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We evaluate an automated approach to the cortical surface mapping (CSM) method of VOI analysis in PET. Although CSM has
been previously shown to be successful, the process can be long and tedious. Here, we present an approach that removes these
difficulties through the use of 3D image warping to a common space. We test this automated method using studies of FDDNP PET
in Alzheimer’s disease and mild cognitive impairment. For each subject, VOIs were created, through CSM, to extract regional PET
data. After warping to the common space, a single set of CSM-generated VOIs was used to extract PET data from all subjects. The
data extracted using a single set of VOIs outperformed the manual approach in classifying AD patients from MCIs and controls.
This suggests that this automated method can remove variance in measurements of PET data and can facilitate accurate, high-
throughput image analysis.

1. Introduction

In the field of quantitative imaging, the creation of accurate
volumes of interest (VOIs) is often of central importance.
This process, however, can be time-consuming and is known
to have variance introduced on inter- and intra-investigator
levels. Various approaches have been employed to reduce
the time and labor involved and the noise variance in the
definition of VOIs [1, 2]. Most of these approaches try to
map the images of individuals to a reference image in a
common space. They vary on the mapping methods and
on the selection of the common space and the reference
image. A discussion of various methods and approaches is
provided later in this section [2–4]. The choice of approach
depends on the type of images (i.e., MRI or PET) and the
desired VOIs one is considering. An approach that has been
previously shown to be effective in accomplishing the spatial

normalization of PET images is the use of hemispheric corti-
cal surface mapping [2, 5]. However, the process involved is
complex and labor intensive. An improved procedure suited
for automated and streamlined operation is thus warranted.
In this paper, we introduce a modified method that can
reduce the variance in VOI analysis by warping structural
and functional images to a common space in which valid
VOIs already exist. This method is also easily adaptable to
an automated approach to VOI analysis.

There have been previous attempts at similar methods,
by creating maximum likelihood estimates (MLEs) of VOIs
in a stereotaxic space [1]. In these methods, VOIs are
manually drawn on several brains, which are normalized to a
stereotaxic brain space such as the International Consortium
for Brain Mapping (ICBM53) average space [6]. After a
subject’s brain image has been normalized to this space,
MLEs can be used to create an individualized VOI based on
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the population of manually drawn VOIs. One drawback to
using these methods is that when normalizing a subject’s
brain to the common stereotaxic space, it is difficult to
balance how closely to match the target and template images.
If the images are not matched closely enough, the MLEs
for creating individualized VOIs lose their validity. However,
if images are matched too closely to an average image of
multiple brains, the structure of the subject’s brain image
can be lost when the normalization algorithm mistakes
noise in the common space population as actual structural
information. To reduce as much of the investigator-based
variance as possible, it would seem ideal to use a library
of previously created VOIs in a high-resolution single brain
common space. There have been efforts to create such
libraries [7] however, the problem then becomes finding
a way to closely normalize a subject’s image to this single
common space while maintaining its structural integrity.

Currently, there are many nonlinear methods available
for spatial normalization that use a wide array of image
matching methods. Some of these methods use a set of
smooth basis functions [3], while another large algorithm
family contains the nonparametric methods such as Diffeo-
morphic Demons [8], ART [9], or SyN [4]. Additionally,
there are methods such as the DARTEL algorithm in SPM8
[10] that use a fluid deformation model that simultaneously
matches gray matter to gray matter, and white matter
to white matter. Recently, fourteen such algorithms were
tested against one another in MRI brain registration by
Klein et al. [11]. The evaluation was done using 80 manually
labeled MRI brain images and eight separate measures of
performance, in which the SyN algorithm was ranked the
overall best. The rankings of each algorithm were relatively
consistent across image sets, labeling protocols, and image
matching metrics. Klein et al. believe this is strong evidence
that these rankings can be generalized to other sets of subjects
and labels. The SyN algorithm has the benefit of creating
diffeomorphic deformations, so that there is no shearing or
tearing of the image being deformed. Additionally, the SyN
algorithm is not limited to imaging modalities that can be
accurately segmented into gray and white matter, so it can
be used in studies using non-T1-weighted MRIs. Therefore,
we opted to use the SyN algorithm in our investigation of
automated VOI analysis.

We apply this method to a set of MRI images that
have corresponding PET images of the tracer, 2-(1-
6-[(2-[18F]fluoroethyl)(methyl)amino]-2-naphthylethylide-
ne) malononitrile (FDDNP), which can bind to the cerebral
β-amyloid plaques and neurofibrillary tangles (NFTs)
characteristic of Alzheimer’s disease (AD). The FDDNP
PET images were obtained from a study of AD and mild
cognitive impairment (MCI) patients. Patients classified as
MCI do typically have a larger decline in cognitive function
than normal aging, especially in memory, but do not show
clinical signs of dementia [12]. Moreover, MCI patients do
have a greatly increased chance of developing dementias
such as AD over the non-MCI population [13]. The primary
neuropathological characteristic of AD is accumulation
of β-amyloid plaques and NFTs across numerous cortical
regions. This accumulation of these misfolded protein

aggregates follows a pattern of deposition described by
Braak and Braak [14], in which different cortical regions are
affected at varying severity throughout the progression of
the disease. Braak and Braak proposed three stages (A–C)
for the deposition of β-amyloid, and six stages (I–VI) for the
pattern of deposition of NFTs.

Although AD is clinically recognizable at late stages
due to characteristic dementia and decline in cognitive
abilities, current clinical diagnosis standards do not yet
produce definitive differentiation between AD and non-
Alzheimer’s dementias (e.g., frontotemporal dementia) [15,
16]. However, current evidence shows that the accumula-
tion of the neuropathological markers begins long before
the onset of clinically recognizable symptoms [17]. In
postmortem studies, cognitively normal controls (clinical
dementia rating (CDR) 0) have been shown to display
density and distribution of β-amyloid and NFTs similar
to mildly demented (CDR 0.5) patients [18]. In another
postmortem study, Peterson et al. reported clinically healthy
controls whose NFT distribution spanned stages 0–V in the
Braak and Braak progression, with 25% of these controls
presenting NFTs consistent with at least stage III [19]. In
the same study, Peterson et al. showed that once clinical
symptoms are present, the Braak pathology stages do show
correlation with the severity of symptoms. Of the MCI
patients studied, 80% presented with Braak NFT stages II–
IV and 91% of the AD patients presented with stages IV–VI
[19].

In both living patients, as well as in postmortem
determinations, FDDNP signal has been shown to reside in
areas with high β-amyloid plaque and NFT loads [2]. Along
with the known spatial and temporal pattern of deposition,
this suggests that molecular imaging using FDDNP PET may
be a powerful tool in early detection and diagnosis of AD.
For these same reasons, this compound is a good candidate
for the evaluation of automated regional VOI analysis. In
this work, we validated the method of structural warping by
examining the spatial overlap between the common space
image and the warped MRIs in specific structures and
regions. Furthermore, we validate the automated approach
by comparing the efficacy of VOI data extracted from warped
and unwarped functional images to create discriminant
models classifying subjects as normal controls, MCI, or
AD.

2. Methods

2.1. Subjects. The study group was comprised of 7 AD
(76 ± 10 years, 4 : 3 female/male), 6 MCI (73 ± 13 years,
4 : 2 female/male), and 10 control (71 ± 10 years, 7 : 3
female/male) subjects. Subjects were classified into groups
using the diagnostic criteria for AD and amnestic MCI [2].
Subjects who had some memory symptoms but did not meet
the diagnostic criteria for either disease group were classified
as controls. No subject included in this study had a history of
stroke, head injury, or non-Alzheimer’s disease which would
affect cognitive function. All subjects (n = 23) were given
mini-mental state examinations (MMSE) to assess cognitive
abilities. AD patients had an average MMSE score of 23 ± 2,
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MCIs had an average score of 27 ± 1, and controls had an
average score of 29 ± 1. This subject population has been
previously described by Protas et al. [2].

2.2. Imaging. A T1-weighted gradient echo (MP-RAGE)
image was taken for each subject with a 3T Siemens Allegra
MRI scanner (sagittal plane; repetition time (TR) 2300 ms;
echo time (TE) 2.93 ms; 160 slices; slice thickness 1 mm;
in-plane voxel size 1.3 × 1.3 mm; field of view 256 × 256;
flip angle 8◦) [2]. FDDNP was produced as described
elsewhere [20], and each subject was given a bolus injection
of FDDNP (320–550 MBq). A dynamic PET scan was taken
for up to 125 min (six 30s frames; four 180s frames; five
600s frames; three 1200s frames). Imaging was performed
using an ECAT EXACT HR+ scanner (Siemens Corp.). The
images were reconstructed using filtered backprojection with
attenuation correction. After the initial reconstruction, a
movement correction algorithm was applied [21, 22]. This
algorithm corrects for motion artifacts introduced during
the 125-minute scan. Each emission frame is aligned with the
transmission frame and then reconstructed using the proper
attenuation coefficients.

2.3. Creation of VOIs. All MRIs were normalized using the
cortical surface mapping method. By this method, a 9-
parameter linear registration is applied to bring all subjects
into rough alignment with a common space, in this case
the International Consortium for Brain Mapping (ICBM53)
common space [6]. A 3D model of each subject’s cortical
surface (in the ICBM space) was extracted from their
respective MRIs through the use of a method previously
described by Thompson et al. [5]. On this model, 36 sulci
major sulci and fissures were manually identified on each
cortical surface, after which the surface was flattened to
a 2D cortical surface map. The previously identified sulci
and fissures were then redrawn on the flat map. These
sulci were matched to an average 2D sulcal map through
a nonlinear deformation. Inverting the flattening procedure
and applying this deformation brought the 3D cortical
surfaces of all subjects into close alignment. On the average
cortical surface, nine ROIs were drawn bilaterally over the
following regions: upper parietal lobe, posterior frontal lobe,
prefrontal lobe, occipital-parietal lobes, posterior temporal
lobe, upper temporal lobe, lower temporal lobe, medial
temporal lobe, and the posterior-cingulate gyrus. These ROIs
were projected into 3D VOIs by including each voxel within
9 mm of the originally drawn voxels on the cortical surface.
The inverse of the cortical surface mapping method for each
subject was applied to these VOIs, such that each subject’s
MRI aligned to the ICBM space had an individualized set of
these VOIs [2]. In addition, MRIs in the ICBM space were
segmented into white and gray matter using the automated
segmentation algorithm in SPM8 [23].

2.4. Creation of FDDNP-DVR Images. Logan analysis was
performed on the movement-corrected PET images to create
FDDNP distribution volume ratio (DVR) images [21].
Following the procedure described previously by Kepe et al.

[24] and Small et al. [25], the cerebellar cortex was used as a
reference region to approximate an input function. The first
six minutes of the FDDNP scan—representing a perfusion
image—were summed (frames 1–7), and a ROI was drawn
over cerebellar cortex in that summed image. This ROI
was then used to extract data from each individual frame,
creating a time activity curve (TAC). Using this TAC as the
input function for Logan analysis [26], the DVR value for
each voxel was set to the slope of the respective Logan plot
over the frames from 15 minutes to the end of the scan [2]. A
rigid, linear transformation was calculated using SPM2 [23],
to align the early summed FDDNP frames (0–6 minutes), to
the MP-RAGE image. This transformation was then applied
to DVR images, to bring it into alignment with the MRI [2].

2.5. Image Warping. Central to the method of automated
VOI analysis is the ability to bring the imaging data of
all subjects in close alignment with a common space.
To accomplish this goal, we used the symmetric image
normalization method (SyN) described by Avants et al. [4],
as implemented in the software package ANTs [27]. The
SyN algorithm creates a diffeomorphic mapping (i.e., one
that is both invertible and differentiable) along a geodesic
path between a target image I and a template image J . SyN
takes advantage of the fact that such diffeomorphisms can be
decomposed into two parts, ϕ1 and ϕ2, such that the mapping
ϕ(I) = ϕ−1

2 (ϕ1(I)) = J . This allows for the symmetry of
the algorithm so that regardless of whether the image is the
“target” or “template,” the same deformation is computed.
The subfunctions are defined such that the magnitudes of
the deformations they define are equal, and that I and J
contributed equally to the deformation. The SyN algorithm
can create such a mapping with several different optimization
metrics, but for our purposes, images were matched using
localized cross-correlation (CC). This metric is a measure
of local image mean and variance. It is computed over 3D
windows, on the order of 53 voxels. Briefly, the algorithm
sets up a global maximization of CC, which is translated into
a series of Euler-Langrage equations which are then solved
subject to several constraints. As stated above, the two sub-
deformations must contribute equally and be both invertible
and differentiable. The solutions are solved iteratively. These
iterations are carried out at multiple levels of resolution. At
each level, computation continues until convergence, or a
maximum number of iterations is reached.

2.6. Analysis. One control subject was designated as the
common space (Figure 1(a) bottom), to which all other
subjects would be warped. For each remaining subject’s MRI
scan, a three-dimensional diffeomorphic warp was calculated
to normalize it to the common space. This warp was
computed to maximize cross-correlation in windows of size
43 voxels, between the common space and subject images.
The software ANTs employs a multiscale resolution approach
to image warping. We chose to use four levels of resolution
with scaling factors [1, 2, 4, 8], with the maximum iteration
number set for each level as (100, 100, 50, 20) This warp was
applied to all previously drawn VOIs, segmentation images,
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Figure 1: (a) (Left) Warping results: average of 22 subjects MRIs after linear registration only (top); average of 22 subjects after warping
to common space (middle); MRI of common space subject (bottom). (b) (Right) Absolute voxel-to-voxel variance of unwarped (top) and
warped (bottom) MRIs. Warping reduces average in-brain variance by 54% from linear registration alone.

and coregistered FDDNP-DVR images for that subject. For
each subject, the average FDDNP-DVR values in each of
the nine VOIs were measured. This measurement was first
performed using a subject’s VOI to extract data from the
respective unwarped PET image (unwarped data). Next,
average DVR values were extracted from warped PET images
using VOIs created for the common space MRI (warped
data). The warping algorithm was evaluated using the Dice
overlap statistic, κ, calculated between the regions of the
common space image and the regions of subjects warped into
the common space

κ = 2× #(A∩ B)
[#(A) + #(B)]

. (1)

This measure has a range of [0, 1] and captures the over-
lap between two regions, A and B. The # (X) operator returns
the number of voxels contained in region X. Although there
is no way to determine statistical significance of this measure
in this context, some investigators consider good results to
be κ > 0.6 for smaller structures and κ > 0.8 for larger
structures [4].

Using the statistical software SPSS (SPSS 15.0 for
Windows), discriminant analysis was performed to classify
subjects into three groups (control, MCI, or AD). In addition
to classifying subjects solely on MMSE scores, an exhaustive
search of two classes of models was performed. In the first
class, models were built using unwarped FDDNP-DVR data
extracted from all possible combinations of VOIs; the second
was built similarly, except using warped FDDNP-DVR data
extracted using the common space VOIs. In both classes,
models were built with and without the use of MMSE as
a predictor variable. Models in all categories were ranked
by classification ability and leave-one-out cross-validation. It

is possible that the exhaustive search for best discriminant
models led to some survivorship bias. To correct for this
possible artifact, we performed a permutation test on the best
models found. In this test, the null hypothesis is that there is
no underlying structure to the data, and permuting the data
labels (control, AD, or MCI) would have no effect on the abil-
ity to classify subjects into their respective groups. The group
labels were randomized, keeping the distribution of groups
the same (10 control, 7 AD, 6 MCI). For each randomization,
linear discriminant analysis was performed on the permuted
data, and the correct classification percentage was calculated.
This was repeated 100,000 times for each of the best models
initially discovered. The significance level is then determined
as the percentage of randomized models that are performed
as well or better than the correctly labeled data [28].

3. Results

Figure 1(a) shows results of the SyN warping algorithm. The
average of 22 subject MRIs registered to common space with
nine-parameter linear registration alone (top) and with the
SyN algorithm (middle) is shown alongside the common
space (23rd subject’s) MRI (bottom). Images warped to
the common space showed a 54% reduction in average
absolute voxel-to-voxel variance within the brain (excluding
skull and scalp) as compared to variance measured after a
nine-parameter linear registration alone (Figure 1(b)). The
average (±SD) overlap ratio, κ, measured between structures
in the common space and those of the 22 remaining subjects
warped into the common space are shown in Figure 2.
In addition to those for the nine VOIs, overlap between
subjects and the common space was also measured for white
matter, gray matter, and whole brain structures. In this case,



International Journal of Alzheimer’s Disease 5

Table 1: Best discriminant models.

Model Classification % Cross-validation % Regions used
Permutation
significance

MMSE only 77.3 77.3 N/A N/A

Unwarped PET data only 82.6 73.9 2,4,5,8,9 P = 3.42∗ 10−3

Warped PET data only 87 73.9 4,5,8,9 P = 1.3∗ 10−4

Unwarped PET data and MMSE 91.3 87 4,5,8,9 P = 8.6∗10−4

Warped PET data and MMSE 100 95.7 4,5,8 P < 10−5 †

†
(None of the 100,000 permutations resulted in a model that performed as well as the true data).
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Figure 2: Overlap statistic by region. Data shown is average overlap,
±SD, between common space regions and warped regions of
remaining 22 subjects.
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Figure 3: Generalized image of the VOIs used to extract FDDNP
data. (Reprinted from Protas et al. 2010 [2]).

the whole brain is defined as all voxels contained within the
cortical surface, as calculated by Protas et al. [2].

Table 1 shows the best results of the discriminant analysis
carried out in SPSS. The models shown are those that had
the highest leave-one-out cross-validation scores of all the
possible discriminant models in their respective classes. The
table shows the classification performance using the original
sample (n = 23) and with leave-one-out cross-validation.
The numbered regions indicated in Table 1 and Figure 2 cor-
respond to those represented in Figure 3. All models shown
use FDDNP-DVR data from the occipital-parietal region,
the posterior temporal lobe, and the posterior cingulate
gyrus. FDDNP-DVR data from the medial temporal lobe is

also used in all but one of the models shown. Histograms
of the classification percentage of models yielded by the
permutation test are shown in Figure 4. Each histogram in
Figure 4 also shows the classification percentage of the true,
nonpermuted data.

4. Discussion

As can be seen in Figure 1, the SyN algorithm is a powerful
tool in normalizing a set of structural images. The set of
brains, including some with severe cortical degeneration,
were mapped almost exactly to a common space, with the
borders between sulci and gyri very clearly maintained. The
strength of this method is reinforced by the overlap data
shown in Figure 2. Although there is no way of describing
statistical significance of the overlap statistic in this particular
situation, we do see average κ > 0.7 for each of the VOIs,
which are relatively small structures and only project 9 mm
deep into cortex. It is also conceivable that some of the
variation is due to the original creation of the VOIs. Although
the VOIs were created from a single set drawn on the
average cortical surface map, the registration of MRIs to
that space was still dependent on manual steps where inter-
or intrainvestigator variation could have been introduced.
Therefore, it is possible that some of the missed overlap in
these VOIs is due to the imperfect nature of the original
cortical surface mapping. In addition, the fact that we see
κ > 0.9 for white and gray matter is especially noteworthy,
as we are warping the MRIs of some AD patients with
severe cortical degeneration. It is nontrivial that a mapping
that preserved sulcus/gyrus boundaries would also maintain
cortical gray/white matter boundaries. It is likely that the
preservation of these boundaries is due to the use of CC
metric. Since the metric is based on matching local variances,
as long as tissue types are distinguished by the imaging
modalities used, the boundaries between these tissues are
likely to be very strictly maintained. Thus, not only does
SyN successfully match images visually, but micro- and
macrostructures are preserved and matched as well. These
results show that the SyN algorithm is an excellent tool for
this specific task of image matching. It requires minimal user
input, which allows for high-throughput automation and
minimizes variance introduced by the investigator. Also, in
investigations where one needs to measure the exact spatial
distribution of a tracer, an algorithm such as SyN performs
quite well because images are matched while maintaining
structural boundaries without shearing or tearing.
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Figure 4: Classification percentages of permutation test. Data shown are for the models using (a) unwarped data only, (b) unwarped data
and MMSE, (c) warped data only, and (d) warped data and MMSE. The vertical line represents the score of the true data.

Table 1 shows that data extracted from FDDNP-DVR
images using a single set of VOIs in a common space
outperforms data extracted using individual VOIs for each
subject in classifying subjects as control, MCI, or AD.
Table 1 also shows that the use of FDDNP-DVR can improve
classification over using MMSE alone. In addition, the
models using warped data use fewer predictor variables than
those using unwarped data. Table 1 and Figure 4 show that
discrimination between subject classes is likely not a result of
survivorship bias, as the P value for all models is very low,
and for the model using warped data and MMSE, not one of
the 100,000 permutations of data labels resulted in a model
performing as well as the true data. It is possible that this is
a result of decreased noise in measurement of PET data due
to standardization of VOI analysis, as with fewer predictor
variables we are fitting less noise. There is a reduction in
the performance of models when looking at cross-validation
scores compared to simple classification, although this could
likely be a result of the sample size of this study. Here, we had
a sample of 23 subjects, so for cross-validation the models are
built with 22 subjects classified into three subpopulations.
In this situation, a small amount of misclassification can
lead to a large percentage drop in accuracy. It should also

be noted that all the discriminant models shown in Table 1
use FDDNP-DVR information from similar regions and
from those closely associated with the classical pathological
progression of AD, as described by Braak and Braak [14].

All models use data from the occipital-parietal region, the
posterior temporal lobe, and the posterior cingulate gyrus.
The occipital-parietal VOI includes regions of the basal
isocortex where initial deposits of amyloid plaques are found,
with increasing deposition in stages B and C. This region also
shows large amounts of NFTs in late stages of the disease.
The posterior temporal lobe and posterior cingulate gyrus
both see initial amyloid deposition in stage B with increasing
deposition in stage C. Like the occipital-parietal region, these
areas also show large amounts of NFT deposition in late
stages of the disease. Many of the models also use data from
the medial temporal lobe, which is the major site of accumu-
lation for NFTs [14]. Although this is a region canonically
associated with the pathological markers of AD, it is possible
that it was replaced by MMSE as a predictor variable because
FDDNP binding and MMSE share predictive strength for
disease state. Giannakopoulos et al. [29] have described that
NFT density in the entorhinal cortex is a strong predictor of
MMSE in elderly subjects. Thus, it is possible that for this
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VOI, MMSE and DVR values supply redundant information.
As discussed previously, deposition of plaques and NFTs in
the medial temporal lobe occurs quite early in the progres-
sion of the disease, even before the appearance of clinical
symptoms. Therefore, it is also possible that this region
might be a weaker predictor of discrimination between
noncontrol states (AD and MCI), as elevated FDDNP-DVR
values in the medial temporal lobe are present in control
subjects and plateau for these non-control subjects. It should
also be noted that no special weighting was put on any
regions in the search for the best discriminant models.

Central to the utility of this method for further study
is the ability to create meaningful and accurate VOIs in a
common space for use across data sets. In this paper, we
have only used VOIs created via cortical surface mapping
and projection into cortex. This procedure has the benefit
of creating VOIs that adhere strictly to well-defined cortical
regions and can also be tailored to different studies by pro-
jecting different depths into cortex depending on the desired
application. This method also gains strength when combined
with a tool such as the SyN algorithm which, as shown above,
strongly matches tissue morphology between subjects. An
obvious drawback to this method is its inability to define
VOIs over noncortical regions, such as the amygdala or
thalamus. However, for well-defined neurological structures
such as those, manual creation of such VOIs can be carried
out with relative ease and added to a library of VOIs covering
a high-resolution common space MRI.

Given the success of this warping method with respect
to the classification of subjects with neurological disease,
we believe that this can be expanded to a wide variety of
applications. First and foremost, it can be used to facilitate
accurate high-throughput PET image analysis, by greatly
reducing the time needed to extract regional information,
while removing several sources of experimental variance.
In these applications, almost the entire process of data
collection can be streamlined into an automated procedure
for clinical applications. Given predefined reference region
VOIs, methods such as Patlak or Logan analysis can by
automated and normalized, reducing the manual work load
required for such methods, and removing variance caused by
ad hoc definitions of reference regions. In a similar fashion,
such a method could be applied to facilitate the use of image-
derived input functions for kinetic PET imaging. Once
experimentally appropriate analysis has been performed on
the raw PET data, the process of regional data extraction
can be automated entirely, as shown above. Moreover, this
method can be used to facilitate multicenter trials, by using
identical image analysis and data extraction across many
subjects, investigators, and locations.

5. Conclusions

We have shown that the use of the SyN algorithm is a pow-
erful tool for automated image normalization that maintains
good alignment of biologically important structures of the
warped images. We have also shown that by normalizing data
to a common space and using a set of VOIs predrawn in
that space, one can actually improve the predictive quality of

data extracted from functional images. In addition to being
able to better classify subjects into their diagnostic groups,
we can do so using fewer predictor variables. This is perhaps
due to an elimination of intra-investigator and inter-subject
variability by using a single set of VOIs. These results seem
to suggest that with a larger sample of subjects with AD and
non-Alzheimer’s dementias, a protocol could be developed
to greatly increase the ability to clinically diagnose patients
into their proper groups based on differences in the binding
patterns. These results also suggest that automation of VOI
analysis through spatial normalization to a single common
space brain image can be used to streamline accurate, high-
throughput PET image analysis for use in clinical settings.
This method is expected to be applicable to longitudinal
studies of cognitive impairment as well as to other PET
tracers (e.g., other probes for AD imaging), but further study
is warranted.

Funding

This work was supported by NIH Grants P01-AG025831and
M01-RR00865, the Department of Energy (DOE Contract
DE-FC03-87-ER60615); General Clinical Research Centers
Program; the Elizabeth and Thomas Plott Endowment in
Gerontology. No company provided support of any kind for
this study.

Financial disclosure

The University of California, Los Angeles, owns a US
patent (6,274,119) entitled “Methods for labeling β-amyloid
plaques and neurofibrillary tangles” that uses the approach
outlined in this paper. Drs. G. W. Small, S. Huang, and J. R.
Barrio are among the inventors, have received royalties, and
may receive royalties on future sales. Dr. G. W. Small reports
having served as a consultant and/or having received lecture
fees from Eisai, Forest, Medivation, Novartis, and Pfizer.

Acknowledgments

The authors would like to thank Dr. Paul Thompson for his
assistance with the cortical surface mapping technique, Dr.
Avants of the University of Pennsylvania for the production
of the ANTs package, Mr. David Truong and his group for
the computational assistance, and Dr. Satyamurthy and the
cyclotron facility for the production of FDDNP.

References

[1] A. Hammers, R. Allom, M. J. Koepp et al., “Three-dimensional
maximum probability atlas of the human brain, with partic-
ular reference to the temporal lobe,” Human Brain Mapping,
vol. 19, no. 4, pp. 224–247, 2003.

[2] H. D. Protas, S. C. Huang, V. Kepe et al., “FDDNP binding
using MR derived cortical surface maps,” NeuroImage, vol. 49,
no. 1, pp. 240–248, 2010.

[3] J. Ashburner and K. J. Friston, “Nonlinear spatial normaliza-
tion using basis functions,” Human Brain Mapping, vol. 7, no.
4, pp. 254–266, 1999.



8 International Journal of Alzheimer’s Disease

[4] B. B. Avants, C. L. Epstein, M. Grossman, and J. C. Gee,
“Symmetric diffeomorphic image registration with cross-
correlation: evaluating automated labeling of elderly and
neurodegenerative brain,” Medical Image Analysis, vol. 12, no.
1, pp. 26–41, 2008.

[5] P. M. Thompson, D. MacDonald, M. S. Mega, C. J. Holmes,
A. C. Evans, and A. W. Toga, “Detection and mapping of
abnormal brain structure with a probabilistic atlas of cortical
surfaces,” Journal of Computer Assisted Tomography, vol. 21,
no. 4, pp. 567–581, 1997.

[6] J. Mazziotta, A. Toga, A. Evans et al., “A probabilistic atlas and
reference system for the human brain: International Consor-
tium for Brain Mapping (ICBM),” Philosophical Transactions
of the Royal Society B, vol. 356, no. 1412, pp. 1293–1322, 2001.

[7] N. Tzourio-Mazoyer, B. Landeau, D. Papathanassiou et al.,
“Automated anatomical labeling of activations in SPM using a
macroscopic anatomical parcellation of the MNI MRI single-
subject brain,” NeuroImage, vol. 15, no. 1, pp. 273–289, 2002.

[8] T. Vercauteren, X. Pennec, A. Perchant, and N. Ayache,
“Diffeomorphic demons: efficient non-parametric image reg-
istration.,” NeuroImage, vol. 45, no. 1, pp. S61–S72, 2009.

[9] B. A. Ardekani, S. Guckemus, A. Bachman, M. J. Hoptman,
M. Wojtaszek, and J. Nierenberg, “Quantitative comparison
of algorithms for inter-subject registration of 3D volumetric
brain MRI scans,” Journal of Neuroscience Methods, vol. 142,
no. 1, pp. 67–76, 2005.

[10] J. Ashburner, “A fast diffeomorphic image registration algo-
rithm,” NeuroImage, vol. 38, no. 1, pp. 95–113, 2007.

[11] A. Klein, J. Andersson, B. A. Ardekani et al., “Evaluation of
14 nonlinear deformation algorithms applied to human brain
MRI registration,” NeuroImage, vol. 46, no. 3, pp. 786–802,
2009.

[12] R. C. Petersen, “Mild cognitive impairment as a diagnostic
entity,” Journal of Internal Medicine, vol. 256, no. 3, pp. 183–
194, 2004.

[13] S. Gauthier, B. Reisberg, M. Zaudig et al., “Mild cognitive
impairment,” The Lancet, vol. 367, no. 9518, pp. 1262–1270,
2006.

[14] H. Braak and E. Braak, “Neuropathological stageing of
Alzheimer-related changes,” Acta Neuropathologica, vol. 82,
no. 4, pp. 239–259, 1991.

[15] B. Dubois, H. H. Feldman, C. Jacova et al., “Research criteria
for the diagnosis of Alzheimer’s disease: revising the NINCDS-
ADRDA criteria,” Lancet Neurology, vol. 6, no. 8, pp. 734–746,
2007.

[16] A. R. Varma, J. S. Snowden, J. J. Lloyd, P. R. Talbot, D. M.
A. Mann, and D. Neary, “Evaluation of the NINCDS-ADRDA
criteria in the differentiation of Alzheimer’s disease and
frontotemporal dementia,” Journal of Neurology Neurosurgery
and Psychiatry, vol. 66, no. 2, pp. 184–188, 1999.

[17] V. Kepe, S.-C. Huang, G. W. Small, N. Satyamurthy, and
J. R. Barrio, “Microstructural imaging of neurodegenerative
changes,” in PET in the Evaluation of Alzheimer’s Disease and
Related Disorders, D. Silverman, Ed., Springer, New York, NY,
USA, 2009.

[18] J. L. Price and J. C. Morris, “Tangles and plaques in nonde-
mented aging and “preclinical” alzheimer’s disease,” Annals of
Neurology, vol. 45, no. 3, pp. 358–368, 1999.

[19] R. C. Petersen, J. E. Parisi, D. W. Dickson et al., “Neuro-
pathologic features of amnestic mild cognitive impairment,”
Archives of Neurology, vol. 63, no. 5, pp. 665–672, 2006.
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