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We propose a novel morphological factor estimate from structural MRI for disease state evaluation. We tested this methodology in
the context of Alzheimer’s disease (AD) with 349 subjects. The method consisted in (a) creating a reference MRI feature eigenspace
using intensity and local volume change data from 149 healthy, young subjects; (b) projecting MRI data from 75 probable AD,
76 controls (CTRL), and 49 Mild Cognitive Impairment (MCI) in that space; (c) extracting high-dimensional discriminant
functions; (d) calculating a single morphological factor based on various models. We used this methodology in leave-one-out
experiments to (1) confirm the superiority of an inverse-squared model over other approaches; (2) obtain accuracy estimates for
the discrimination of probable AD from CTRL (90%) and the prediction of conversion of MCI subjects to probable AD (79.4%).

1. Introduction

A growing body of literature relates the use of machine
learning methods to build classification functions from
features of interest extracted from medical imaging data
(e.g., magnetic resonance images (MRI), positron emission
tomography). We focus specifically on applications within
the context of aid to clinical diagnostic in Alzheimer’s
disease (AD) and/or the prediction of future clinical status
for individuals with Mild Cognitive Impairment (MCI), a
putative precursor to AD [1–6]. These techniques have in
common the reduction of large, high-dimensional image
vectors into smaller features spaces and the identification
of a low-dimensional discriminating function. Authors have
reported attempts to further simplify the discriminating
function by calculating a single, quantitative scalar measure,
for example, the structural abnormality index score [7], the
structural-functional biomarker score [8], and the disease
evaluation factor [9]. While the first two rely on support
vector machine analysis of a feature space composed of
grey matter concentration patterns, the latter relies on linear
kernel approaches to data reduction and classification of
MRI appearance, defined as the combination of T1-weighted

intensity and local volume shape characteristics for all voxels
within a volume of interest. Using the same features of
interest as described in [9], we propose a different mor-
phological factor formulation, extensible to other modalities
and to other sources of data. We derive the formulation and
estimate its efficiency within the context of aid to diagnostic
in probable AD by verifying the hypothesis that it accurately
describes current and future clinical status.

2. Methods

2.1. Subjects. A total of 349 subjects were included in this
study, with ethics approval obtained from each institution
represented.

The first cohort, or reference group, consisted in 149
young, neurologically healthy individuals obtained with
permission from the ICBM database [10], whose scans were
used to create a reference feature space of image data.

The second cohort, or AD test group, consisted in 150
subjects: 75 patients with a diagnosis of probable AD (AD
group) and 75 age-matched controls (CTRL group) without
neurological or neuropsychological deficit. The probable AD
subjects were individuals with mild to moderate probable
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AD [11] recruited among outpatients seen at the IRCCS
Fatebenefratelli (Brescia, Italy) between November 2002 and
January 2005. CTRL subjects were taken from an ongoing
study of the structural features of normal aging at the same
center [12]. All subjects were followed a minimum of 3
years after inclusion; this longitudinal clinical evaluation
constitutes our reference diagnostic.

The third cohort, or MCI test group, consisted in 49
MCI subjects taken from a prospective project on the natural
history of MCI, carried out at the IRCCS Fatebenefratelli.
The project was aimed to study the natural history of
nondemented persons with apparently primary cognitive
deficits, that is, deficits not due to psychic (anxiety, depres-
sion, etc.) or physical (hypothyroidism, vit. B12 and folate
deficiency, uncontrolled heart disease, uncontrolled diabetes,
etc.) conditions. Patients were rated with a series of stan-
dardized diagnostic and severity instruments, including the
Mini-Mental State Examination (MMSE; [13]). In addition,
patients underwent diagnostic MRI and laboratory testing
to rule out other causes of cognitive impairment. These
inclusion and exclusion criteria for MCI were based on
previous seminal studies [14–16]. Amnestic or nonamnes-
tic, single or multiple domain MCIs were included in
the study.

All MCI patients underwent a yearly follow-up visit,
consisting of complete clinical and neuropsychological
examination, from 1 to 4 years after enrolment. In those
individuals that converted to dementia, status was ascer-
tained according to clinical diagnostic criteria for AD [11],
subcortical vascular dementia [17], dementia with Lewy
bodies [18], and frontotemporal dementia [19]. Within the
larger prospective cohort of 100 MCI patients enrolled from
April 2002 to December 2006, we have selected patients
retrospectively for this study based on their (a) having been
followed clinically a minimum of 48 months after their
baseline MR scan; (b) having remained either stable (MCI-S
group; N = 29) or progressed to probable AD (MCI-P group;
N = 20; mean progression 1.5 yrs; SD 0.7 yrs). The 48-month
longitudinal clinical evaluation constitutes our reference
diagnostic.

Data for the last subject (validation subject) was obtained
with permission from the pilot, multicentric European ADNI
project [20] (E-ADNI). It consisted in a healthy volunteer
that acted as human quality control phantoms and that was
scanned three times at IRCCS Fatebenefratelli (scan; repeat
scan, same session; rescan) on the same day.

Ethics Committees approved the study, and informed
consent was obtained from all participants.

2.2. Data. The ICBM subjects from the reference group
were scanned in Montreal, Canada on a Philips Gyroscan
1.5T scanner (Best, Netherlands) using a T1-weighted fast
gradient echo sequence (sagittal acquisition, TR = 18 ms,
TE = 10 ms, 1 mm × 1 mm × 1 mm voxels, flip angle 30◦).
MRI data for probable AD, CTRL, MCI, and E-ADNI sub-
jects were acquired at the IRCCS Fatebenefratelli on a single
Philips Gyroscan 1.0T scanner (Best, Netherlands) using a
T1-weighted fast field echo sequence (sagittal acquisition,
TR = 25 ms, TE = 6.9 ms, 1 mm× 1 mm× 1, 3 mm voxels).

2.3. Data Processing. We provide an overview of the auto-
mated image processing methodology, which follows essen-
tially the steps outlined in Duchesne et al. with some modi-
fications [3]. Images from all subjects were processed in an
identical fashion using a publicly available toolkit (MINC:
http://www.bic.mni.mcgill.ca/ServicesSoftware/HomePage).
Processing included intensity inhomogeneity correction
[21], nonlocal means denoising [22], intensity scaling, global
and linear registration [23], extraction of a predetermined
volume of interest centered on the medial temporal lobes,
nonlinear registration within the volume of interest towards
a common reference target [24], and computation of log-
determinants of the Jacobian of the deformation field [25].

2.4. Data Reduction and Feature Selection. The first data
reduction step was to construct a feature space based on
the N = 149 subjects from the ICBM reference group. To
this end, we used Principal Components Analysis (PCA)
of two high-dimensional image vectors within a volume of
interest centered on the medial temporal lobe to generate
a low-dimensional feature space for classification: (1) the
T1-weighted MRI intensity within the volume of interest,
transformed into z-score; and (2) log-determinants within
the volume of interest. With PCA we moved from a massive
amount of data (2× 149× 4E105 voxels) to a lower subspace
model of maximum N-1 dimensionality, further restricted
by using only the first k eigenvectors λ that contribute up to
a given threshold r in the description of the total variance of
the system:

rk = λk
∑p

j=1 λj

. (1)

Once the reference eigenspace was formed, the reference
group data was no longer used.

We then proceeded by projecting rasterized vectors of
intensity and local volume changes for subjects in the AD and
MCI test groups into the reference space. The distribution of
eigencoordinates along any principal component for a given
population was assessed via quantile plots and Shapiro-Wilke
statistics for normal distribution. Following the projection,
we used a system of supervised linear classifiers to identify
the hyperplane that best separated the groups under study
(e.g., CTRL versus probable AD; MCI-S versus MCI-P). To
this end, the data was first normalized to guard against
variables with larger variance that might otherwise dominate
the classification. We employed forward stepwise regression
analysis via Wilk’s λmethod to select the set of discriminating
variables {λF}, with F � N − 1, forming the discriminating
hyperplane.

2.5. Comparative Morphological Factor Construction. The
morphological factor is based on the concept of distance
along the restricted set of eigenvectors {λF}. In the image-
based feature space, this distance d can be calculated in a
number of different fashions.

2.5.1. Manhattan Distance. We propose initially the signed
difference between subject eigencoordinates along the eigen-
vector λF and the mean of the CTRL distribution for that
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eigenvector, denoted mCTRL; as this distance increases the
likelihood of belonging to the CTRL group decreases:

dλFi = xλFi −mλF
CTRL. (2)

2.5.2. Euclidean Distance. We propose the Euclidean distance
between position pi of each subject si and both CTRL and
probable AD means along the restricted set of eigenvectors
{λF} in all F directions, with F � N − 1. As the distance
to one center decreases, the distance to the second should
increase. In (3) we demonstrate the distance to the mean of
the probable AD group:

dsi→CMAD =
√
√
√
√
∑

F

(
p
f
i −m

f
AD

)2
. (3)

2.5.3. Weighted Distance. It is possible to weigh each eigen-
vector by an associated measure of significance, for example,
Wilk’s λ from the stepwise regression analysis [9] or a factor
derived from univariate t-tests. While the Wilk’s λ is trivially
obtained from the regression analysis, an univariate weight
such as the Koikkalainen factor formulation [26] entails
performing a t-test comparing the group eigencoordinate
distributions (e.g., CTRL versus probable AD; MCI-S versus
MCI-P) for each eigenvector of the restricted set, resulting in
the P-value p(λF) for that distribution; from these P-values
the significance weight SF is calculated,

SF = ln min
[
p(λF), 0.05

]− ln 0.05
ln 0.000001− ln 0.05

. (4)

The significance increases as the differences between the
CTRL and AD groups grow and reaches zero when there is
no statistically significant difference (at the P = .05 level)
between both distributions.

The resulting weighted distance Di combines the afore-
mentioned distances (Manhattan, Euclidean) with a weight
SF (either Wilk’s λ or Koikkalainen factor) over all eigenvec-
tors F from the restricted set {λF} as follows:

Di =
∑λF

i SFd
λF
i∑

λF SF
. (5)

2.5.4. Gravitational Model. As the final formulation, we
extend the principle of image-based distance to the context
of an attraction field that follows Netwon’s Law of Universal
Gravitation, whereby any two elements of mass m within
the feature space will exert upon one another an attractive
force that will vary proportionally to the inverse of the
square of the distance between them. In our context the
force exerted by one group (e.g., CTRL) decreases as the
distance between a subject and the center of mass of the
CTRL group grows, while the force exerted by the second
group (e.g., probable AD) increases as distance decreases
between the same subject and the second group’s center of
mass. In a multiple group scenario, the calculated combined
force serves as a quantitative measure of the likelihood of
belonging to one of the groups.

In such a classical formulation the force between any
subject si with mass mi, to the centers of mass of, for example,
the CTRL group (CMCTRL) and the AD group (CMAD), is
expressed as:

Fsi→CTRL,AD = Gmi

(
CMCTRL

d2
si→CMCTRL

− CMAD

d2
si→CMAD

)

(6)

with

CM = 1
M

∑

i

mi pi, (7)

being the formulation for the centers of mass calculations,
where M is the total mass for all subjects in the group, mi

their individual masses, and pi their individual positions in
feature space as derived in the previous section. The distance
metric that can be used can be anyone of the aforementioned
distances; for the purposes of the current study, the Euclidean
distance as formulated in (3) was employed.

We chose to retain the concept of “mass” even though it
has no real bearing within the present context of an image-
based feature space. It could be replaced with different infor-
mation regarding individuals in the groups, for example,
Braak histopathological staging [27]. Alternatively, one can
vary the specificity and sensitivity of the attraction field by
increasing the “mass” of subjects in one of the groups (e.g.,
CTRL or probable AD). For these purposes however we set
the mass of each subject to unity, and, further, for equal
considerations of simplicity, we set the gravitational constant
G also to unity. As is, the result is an inverse-squared law
relationship.

Statistics and measurements were computed using the
MATLAB Statistics Toolbox (The MathWorks, Natick, MA).

2.6. Experiments. Once the reference space was created, all
of the experiments that we conducted were performed in a
leave-one-out fashion whereby one subject from the study
groups was temporarily removed, allowing for an indepen-
dent estimate of the low-dimensional discriminant function
and the calculation of the eigendistribution means and
centers of mass. Only then was the left-out subject entered
in the system and its morphological factor computed. The
final results consist in the comparison of the independently
acquired morphological factors for each subject.

We ran three distinct experiments: (a) determination of
the relative accuracies of each distance formulation (Man-
hattan, Euclidean, Weighted Distance (Wilk’s λ), Weighted
Distance (Koikkalainen), Gravitational model) for the dis-
crimination of CTRL versus probable AD; (b) determination
of the accuracy of the best distance formulation for the
discrimination of MCI-S versus MCI-P; (c) determination of
the resolution of the best distance formulation based on the
CTRL versus probable AD discriminant function using the
E-ADNI scan-rescan dataset.

3. Results

3.1. Demographics. There were no statistically significant
differences for age between the 75 probable AD and 75 NC
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Table 1: Demographic information.

CTRL AD MCI-S MCI-P

N 75 75 29 20

Age (mean, SD) 73.3 (4.6) 73.3 (8.4) 63.5 (14.2) 74.2 (6.3)

Sex 23 M; 52 F 15 M; 60 F 9 M; 20 F 10 M; 10 F

Baseline MMSE (mean, SD) 27.7 (1.5) 26.4 (1.6)

Table 2: Model results.

Gravity
Weighted distance

Euclidean Manhattan
Koikkalainen Wilk’s λ

Accuracy 0.90 0.86 0.85 0.73 0.78

Table 3: Morphological factor results.

CTRL AD MCI-S MCI-P

N 75 75 29 20

Mean 0.61 −0.01 0.45 0.24

Std dev 0.32 0.23 0.26 0.27

Std Err mean 0.04 0.03 0.05 0.06

Upper 95% mean 0.68 0.04 0.55 0.37

Lower 95% mean 0.53 −0.06 0.35 0.12

individuals (P > .05) in the AD test group. There was a
statistical difference for age between the MCI-S and MCI-
P groups (P = .001) and for baseline MMSE (P = .01)
(see Table 1).

3.2. Data Processing and Feature Selection. We set the vari-
ance ratio r (see Equation (1)) to 0.997, resulting in a
reference PCA model composed of 256 intensity and local
volume change eigenvectors. We proceeded with forward
stepwise regression analysis using Wilk’s λ method (P-to-
enter = .005) to select the discriminating variables forming
the hyperplane separating each group (e.g., CTRL versus
probable AD; MCI-S versus MCI-P). This was performed
in a leave-one-out fashion to eliminate overlearning of the
dataset. The median number of eigenvectors λF retained in
the discriminating function for either CTRL versus probable
AD or MCI-S versus MCI-P was four.

3.3. Morphological Factor Calculation. Table 2 displays the
different accuracies obtained for the five different for-
mulations for the morphological factor at the task of
discriminating CTRL versus probable AD (leave-one-out).
The Gravitational model’s accuracy was 90%, superior to the
Weighted Distance models.

Using the Gravitational model, we report the results for
the morphological factor for the CTRL versus probable AD
experiment and the MCI-S versus MCI-P experiment in
Table 3. The distributions of morphological factors for all

groups, alongside quantile plots to assess normality (CTRL
and probable AD groups) are shown in Figures 1 and 2.

The receiver operating characteristic (ROC) curve for the
task of discriminating CTRL from probable AD shows the
trade-offs possible in sensitivity and specificity (Figure 1(c)).
The area under the ROC curve was 0.9444. At the 90% accu-
racy point (135/150), specificity was 87.5% and sensitivity
92.9%.

With the Gravitational model we computed the ROC
curve for the discrimination of MCI-S from MCI-P
(Figure 2(c)). The Area under the ROC curve was 0.7940. At
72.3% accuracy, specificity was 62% and sensitivity 75%.

Finally, we computed the morphological factor for the E-
ADNI human phantom volunteer, using the CTRL and prob-
able AD cohorts as a training group for the determination of
the discriminating function. Using the Gravitational model,
the average factor value was −0.4 or 4 standard deviations
away from the mean of the CTRL distribution, with an
average difference in scan-rescan factor of 4%. Notably,
the morphological index obtained via a weighted distance
method (Koikkalainen factor) had an average difference in
scan-rescan factor of less than 1%.

4. Discussion

The gravitational or inverse-squared law model constitutes
a novel development in the strategies towards obtaining a
single quantitative factor from data reduction and machine
learning of very high-dimensional MRI input data towards
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Figure 1: (a, b) Distributions of morphological factors for the CTRL (a) and probable AD groups (b) alongside quantile plots based on
the Gravitational model (see Section 2.5.4). (c) Receiver operating characteristic curve (ROC) for the morphological factor displaying the
trade-offs between sensitivity and specificity at the task of discriminating CTRL versus probable AD. The area under the ROC curve was
0.9444. At the 90% accuracy point (135/150), specificity was 87.5% and sensitivity 92.9%.

discrimination of individual subjects. Its inherent flexibility
makes multigroup comparisons trivial, alongside the intro-
duction of other sources of data. Its performance compares
favorably to other results in the MRI literature within the
context of discriminating CTRL versus probable AD [2]. As
a single dimensional scalar, the morphological factor metric
achieves strong accuracy (90%), especially when compared
to other multidimensional discrimination functions (e.g.,
92% as reported in [3]). It has also a strong result when put

within the clinical context of discriminating CTRL versus
probable AD, where inclusion evaluations are reportedly
78% accurate (albeit against final histopathological diag-
nostic). While lower, accuracy figures for the prediction
of progression to probable AD in the MCI cohort (on
average, 1.5 years before clinical diagnostic) are also strong
and compare favorably to published results on MRI data
[4, 6]. A study comparing these approaches (e.g., within
a monocentric setting, such as the Open Access Series of
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Figure 2: (a, b) Similar distributions of morphological factors for the MCI-S (a) and MCI-P groups (b). (c) ROC for the discrimination of
MCI-S and MCI-P. The area under the ROC curve was 0.7940. At 72.3% accuracy, specificity was 62%, and sensitivity 75%.

Imaging Studies [28] or multicentric setting such as the
Alzheimer’s Disease Neuroimaging Initiative [29]) would be
worthwhile.

The paper uses the leave-one-out approach to feature
selection (stepwise regression analysis), which allows a
correct generalization of the morphological factor as it is not
tested on the same data.

Clinical interpretation of changes in image features
associated with changes in the morphological factor should
provide insight into the development of AD and would
need to be compared to existing results from voxel-based
morphometry studies, structural studies (e.g., hippocampal
and entorhinal atrophy), and histopathological confirmation
studies. Overall, we speculate that the specific patterns of
intensity and local volume change differences result from
different levels of advanced extracellular plaque formation,
neurofibrillary tangles accumulation and other pathological

processes between CTRL and probable AD, and between
stable and progressing MCI. With regards to the features
employed in this method, the differences in local volume
changes should mirror the changes noticed in other reports,
such as visual assessment [30], while differences in grey level
might reflect the intensity of neuronal loss induced by the
neuropathological changes [31], which precede volume loss
as visualized on MRI. Such an evaluation however is beyond
the scope of this paper.

The difference in factor averages between probable AD
and CTRL was 15%. At this level, the minimum trial size
required to detect this difference is 59 individuals for both
samples (α = 0.05; β = 0.50) and reaches 75 individuals if
we include scan-rescan variability.

4.1. Limitations. There are a number of limitations in this
study. One pertains to the fact that the MRI images for the
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probable AD subjects were acquired at the time of diagnosis;
therefore, some of the patients have had AD for a number of
years. In turn, this implies that extensive neurodegeneration
has taken place at this point and should artificially facilitate
the discrimination with CTRL. However, the fact that the
latter were age matched and the fact that the results in the
MCI cohort remain significant alleviate part of this concern.
It would be useful to assess if the morphological factor
correlates with different indices of disease severity, cognitive
deficits, or other biomarkers. Neuropathological confirma-
tion is also required to replace the clinical evaluation as
a gold standard. Finally, the patterns of abnormalities that
can be found by the method are restricted to a space that
is built from healthy, young controls. It is not the optimal
space to describe normal aging and/or AD-related variability.
However, it does tend to maximize the distance between both
groups, as we noticed from building a few reference spaces in
an N-fold validation of the CTRL/probable AD groups that
achieved lower accuracies.

We estimate that the proposed formulation of the
morphological factor is relevant within the context of aid to
diagnostic and prediction of future clinical status in probable
AD.
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References

[1] Z. Lao, D. Shen, Z. Xue, B. Karacali, S. M. Resnick, and C.
Davatzikos, “Morphological classification of brains via high-
dimensional shape transformations and machine learning
methods,” NeuroImage, vol. 21, no. 1, pp. 46–57, 2004.

[2] C. Davatzikos, Y. Fan, X. Wu, D. Shen, and S. M. Resnick,
“Detection of prodromal Alzheimer’s disease via pattern
classification of magnetic resonance imaging,” Neurobiology of
Aging, vol. 29, no. 4, pp. 514–523, 2008.

[3] S. Duchesne, A. Caroli, C. Geroldi, C. Barillot, G. B. Frisoni,
and D. L. Collins, “MRI-based automated computer classif-
ication of probable AD versus normal controls,” IEEE
Transactions on Medical Imaging, vol. 27, no. 4, Article ID
4479633, pp. 509–520, 2008.

[4] Y. Fan, N. Batmanghelich, C. M. Clark, and C. Davatzikos,
“Spatial patterns of brain atrophy in MCI patients,
identified via high-dimensional pattern classification,
predict subsequent cognitive decline,” NeuroImage, vol. 39,
no. 4, pp. 1731–1743, 2008.
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