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Alzheimer’s disease (AD) is a serious threat to the global health care system and is brought on by a series of factors that cause
neuronal dysfunction and impairment in memory and cognitive decline. This study investigated the therapeutic potential of
phytochemicals that belong to the ten regularly used spice plants, based on their binding affinity with AD-associated proteins.
Comprehensive docking studies were performed using AutoDock Vina in PyRx followed by molecular dynamic (MD)
simulations using AMBER 14. The docking study of the chosen molecules revealed the binding energies of their interactions
with the target proteins, while MD simulations were carried out to verify the steadiness of bound complexes. Through the
Lipinski filter and admetSAR analysis, the chosen compounds’ pharmacokinetic characteristics and drug likeness were also
examined. The pharmacophore mapping study was also done and analyzed for best selected molecules. Additionally, principal
component analysis (PCA) was used to examine how the general motion of the protein changed. The results showed quercetin
and myricetin to be potential inhibitors of AChE and alpha-amyrin and beta-chlorogenin to be potential inhibitors of BuChE,
exhibiting best binding energies comparable to those of donepezil, used as a positive control. The multiple descriptors from the
simulation study, root mean square deviation (RMSD), root mean square fluctuation (RMSF), hydrogen bond, radius of
gyration (Rg), and solvent-accessible surface areas (SASA), confirm the stable nature of the protein-ligand complexes.
Molecular mechanic Poisson-Boltzmann surface area (MM-PBSA) binding free energy calculations indicated the energetically
favorable binding of the ligands to the protein. Finally, according to pharmacokinetic properties and drug likeness,
characteristics showed that quercetin and myricetin for AChE and alpha-amyrin and beta-chlorogenin for BuChE were found
to be the most effective agents for treating the AD.

1. Introduction

Alzheimer’s disease (AD) is a progressive neurological disor-
der that is the most common cause of dementia [1], affecting
at least 27 million individuals and accounting for 60 to 70%
of all dementia cases [2]. It is considered progressive because
the symptoms worsen over time [3]. In its most advanced

phases, this disease leads patients to lose cognitive function,
brain cells, and memory, leaving them completely dependent
on others for survival [4]. A comprehensive treatment for
this condition has not been found after more than a century
of research and disease identification [5].

Cholinergic neurotransmission plays a crucial role in
impaired cognitive function, which is a hallmark of AD as
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well as other forms of dementia [6]. There were treatments
proposed to inhibit accumulation of amyloid- 3, tau hyperpho-
sphorylation, and immunotherapy; however, these treatments
failed to provide effects and were consequently abstained in
phase II or III clinical trials [7]. Currently, the primary method
for treating the cognitive and behavioral symptoms of mild-
to-moderate stages of AD involves enhancing cholinergic neu-
rotransmission [8]. Therefore, acetylcholinesterase (AChE)
and butyrylcholinesterase (BuChE) have become a major
focus of AD research in recent decades [9]. Two cholinester-
ases, AChE and BuChE, hydrolyze acetylcholine (ACh) in
the brain; AChE is more prevalent than BuChE in the brain
tissue of AD patients, which leads to the breakdown of ACh
in the hippocampus and cerebral cortex [10]. During AD
progression, AChE activity in the temporal lobe and hippo-
campus is lowered by 67% relative to normal levels, while
BuChE activity increases to 165% of normal levels [11]. AChE
and BuChE (cholinesterase) inhibitors (ChE-Is) prevent the
breakdown of the neurotransmitter by boosting the amounts
of ACh in the brain, hence strengthening the inadequate cho-
linergic neurotransmission in the brain. Both AChE and
BuChE have been implicated in the etiology of AD, and
studies have demonstrated the therapeutic value of inhibiting
both enzymes [10, 12].

Tacrine is a reversible AChE and BuChE inhibitor which
was the first compound to enter clinical trials as a potential
AD treatment showing significant benefits on memory
performance in young and elderly normal subjects [13].
Donepezil, a novel AChE inhibitor produced from inda-
none, was discovered in 1983 by Sugimoto et al. at Japan’s
Eisai Research Laboratory [14]. The FDA first approved
donepezil in 1996 for mild-to-moderate AD, and in 2010,
they expanded its use to moderate-to-severe AD at the level
of 23mg/day [15]. Rivastigmine, another FDA-approved
molecule, is an irreversible AChE and BuChE inhibitor for
the treatment of mild-to-moderate AD [16]. In 2000, a
reversible AChE inhibitor, galantamine, was approved as a
symptomatic medication for AD which modifies the alloste-
ric site of the nicotinic cholinergic receptors [17]. These
inhibitors disrupt the effects of AChE at the synapse, result-
ing in anorexia, diarrhea, nausea, vomiting, and bradycardia
[18]. These molecules do not cure AD, but they may
improve memory, awareness, and functional capacity. With-
out a cure for the condition, researchers continue to look for
a treatment.

With this motive to forage for potential therapeutics, the
computer-aided in silico technique has been broadly used for
the early phases of drug development. Computer-aided
rational drug design is entrenched by the inspection of the
structures and functions of biological targets to find new
medications [19]. It is a useful technique of predicting the
potential drug candidates for diverse diseases in a cost-
effective and time-efficient manner that minimizes mistakes
in the final phases [20, 21]. A rapid in silico approach has
been exercised to find and identify new natural product that
leads against AChE and BuChE as therapeutic targets based
on the three-dimensional structure of receptor [22]. Con-
cerning this, the information of protein-ligand interactions
was harnessed by utilizing the X-ray crystal structures of

International Journal of Alzheimer’s Disease

AChE and BuChE to decipher valuable insights into struc-
tural features that are critical for inhibitor binding. Here,
we amassed a total of 1701 bioactive compounds from ten
daily used spice plants as ligands. Research on medicinal
plants will persist as long as humanity endures, given their
significant contributions to disease treatment over numer-
ous years [23, 24]. Molecular docking was performed to pre-
dict receptor-ligand interaction at the molecular mechanism
of action, allowing prospective therapeutic candidates to be
identified in a relatively short amount of time [25]. To validate
the predictions from docking investigations, MD simulation
has been intensively used, which is a computer simulation tool
for studying the physical motions of atoms and molecules
[26]. Molecular mechanic Poisson-Boltzmann surface area
(MM-PBSA) is adopted to calculate ligand-macromolecule
interaction free energies which are extensively used in the
study of biomolecular interactions [27]. This study also
employed ADME/TOX to evaluate the drug likeness of
screened results from docking studies. Aforementioned tools
might enhance the prediction of binding affinity and stability
of the receptor ligand complexes, which aids in the identifica-
tion of lead compounds.

Natural sources of phytochemicals such as plants are
being studied for drug development, as they are less poison-
ous and have fewer side effects than synthetically produced
molecules [28]. Hence, in this study, we aimed to design
likely inhibitors from the phytochemicals of medicinal spice
plants against the potential drug targets AChE and BuChE of
AD. The workflow of this study is presented in Figure 1.

2. Materials and Methods

2.1. Protein Retrieval and Preparation. The target proteins,
i.e, AChE (PDB ID: 4EY6) [29] and BuChE (PDB ID:
1POI) [30], were retrieved from the Protein Data Bank
(PDB) (https://www.rcsb.org/) database maintained by
Research Collaboratory for Structural Bioinformatics (RCSB).
The two PDB IDs were considered due to their X-ray crystal-
lographic structure, lower resolution (<2.5 A), and percentile
scores in global validation metrics which indicates the better
structure quality. The protein structures were preprocessed
through PyMOL software (version 2.5) [31]. This operation
cleaned and optimized the protein models by removing the
native inhibitors as well as other heteroatoms including water
molecules. To make proteins protonated for enhanced docking
performance, hydrogen atoms have been added to them. The
preprocessed macromolecules were then optimized, verified,
and energy-minimized using the Swiss-PDB Viewer [32].

2.2. Ligand Retrieval and Preparation. A total of 1701 bioac-
tive compounds from the ten daily used spice plants including
Allium cepa (onion), Allium sativum (garlic), Zingiber officinale
(ginger), Capsicum annuum (chili), Cinnamomum verum
(cinnamon), Laurus nobilis (bay leaf), Curcuma longa (tur-
meric), Cuminum cyminum (cumin), Syzygium aromaticum
(clove), and Coriandrum sativum (coriander) were selected as
ligands. Bioactive compound’s library was prepared from Dr.
Duke’s Phytochemical and Ethnobotanical Databases (https://
phytochem.nal.usda.gov/phytochem/search). 3D structures of
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FIGURE 1: Graphical representation of this study.

these compounds were obtained from PubChem database
(https://pubchem.ncbinlm.nih.gov/) in .sdf format. The struc-
tures of ligands were prepared using the Open Babel [33] soft-
ware that is included as a default option in the PyRx.

2.3. Molecular Docking. Molecular docking was carried out
by PyRx software (version 0.8) [34] to explore all possible
orientations, conformations, and binding affinities for the
ligands with AChE and BuChE active site. All ligands were
converted to PDBQT format using Open Babel software
[33] to prepare them in an admissible format for docking
in AutoDock Vina. The grid box was generated by entrap-
ping the whole protein into the box to implement blind
docking. Molecular visualization of the docking results was
performed, and nonbonding interactions between the
docked protein-ligand complexes and the docking pose were
analyzed by using BIOVIA Discovery Studio Client 2021
[35]. Conformation indicating the lowest docking score
(in kcal/mol) was selected as lead compound.

2.4. ADME and Toxicity Analysis. SwissADME [36] and
admetSAR [37] servers were used with the intention to
estimate the pharmacological and pharmacokinetic charac-
teristics of selected lead compounds applying Lipinski’s rule
of five (RO5). Canonical simplified molecular-input line-
entry system (SMILES) structures were retrieved for each
lead molecule from PubChem database. These SMILES are
required as an entry system for these servers in order to pre-
dict the drug likeness of lead compounds.

2.5. Pharmacophore Mapping. Pharmacophore modeling
helps to validate structure-activity relationship (SAR) find-
ings and guide the design of new compounds with optimized
activity and improved target selectivity. The pharmacophore
mapping study of the two best ligands was carried out by
online server PharmMapper (http://www.lilab-ecust.cn/
pharmmapper/). The ligands were downloaded in .sdf for-
mat from PubChem server and afterwards uploaded, and
the “maximum number of conformation” parameter was

set at 1000. All possible targets were kept at the “select target
set” parameter, and the “number of reserved matched target”
parameter was kept 1000. The cut-off value for the fit score
in the advanced settings was set at 0. The default settings
were used for all other parameters. The pharmacophore
mapping experiment was done by utilizing two best ligand
molecules for each protein among the 10 selected lead
compounds.

2.6. Molecular Dynamic Simulation. The molecular dynamic
simulation was done in YASARA dynamics [38] using the
AMBER 14 force field [39]. Complexes were adjusted,
hydrogen bond networks were oriented, and the cubic simu-
lation cell was constructed. In order to minimize the protein
complexes using a TIP3P water solvation model, the steepest
gradient techniques were used with a simulated annealing
strategy (0.997 g/L1, 25 ¢, and 1atm) [40]. At 310K, 0.9%
NaCl, and pH7.4, the simulated system was neutralized
[41]. The particle mesh Ewald method was used to deter-
mine the electrostatic interaction, with a cut-off radius of
8 A. In order to allow the protein to travel freely, the simula-
tion cell was stretched to 20 A on both sides of the system.
The simulation temperature was kept consistent using a
Berendsen thermostat [42]. The simulation was run at 1.25
frames per second with the trajectories saved every 100 ps
and carried out for over 100 ns. Lastly, simulation snapshots
were used to determine the root mean square deviation
(RMSD), the radius of gyration (Rg), solvent-accessible sur-
face area (SASA), hydrogen bonds, and root mean square
fluctuation (RMSF). Subsequent trajectory analyses were
implemented by SciDAVis software available at http://
scidavis.sourceforge.net.

2.7. Binding Free Energy Calculation Using MM/PBSA. Cal-
culations of the binding free energy are an important
method to assess the degree of drug binding to a protein in
order to analyze the energetics and stability of the protein-
drug complex. All snapshots were then subjected to
YASARA software’s MM-Poisson-Boltzmann surface area
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(MM-PBSA) binding free energy (BFE) using the following
formula: BFE = EpotReceptor + EsolvReceptor + EpotLigand
+ EsolvLigand — EpotComplex — EsolvComplex. In this case,
built-in YASARA macros were used with AMBER 14 as the
force field to determine the MM-PBSA binding energy.

2.8. Principal Component Analysis (PCA). Principal compo-
nent analysis (PCA) was carried out to highlight the variance
and uniformity in the profile of molecular dynamic simulation
profile data. It is possible to categorize structural alterations in
protein-ligand complexes that occur throughout the course of
a molecular simulation by contrasting different variables. By
diagonalizing the matrices and solving the eigenvalue and
eigenvector problems for the covariance matrices, PCA of
the complexes was obtained. Eigenvalues reflected structural
fluctuational amplitude and direction, whereas eigenvectors
represented structural fluctuational direction [43, 44]. Prepro-
cesses from MD trajectories of 100 ns were used; then, the
feature was standardized by scaling to unit variance and
removing the mean. scikit-learn v1.2.2 package was used to
calculate the variance ratio in Python program.

3. Results

3.1. Molecular Docking. The AChE and BuChE targets were
successfully docked with each of the selected ligand mole-
cules from ten daily used spice plants. Because lower binding
energies refer to higher binding affinities, the ligand mole-
cules with the lowest binding energies or docking scores
were regarded as the most effective ligand molecules for
blocking the target receptor [45, 46].

By analyzing the docking interactions for AChE protein,
we found that Fmoc-His(Trt)-Wang resin, cucurbitaxanthin
A, (3R,3'R,15—cis)—b,b—carotene—3,3'—diol, epsilon-carotene,
quercetin, quercetin-3'-glucuronide, myricetin, folic acid,
quercetin 3-O-glucuronide, and luteolin exhibited the lowest
binding affinity (best binding score) of -12.2, -12, -11.4,
-10.8, -10.6, -10.6, -10.6, -10.5, -10.5, -10.5, and -10.4 kcal/
mol, respectively.

In the case of BuChE protein, proanthocyanidin A2, pro-
cyanidin B1, alpha-amyrin, strictinin, proanthocyanidin B2,
Fmoc-His(Trt)-Wang resin, beta-chlorogenin, beta-amyrin,
oleanolic acid, and coriandrinonediol exhibited the lowest
binding affinity (best binding score) of -12.2, -12.2, -12.1,
-12.1, -12, -11.8, -11.2, -11.2, -11.1, and -11.1kcal/mol,
respectively. Donepezil as a control drug showed -7.6 kcal/
mol binding affinity with AChE protein and -9.8 kcal/mol
with BuChE protein (Table 1).

After performing the molecular docking, this study ana-
lyzes the drug likeness, ADME, and pharmacophore proper-
ties, and the two phytochemicals, namely, quercetin and
myricetin, were selected as the probable inhibitor of AChE
protein. In another case, the two phytochemicals, namely,
alpha-amyrin and beta-chlorogenin, were selected as the
probable inhibitor of the BuChE protein.

In the interaction of AChE protein, the quercetin formed
van der Waals bond with GLN71, TYR72, VAL73, ASN87,
PROS88, GLY120, GLYI121, TYRI124, GLY126, TYRI133,
SER203, GLY448, TYR449, and ILE451; conventional hydrogen
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bond with ASP74, TRP86, SER125, GLU202, and HIS447; and
pi-pi stacked and pi-pi T-shaped with TYR337 amino acid res-
idues (Figure 2(a)). Followed by the top interaction of AChE
protein, the myricetin formed van der Waals bond with
GLN71, VAL73, PRO88, TYR124, SER125, GLY126, LEU130,
TYRI133, SER203, TYR337, TYR341, PRO446, ILE451,
GLY448, and TYR449; conventional hydrogen bond with
TYR72, ASP74, ASN87, GLY120, GLU202, and HIS447; a
carbon-hydrogen bond with GLY121; and two pi-pi stacked
bond with TRP86 amino acid residues (Figure 2(b)).

In the case of BuChE protein, the alpha-amyrin formed van
der Waals bond with ASP70, GLY116, GLN119, THR120,
GLU197, PRO285, SER287, ASN289, PHE329, TRP430,
TYR440, and GLY439, a pi-sigma bond with TYR332, and
alkyl and pi-alkyl bond with TRP82, ALA328, and HIS438
amino acid residues (Figure 2(c)). Further, followed by the
top interaction of BuChE protein, the beta-chlorogenin formed
van der Waals bond with ASN68, ASP70, GLY116, GLN119,
THR120, GLU197, GLU276, ALA277, SER287, and GLY439,
a conventional hydrogen bond with ASN289, two pi-sigma
bonds with TRP82, and pi-alkyl bond with TRP82 and
HIS438 amino acid residues (Figure 2(d)).

Furthermore, this study also considers the donepezil as a
positive control for AChE protein where donepezil formed
van der Waals bond with TYR72, TYR77, PHE295,
PHE297, VAL340, and GLY342, a conventional hydrogen
bond with TYR124, carbon hydrogen bond with TYR337,
pi-sigma bond with LEU76 and TYR341, pi-pi stacked bond
with TRP286, and alkyl and pi-alkyl bond with VAL294 and
PHE338 amino acid residues (Figure 3(a)).

Followed by the interaction for BuChE protein, donepe-
zil formed van der Waals bond with ASP70, GLY116,
GLY117, THR120, SER198, VAL288, PHE329, TYR332,
PHE398 GLY439, and ILE442, carbon hydrogen bond with
GLU197 and PRO285, pi-sigma with TRP82 and LEU286,
pi-pi stacked and pi-pi T-shaped bond with TRP231, and
alkyl and pi-alkyl bond with ALA328, TRP430, MET437,
HIS438, and TYR440 amino acid residues (Figure 3(b)).

3.2. ADME/TOX Analysis. The different pharmacokinetic
parameters of the discovered phytochemicals were assessed
using Lipinski’s rule of five. After molecular docking, this
study selected the top 10 compounds for ADME analysis
in the case of both targeted proteins, AChE and BuChE.
Quercetin and myricetin for AChE protein, as well as
alpha-amyrin and beta-chlorogenin compounds for BuChE
protein, confirmed with Lipinski’s rule of five, and ADME/
TOX may demonstrate optimal drug-like behavior.
Tables 2 and 3 display the findings of the ADME/TOX anal-
ysis, which looks at the compound’s absorption, distribution,
metabolism, and excretion/toxicity. Based on the lowest
binding affinity, electrostatic bond formation, and pharma-
cokinetic properties, the best two ligands were considered
for conducting the further study.

3.3. Pharmacophore Mapping. In the case of AChE, querce-
tin and myricetin gave almost similar fit scores of 2.97 and
2.986, respectively, in the experiment of pharmacophore
mapping. Quercetin showed a normalized fit score of
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FIGURE 2: Predicted pose from the docking analysis showed binding mode of compounds within the active site of targets. The 3D positioning
of ligand within binding sites of the protein was shown on the surface view, and the electrostatic interactions of corresponding protein-
ligand complexes were shown on the 2D view. Here, a and b indicate the interactions of acetylcholinesterase_quercetin and
acetylcholinesterase_myricetin complexes. On the other hand, ¢ and d indicate the interactions of butyrylcholinesterase_a-amyrin and

butyrylcholinesterase_f3-chlorogenin complexes.

0.7425 and myricetin generated a normalized fit score of
0.7464. Furthermore, both quercetin and myricetin gener-
ated hydrophobic centers of 2, and also, each showed 2
hydrogen bond donors. Moreover, none of the molecules
showed a positively charged center, negatively charged cen-
ter, aromatic ring, and hydrogen bond acceptor.

In another case of BuChE, alpha-amyrin and beta-
chlorogenin showed a fit score of 4 and 3, respectively, and
showed a normalized fit score of 1 for both alpha-amyrin
and beta-chlorogenin. Alpha-amyrin showed hydrophobic
centers of 4, and beta-chlorogenin generated hydrophobic
centers of 3. Moreover, none of the molecules showed a pos-
itively charged center, negatively charged center, aromatic
ring, hydrogen bond donor, and hydrogen bond acceptor
(Table 4 and Figure 4).

3.4. Molecular Dynamic Simulation. After a virtual screening,
quercetin and myricetin for AChE as well as alpha-amyrin
and beta-chlorogenin for BuChE were picked out of the drug
candidates for the dynamic simulation analysis. MD simula-
tions were run on the YASARA structural tool version
20.12.24.W.64 (using the AMBER 14 force field) with a
100 ns time step to investigate the dynamic activity of the
protein-ligand complex in a solvent environment over time.

In order to assess the stability and rigidity of the complex
over the course of the simulation, the RMSD of the docked
complex was evaluated in relation to the beginning struc-
ture, as shown in Figure 5(a).

Figure 5(a) represents the RMSD of the AChE_quercetin,
AChE_myricetin, BuChE_alpha-amyrin, and BuChE_beta-
chlorogenin complexes. AChE_quercetin and AChE_myrice-
tin complexes showed the RMSD around 1.5A to 2.2 A and
1.3 A t02.2 A, respectively. The four docked complexes had ini-
tial upper trend of the RMSD profile, but they did not deviate
that too much. Most importantly, during the early simulation
phase, all four complexes reached steady state. BuChE_alpha-
amyrin and BuChE_beta-chlorogenin complexes showed the
RMSD around 1.2 A to 2.0A and 1.2 A to 2.1 A, respectively.
The average RMSD for the AChE_quercetin, AChE_myricetin,
BuChE _alpha-amyrin, and BuChE_beta-chlorogenin com-
plexes are 0.6 A, 0.9A, 0.8 A, and 0.9 A, respectively.

The number of hydrogen bonds was also used to assess
the protein stability and folding success. For AChE_querce-
tin complex, the hydrogen bond analysis revealed an
increasing number of hydrogen bonds with respect to time
over the course of the simulations (Figure 5(b)). Only a little
bit fluctuation occurred at 91ns. Although the number of
hydrogen bonds fluctuated during simulation, the protein’s



International Journal of Alzheimer’s Disease

(’LE!T —
LLY B:286 PHE™ FHE
S (B33 ) (B
(B:3a2 ) VAT PHE B
(B:204 )

[] Carbon hydrogen bond
[ ] Van der waals

I Conventional hydrogen bond
I Pi-Pi stacked

[ Alkyl I Pi-Pi T-shaped
[ Pi-alkyl B Pi-sigma
(a)
ASP
THR Y

(ai283)
- e
\A:117)

VAL
(as28s)

TRP™
(aa30) BN
A:d42)

/GLY
\A:439)

YR,
LAz 440

LEU ’EF) /HIS MET

A438)  /GLU
\A:197/

[ Carbon hydrogen bond
[ ] Van der waals

I Conventional hydrogen bond
I Pi-Pi stacked

1 Alkyl I Pi-Pi T-shaped
[ Pi-alkyl B Pi-sigma
(b)

FIGURE 3: Predicted pose from the docking analysis showed binding mode of compounds within the active site of targets. The 3D positioning of
ligand within binding sites of the protein was shown on surface view, and the electrostatic interactions of corresponding protein-ligand complexes
were shown on 2D view panel. Here, a and b indicate the interactions of acetylcholinesterase_donepezil and butyrylcholinesterase_donepezil

complexes, respectively.

TaBLE 2: Pharmacological profile of the top
server.

10 potential candidates for AChE that were derived from SwissADME and admetSAR web

Num. of Num. of

Compounds (gl\//ln\llgl) H-bond H-bond MlogP re fllﬁ 21?;@1 T;iszf tlz)l(\g:tsy Carcinogens  Violation
acceptors  donors

Fmoc-His(Trt)-Wang resin 603.71 4 1 4.64 178.48 73.22  None None 2
Cucurbitaxanthin A 584.87 3 2 6.15 186.28 49.69  None None 2
(3R,3'R,15-cis)-b,b-carotene-3,3'-diol ~ 568.87 2 2 6.96 186.76 40.46  None None 2
Epsilon-carotene 536.87 0 0 8.96 184.43 0 None None 2
AChE Quercetin 302.24 7 5 -0.56 78.03 131.36 None None 0
Quercetin-S’-glucuronide 478.36 13 8 -2.6 110.77 227.58 None None 2
Myricetin 318.24 8 6 -1.08 80.06 151.59  None None 1
Folic acid 4414 9 6 -0.62 111.92 213.28 None None 2
Quercetin 3-O-glucuronide 478.36 13 8 -2.6 110.77  227.58 None None 2
Luteolin 286.24 6 4 -0.03 76.01 111.13  None None 0

stability remained constant. In the case of AChE_myricetin
complex, an increasing number of hydrogen bonds were
visible, but at 95ns, a considerable fluctuation occurred,
and subsequently, it indicates the steady state of protein.
BuChE_alpha-amyrin complex showed the increased num-
ber of hydrogen bonds and at 89ns displayed a lowered

degree of fluctuation. But overall, the protein’s steadiness
stayed constant. Finally, BuChE_beta-chlorogenin complex
revealed a cumulative number of hydrogen bonds during
the simulations. After 74, 78, and 80ns, it exhibited a
substantial fluctuation and remains constant stability of
the complex.
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TaBLE 3: Pharmacological profile of the top 10 potential candidates for BuChE that were derived from SwissADME and admetSAR web
server.

Mw  Num.of - Num. of Molar ~ TPSA  AMES

Compounds (g/mol) H-bond H-bond MlogP refractivity (A% toxicity Carcinogens Violation
acceptors  donors
Proanthocyanidin A2 576.5 12 1 0.14 144.14  209.76  None None 3
Procyanidin B1 578.52 12 10 -0.26 146.71 220.76  None None 3
Alpha-amyrin 426.72 1 1 6.92 135.14 20.23  None None 1
Strictinin 634.45 18 11 -2.42 141.85 310.66 None None 3
BuChE Proanthocyanidin B2 578.52 12 10 -0.26 146.71 220.76  None None 3
Fmoc-His(Trt)-Wang resin ~ 603.71 4 1 4.64 178.48 73.22  None None 2
Beta-chlorogenin 432.64 4 2 4.23 123.23 5892  None None 1
Beta-amyrin 426.72 1 1 6.92 134.88 20.23 Yes None 1
Oleanolic acid 456.7 3 2 5.82 136.65 57.53  None Yes 1
Coriandrinonediol 458.72 3 2 5.12 136.72 57.53  None None 1
TaBLE 4: Results of the pharmacophore mapping experiment of the two best ligands for each of the protein.
Protein Name of the Fit - Normalized Hydrophobic Positivle?l};rarmacopklilzgatfie\?;ll;reS (m;-rlr-ﬂ;ce)flsc)i H-bond  Aromatic
compounds  score fit score center charged center ~ charged center ~ donor acceptor ring
Quercetin 2.97 0.7425 2 0 0 2 0 0
AChE
Myricetin 2.986 0.7464 2 0 0 2 0 0
Alpha-amyrin 4 1 4 0 0 0 0 0
BuChE —  Beta- 1 3 0 0 0 0 0

chlorogenin

() (d)

FIGURE 4: Pharmacophore mapping of (a) quercetin, (b) myricetin, (c) a-amyrin, and (d) S-chlorogenin. Here, light blue color, hydrophobic
center; green color, hydrogen bond donor; pink color, hydrogen bond acceptor; and gray, excluded volumes of the binding pocket.
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FIGURE 5: Analysis of the structural changes of protein-ligand complexes during 100ns MD simulation runtime. Here, (a) root mean
square deviations (RMSD), (b) hydrogen bond, (c) radius of gyration, and (d) solvent accessible surface area (SASA). Here, black,
red, green, and blue lines denote acetylcholinesterase_quercetin, acetylcholinesterase_myricetin, butyrylcholinesterase_a-amyrin, and
butyrylcholinesterase_f-chlorogenin complexes, respectively. Each analysis technique characterized the structural changes and

differences among the various protein complexes studied.

Figure 5(c) depicts the radius of gyration for four sim-
ulated protein complexes. The radius of gyration is calcu-
lated using the protein’s center of mass, which indicates
how compact the protein structure is. It will stay constant
if the protein is stable; however, it will change over time
due to instability. Importantly, AChE_quercetin, AChE_
myricetin, BuChE_alpha-amyrin, and BuChE_beta-chloro-
genin complexes showed little fluctuations in our study,
subsequently indicating their stability over time. The aver-
age fluctuations in AChE_quercetin, AChE_myricetin,
BuChE_alpha-amyrin, and BuChE_beta-chlorogenin com-
plexes were 0.3 A, 0.5A, 0.4A, and 0.3 A, respectively.

Additionally, the SASA or solvent-accessible surface
areas of the four complexes were evaluated to see if the pro-
tein surface or volume had changed. In this study, the total
SASA was calculated which indicates the biomolecular sur-
face area is accessible to solvent molecules. This surface is
made up of all the spots that the water probe’s center can
touch as it rolls over the solute. The longer protein volume
is correlated with a greater SASA profile, whereas the shorter
protein volume is correlated with a lower SASA profile. The
SASA profile for all complexes initially had a higher profile,
but AChE_quercetin complex after 50ns showed lower
profile, AChE_myricetin complex exhibited stable profile
during simulation, BuChE_alpha-amyrin complex showed
lower profile after 35 ns and 65 ns, and BuChE_beta-chloro-
genin complex displayed a little bit lowered SASA profile
(Figure 5(d)).

Through RMSF descriptors, the flexibility of the protein-
compound system across amino acid residues can be assessed.
Lower RMSF values were found for all of the complexes and
the corresponding amino acid residues, suggesting decreased
flexibility. The maximum amino acid residues had lower RMSF
profile from below 25A except ASP494, ARG493, ALA542,
TRP385, ARG165, SER541, LYS538 (for AChE_quercetin

complex), THR262, PRO495, GLY263, ALA542, LYS496,
SER541, ARGI165, LYS538, ARG534, GLY264 (for AChE_
myricetin complex), ASP454, VAL377, ARG453, GLN380,
ASN485, ASP375 (for BuChE_alpha-amyrin complex),
VAL377, ASP454, TRP376, VAL529, ARG453, PHE526,
LYS528, PHE525, ASP375, and GLN380 (for BuChE_beta-
chlorogenin complex) amino acid residues Figure 6.

3.5. Binding Free Energies of Interactions. The binding free
energy was frequently calculated in the drug developing
workflow using MM-PBSA (molecular mechanic Poisson-
Boltzmann surface area). The free energy graph of the
AChE_quercetin complex showed lower degree of fluctua-
tion, but the other three complexes (AChE_myricetin,
BuChE_alpha-amyrin, and BuChE_beta-chlorogenin) were
stable and did not observe any over fluctuations. The average
binding free energies of the AChE_quercetin, AChE_myri-
cetin, BuChE_alpha-amyrin, and BuChE_beta-chlorogenin
complexes were -68.798, -108.196, 79.876, and 71.315Kk]/
mol, respectively (Figure 7).

3.6. Principal Component Analysis (PCA). Structural data of
AChE and BuChE complexes were evaluated through the
principal component analysis model from MD simulation
(Figure 8). For AChE_quercetin complex, a total of 35.70%
of the variance was expressed wherever PCl and PC2
expressed 20.13% and 15.57% variance, and 41.99% of
the variance was exhibited by AChE_myricetin complex,
wherever PC1 and PC2 expressed 26.04% and 15.95% vari-
ance, respectively. Furthermore, BuChE_alpha amyrin com-
plex expressed a total variance of 32.67% comprising
18.27% and 14.40% of PC1 and PC2 variance, respectively.
BuChE_beta-chlorogenin complex also showed a total vari-
ance of 36.13% encompassing PC1 and PC2 of 20.78% and
15.35% variance.
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pink lines denote quercetin_acetylcholinesterase, myricetin_acetylcholinesterase, a-amyrin_butyrylcholinesterase, and [-chlorogenin_

butyrylcholinesterase complexes, respectively.

4. Discussion

Alzheimer disease (AD) is a chronic progressive neurode-
generative disease that disturbs vast area of the cerebral
mantle and hippocampus leading to dementia cases [47].
On the basis of the many causal elements, several theories
have been proposed to explain this complex illness like cho-
linergic hypothesis, AB hypothesis, tau hypothesis, and
inflammation hypothesis [48, 49]. The buildup of tau pro-
tein aggregates in neurofibrillary tangles and the deposition
of insoluble forms of amyloid beta (AB) in plaques in extra-
cellular spaces and blood vessel walls are both indicators of
AD [50]. The use of approved medications such as donepe-

zil, rivastigmine, galantamine, and memantine is encouraged
by medical professionals; however, these medicines only
slow the spread of the illness and alleviate its symptoms,
not actually cure it [48]. Computer-aided drug design can
be a powerful tool for finding reliable medication candidates
that can be used to fight specific AD targets.

The cholinergic hypothesis, which directly causes cog-
nitive loss, is the most widely accepted theory for how
AD develops. Furthermore, it has been discovered that
the cholinesterases (ChEs), AChE, and BuChE can also
contribute to the formation of amyloid protein plaques
[51]. As a result, AChE inhibition and BuChE inhibition
have been identified as significant targets for the efficient
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Figure 8: Principal component analysis (PCA). The PCA was performed to analyze the structural conformations of AChE_quercetin,
AChE_myricetin, BuChE_alpha amyrin, and BuChE_beta-chlorogenin complexes using a 100ns simulation runtime trajectory. The
analysis was carried out using the scikit-learn library in Python v.3.10. The objective was to examine the variance in structural features
observed during the molecular dynamic (MD) simulation, which captures the primary complex motions. In order to depict the
progression of time from 1 to 100 ns, a color gradient ranging from red to white to blue was utilized for visualization purposes.

therapy of AD by increasing the availability of acetylcholine
in brain areas and decreasing A3 accumulation [9]. Two
cholinesterases share a lot of similarities in their general
structures. Each of them has a peripheral anionic site
(PAS), a deep gorge, and a catalytic active site (CAS).
AChE and BuChE have almost 65% homologous amino
acid sequences [30].

In order to forecast the development of novel medica-
tions, a technique known as molecular docking uses a small
molecule to bind to the binding site of the target receptor and
demonstrate its affinity [25]. The binding affinity increases
with decreasing binding energy (docking score), and vice
versa. In this study, a total of 1701 ligand molecules were
chosen in order to inhibit the AChE and BuChE proteins,
which is responsible for the development of AD. Each of
the 1701 ligands was docked against the two target receptors
to evaluate their anti-AChE and anti-BuChE activity, and
from this study, two best ligands from each target were

selected for further analysis. The target receptor inhibition
efficacy of the ligand molecules with the lowest binding
energy or docking score was determined to be the best, as a
lower binding energy corresponds to higher binding affinity.

This study reveals the high affinity of quercetin and myr-
icetin towards AChE as depicted by their binding energies of
-10.6 and -10.5kcal/mol, respectively, as well as alpha-
amyrin and beta-chlorogenin towards BuChE as depicted
by their binding energies of -12.1 and -11.2 kcal/mol, respec-
tively. In contrast, the donepezil revealed the affinity
-7.6kcal/mol with AChE protein and -9.8kcal/mol with
BuChE protein which indicates the lower affinity than spice
plant phytochemicals.

The first compound quercetin is found to have anti-
inflammatory, antiobesity [52], and cardioprotective action
in cardiovascular diseases [53] and antioxidant properties
[54], antiarthritic effect [55], antihypertensive effect [56], anti-
cancer properties [57], antidiabetic effects [57], antiallergic



International Journal of Alzheimer’s Disease

effects [52], and so on. This phytochemical formed multiple
noncovalent bonds with AChE protein and interacted with
GLN71, TYR72, VAL73, ASN87, PRO88, GLY120, GLY121,
TYR124, GLY126, TYRI133, SER203, GLY448, TYR449,
ILE451, ASP74, TRP86, SER125, GLU202, HIS447, and
TYR337 amino acid residues. Myricetin contains various
therapeutic potentials as anticancer [58], antioxidants and
prooxidants [59], antihypertensive [60], neuroprotective [61],
osteoprotective [62], antidiabetic [63], antiobesity [64],
cardio-cerebrovascular protective [65], antiepileptic [66],
anti-Alzheimer [66], hepatoprotective [66], gastroprotective
[66], etc. activities. Myricetin interacted with GLN71, VAL73,
PRO88, TYRI124, SERI25, GLY126, LEU130, TYRI33,
SER203, TYR337, TYR341, PRO446, ILE451, GLY448,
TYR449, TYR72, ASP74, ASN87, GLY120, GLU202, HI+5447,
GLY121, and TRP86 amino acid residues of AChE protein.

In a case, alpha-amyrin is a natural triterpenoid com-
pound found in various plant sources. It also has several bio-
active potentials like antiproliferative [67], antihyperglycemic
and hypolipidemic [68], anti-inflammatory [69], analgesic
[70], anticonvulsant, anxiolytic, antidepressant, gastroprotec-
tive, hepatoprotective [71], and anti-Parkinson [72] proper-
ties. Alpha-amyrin has noncovalently interacted with ASP70,
GLY116, GLN119, THRI120, GLU197, PRO285, SER287,
ASN289, PHE329, TRP430, TYR440, GLY439, TYR332,
TRP82, ALA328, and HIS438 amino acid residues of BuChE.
Beta-chlorogenin interacted with ASN68, ASP70, GLY116,
GLN119, THR120, GLU197, GLU276, ALA277, SER287,
GLY439, ASN289, TRP82, TRP82, and HIS438 amino acid
residues of BuChE protein. Beta-chlorogenin belongs to the
triterpenoid group of natural products. Triterpenoids possess
various bioactive properties such as anticarcinogenic [73],
antidiabetic [74], anti-inflammatory [75], antimicrobial [76],
antiviral [77], hepatoprotective [78], and cardioprotective [79].

When the two best ligands for each protein were com-
pared with the positive controls, it was observed that the
performances of donepezil in the docking studies were less
satisfactory than quercetin and myricetin as well as alpha-
amyrin and beta-chlorogenin. For this reason, it can be
concluded that the best selected ligand molecules showed
superior performances in the molecular docking studies.
Moreover, interactions of these four ligands with the active
sites of the protein residues with precise stiffness were con-
firmed by postmolecular dynamics, which may be the cause
of the inhibition.

The selected best ligand molecules also satisfied the drug
likeness criteria as predicted through the Lipinski filter and
admetSAR and SwissADME analyses, which highlighted
their prospective pharmacokinetic features. The drug dis-
covery and development processes are made easier with
the aid of drug likeness property estimation [80]. The topo-
logical polar surface area (TPSA) and molecular weight have
an impact on how permeable a medicine is to the biological
barrier. Lower permeability of the drug molecule is associ-
ated with larger molecular weight and TPSA values and vice
versa. The partition coeflicient of a pharmacological mole-
cule in both the organic and aqueous phases is used to
express lipophilicity (LogP). It has an impact on how quickly
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drug molecules are absorbed by the body, with higher LogP
indicating slower absorption and vice versa. Besides, the
selected ligand molecules possess the optimum level of
molecular weight, number of H-bond donor, and number
H-bond acceptor [81]. The two ligands for each targeted
protein also followed the Lipinski five rules with minimal
violation. Toxicity profiles also exhibited the absence of car-
cinogenicity and AMES toxicity potential, which ultimately
indicates the potential of the studied compounds as being
comparable to already established medicators for AD.

The PharmMapper server [82] studied the pharmaco-
phore mapping of the best ligand compounds for each of
the target protein. Three different sorts of scores are pro-
duced by PharmMapper: fit score, normalized fit score, and

z'-score. The target proteins (receptors) with the best
normalized fit scores and fit scores indicate that they should
be possible binding sites for a query ligand molecule.
Additionally, the fit score generates a z'-score, and a high
z'-score indicates that the target is highly significant to the
query compound and vice versa [83-85]. The quercetin and
myricetin for AChE target protein as well as alpha-amyrin
and beta-chlorogenin for BuChE protein generated the con-
siderable fit score, normalized fit scores, and z'-score that
should be most potential target for ligand molecules.

Quercetin, a flavonoid compound, has been studied with
modifications made to different positions, such as hydroxyl
groups on the B-ring and the presence of methoxy groups.
These modifications have been explored for their impact
on the compound’s antioxidant, anti-inflammatory, and
anticancer activities [86]. Specific structural features, partic-
ularly the presence of multiple hydroxyl groups on the flavo-
noid backbone, are associated with the ability to scavenge
radicals and neutralize free radicals [87]. Changes in planar
structure to induce rigidity or introduce steric hindrance
can influence the compound’s binding affinity and biological
activity [88]. Myricetin contains several hydroxyl groups
(-OH) attached to its flavonoid backbone. Modifications,
such as the addition or removal of hydroxyl groups, can
affect the potency and eflicacy as an antioxidant [89]. Substi-
tutions at various positions on the B-ring have been found to
affect its anti-inflammatory and antiviral activities [90].
Modifications of C-ring of myricetin can also significantly
impact its biological properties [91]. Glycosylation of myri-
cetin can impact the bioavailability, stability, and cellular
uptake, potentially affecting its therapeutic efficacy [92].
Conjugation and ring modification of the flavonoid rings
can also influence the biological activity [93].

The presence of specific functional groups, such as
hydroxyl groups or carboxyl groups, has been found to con-
tribute to the anti-inflammatory properties of alpha-amyrin
derivatives. Studies has shown the impact of functional group
modifications, such as acetylation or esterification, on the
anti-inflammatory, anticancer, and antidiabetic activities of
alpha-amyrin [94, 95]. Additionally, specific structural fea-
tures that are important for enhancing the anticancer poten-
tial of alpha-amyrin derivatives are also reported, such as
modifications to the C-3 position [96]. Altering the size, con-
figuration of sugar group can help in terms of activity and
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FiGure 9: The superimposed comparison of the protein-ligand complexes after 25, 50, 75, and 100ns simulation time: (a)
acetylcholinesterase_quercetin, (b) acetylcholinesterase_myricetin, (c) butyrylcholinesterase_a-amyrin, and (d) butyrylcholinesterase_f3-
chlorogenin complexes. The structures obtained at 25ns, 50ns, 75ns, and 100 ns are color-coded as paste, pink, yellow, and amber,
respectively. This color scheme allows for an easy distinction and observation of any conformational changes or shifts in the protein-

ligand complexes over the course of the simulation.

bioavailability of beta-chlorogenin [97]. Modification of
aglycone core and chiral centers may provide desired phar-
macological properties and features for receptor interactions
[98, 99]. The length and substitution patterns of the side
chains were explored to evaluate their impact on binding
affinity and biological effects [100].

To support the molecular docking assessment, a
molecular dynamic simulation research was conducted
for the best-studied complexes, and several parameters
from the simulation trajectories were evaluated to deter-
mine binding rigidity. RMSDs of all the docked complexes
were under 2.5A. The SASA profiles for the four docked
complexes did not change during the simulation trajecto-
ries for any of the four complexes, which had minimal
degrees of variation. These four complexes analyze the
quantitative patterns of hydrogen bonding and examine
the Rg profiles that matched other simulation characteris-
tics in many regards. The RMSF plot indicates that a little

bit fluctuations of amino acid residue are present in the protein
during ligand-bound state at several times. The outcomes show
that the interaction of the ligand and protein reduces the dis-
tance between the two subunits (the two arms of the protein)
and moves them closer to one another.

MM-PBSA analysis assesses van der Waals and electro-
static interactions, providing insights into their strength
and nature, while considering solvation effects and the
influence of water molecules on complex stability. By break-
ing down the binding free energy into these components,
MM-PBSA analysis aids in identifying important interac-
tions, evaluating the contributions of binding sites, and iden-
tifying regions suitable for ligand optimization or protein
modifications [101, 102]. The negative value of acetylcholines-
terase complexes suggested that the binding of the ligand to the
protein is energetically favorable, and there is a likelihood of
strong interactions and stability between the two molecules.
The positive value of MM-PBSA value of butyrylcholinesterase
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complexes indicated that ligand might not form strong interac-
tions with the protein compared to acetylcholinesterase and
further MD simulation is needed.

PCA was done to examine binding cluster variance of
the protein-ligand complex. Red to white to blue represent-
ing 1ns to 100ns simulation time were categorized into
coordinates clustered in the PCA calculation by two confir-
mations PC1 and PC2 [103]. Both of the AChE complexes
showed small variability and stable binding. AChE_querce-
tin complex exhibited 14.98% less variance ratio indicating
its lesser conformational changes. Also, a stable minimal
variance of atomic motions and Eigen scores of BuChE com-
plexes was exhibited through the analysis. BuChE_alpha-
amyrin expressed 9.58% lower variability compared to the
beta-chlorogenin complex also suggesting lower changes in
structural conformation [104].

The superimposition of the structure was used to assess
the binding residues and their stable interactions after taking
the snapshots from 25, 50, 75, and 100 ns where the ligand
molecules were found at similar binding pockets (Figure 9).

Our study demonstrated that the active compounds of
ten daily used spice plants exhibit significant potential by
docking with the AD target proteins AChE and BuChE.
These findings point to the necessity for further in vitro
and in vivo research to determine the therapeutic potential
of these molecules for the secure and efficient treatment
of AD.

5. Conclusion

In this workflow, first, we shortlisted 1701 phytochemicals
from ten routinely used spices from Dr. Duke’s Phytochem-
ical and Ethnobotanical Databases. To find strong inhibitors
that might be able to prevent these macromolecules’ ability
to catalyze reactions, these substances were tested against
the AChE and BuChE proteins. Top ten lead inhibitors for
each of the protein were selected according to the docking
score having lower binding affinity. Through ADME/TOX
analysis, two hit compounds for each protein have been
evaluated biologically and pharmacologically, which sup-
ports their less harmful profile and higher drug-like quali-
ties: quercetin and myricetin for AChE and alpha-amyrin
and beta-chlorogenin for BuChE. Also, the potent docked
complexes were run through molecular dynamic simulation
which confirms the rigidness and stable nature of the docked
complexes according to the evaluations of simulation trajec-
tories and numerous descriptors. As this combinatorial
screening was entirely reliant on computational workflows,
additional in vitro experiments must be conducted to cor-
roborate the precise targeting of these medications.

Data Availability

All data are available in the manuscript.

Additional Points

Highlights. (i) The distinguishable 1701 phytochemicals
of routinely used ten spice plants were retrieved from
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Dr. Duke’s Phytochemical and Ethnobotanical Databases.
(ii) The molecular docking was performed against the AChE
and BuChE to find a suitable drug candidate. (iii) The top
ten possible drug candidates for each protein were assessed
with the help of ADMET profile as well as drug likeness and
were predicted two for each protein to be safe with no toxicity.
(iv) The docked interactions were confirmed by the molecular
dynamic simulation analysis, where rigid profiles and stable
conformations of the docked complexes were observed.
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