomers
sCT: Salmon CT
TSEs: Transmissible spongiform encephalopathies
TEM: Transmission electron microscopy
α-syn: α-synuclein.
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al., “Early development of aberrant synaptic plasticity in a
mouse model of Huntington’s disease,” Human Molecular
Genetics, vol. 15, no. 10, pp. 1690–1703, 2006.

[75] E. Romero, G. H. Cha, P. Verstreken et al., “Suppression of
neurodegeneration and increased neurotransmission caused
by expanded full-length huntingtin accumulating in the
cytoplasm,” Neuron, vol. 57, no. 1, pp. 27–40, 2008.

[76] T. Kitamoto, R. W. Shin, K. Doh-ura et al., “Abnormal
isoform of prion proteins accumulates in the synaptic
structures of the central nervous system in patients with
Creutzfeldt-Jakob disease,” American Journal of Pathology,
vol. 140, no. 6, pp. 1285–1294, 1992.

[77] J. G. Fournier, F. Escaig-Haye, and V. Grigoriev, “Ultra-
structural localization of prion proteins: physiological
and pathological implications,” Microscopy Research and
Technique, vol. 50, no. 1, pp. 76–88, 2000.

[78] M. Jeffrey, W. G. Halliday, J. Bell et al., “Synapse loss associ-
ated with abnormal PrP precedes neuronal degeneration in
the scrapie-infected murine hippocampus,” Neuropathology
and Applied Neurobiology, vol. 26, no. 1, pp. 41–54, 2000.

[79] C. Cunningham, R. Deacon, H. Wells et al., “Synaptic
changes characterize early behavioural signs in the ME7
model of murine prion disease,” European Journal of
Neuroscience, vol. 17, no. 10, pp. 2147–2155, 2003.

[80] M. Fuhrmann, G. Mitteregger, H. Kretzschmar, and J.
Herms, “Dendritic pathology in prion disease starts at the
synaptic spine,” Journal of Neuroscience, vol. 27, no. 23, pp.
6224–6233, 2007.

[81] B. C. Gray, Z. Siskova, V. H. Perry, and V. O’Connor,
“Selective presynaptic degeneration in the synaptopathy
associated with ME7-induced hippocampal pathology,”
Neurobiology of Disease, vol. 35, no. 1, pp. 63–74, 2009.
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