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Using a solar sail, a spacecraft orbit can be offset from a central body such that the orbital plane is displaced from the gravitational
center. Such a trajectory might be desirable for a single-spacecraft relay to support communications with an outpost at the lunar
south pole. Although trajectory design within the context of the Earth-Moon restricted problem is advantageous for this problem,
it is difficult to envision the design space for offset orbits. Numerical techniques to solve boundary value problems can be employed
to understand this challenging dynamical regime. Numerical finite-difference schemes are simple to understand and implement.
Two augmented finite-difference methods (FDMs) are developed and compared to a Hermite-Simpson collocation scheme. With
101 evenly spaced nodes, solutions from the FDM are locally accurate to within 1740 km. Other methods, such as collocation,
offer more accurate solutions, but these gains are mitigated when solutions resulting from simple models are migrated to higher-
fidelity models. The primary purpose of using a simple, lower-fidelity, augmented finite-difference method is to quickly and easily
generate accurate trajectories.

1. Introduction

When a permanent outpost on the Moon to support
extended human expeditions is eventually established, the
astronauts at the facility will require a continual communi-
cations link with the Earth. A leading candidate location for
the lunar base is at the south pole, which is not always in view
of either antennas on the Earth or space-based transceivers,
such as the TDRSS satellites, in geosynchronous orbit.
Therefore, at least two spacecraft in traditional polar orbits
about the Moon are required for an Earth-Moon link [1].

In contrast to a constellation of multiple spacecraft,
alternative communications strategies that rely on only one
satellite do exist, using current or near-future technology.
Advanced propulsion concepts, such as low-thrust ion
engines, as well as solar sails, supply a force in addition to
gravity and can actually offset an orbit from the Moon [2–
4], that is, the orbit plane is displaced from the gravitational
center and the spacecraft appears to hover above the surface.
Such an orbit allows one spacecraft to be in view of a
location on the lunar surface at all times. This dynamical

system is complex due to the gravitational effects of the
two primaries and, in the case of solar sails, the fact that
the Sun, which influences the direction and magnitude of
the resulting sail thrust vector, continually moves relative
to a fixed Earth-Moon system. A previous approach, based
on an understanding of the dynamical structure and using
that knowledge to design an orbit, has been successful in
developing some solar sail orbits in the vicinity of the lunar
Lagrange points [5–9]. However, motion below one of the
lunar poles requires an alternative strategy.

Trajectories can be represented as solutions to boundary
value problems (BVPs) in terms of ordinary differential
equations (ODEs). For a BVP, conditions are specified at
the beginning and, also, at the end of the time domain.
The specific values of the states at the extremes may or
may not be fixed in a BVP with a periodicity constraint;
periodicity only requires that the values at the extremes are
equal. Differential-corrections schemes [10] and shooting
methods (both adaptations of the initial value problem),
collocation approaches, and finite-difference methods [11–
13] are common numerical processes to solve BVPs and
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are similar in that they all employ linear corrections to a
nonlinear system (these three techniques are discussed in
greater detail below). Variational methods are also used to
solve BVPs when the problem possesses certain minimality
properties [14]. Classical perturbation techniques have long
supplied analytical approximations for trajectories [5, 15–
17]. Finally, recent efforts using evolutionary algorithms to
solving optimization problems also provide an approach to
solving boundary value problems [18, 19].

Shooting methods [10, 12, 20–23] and collocation
schemes [2, 24–31] possess high degrees of accuracy and
are frequently employed for trajectory generation and
optimization. Shooting methods typically require some
knowledge of the design space to initiate the procedure.
Collocation schemes do not require a priori knowledge of the
solution corresponding to the BVP, but the implementation
is often neither intuitive nor straightforward. Furthermore,
the partial derivatives of the constraints with respect to the
states are nontrivial in collocation schemes and are often
approximated numerically [2].

A more rudimentary method for solving BVPs is the
finite-difference method (FDM), in which the derivatives
that appear in the differential equations are replaced with
their respective finite differences and evaluated at node
points along the trajectory [12]. The solution process is
iterative. The trajectory is discretized, and the equations
that represent the relationships at the nodes are solved
simultaneously. Using a central difference approximation,
the smallest local errors associated with an FDM approach
are proportional to Δt2. However, model accuracy and
uncertainty may obviate any precision gains from a high-
precision scheme; solutions from those methods may not
persevere without additional control in a higher-fidelity
model (e.g., a model that includes planetary ephemerides)
or in actual flight. If a solution based on a high-precision
approach (e.g., shooting or high-degree collocation) is
migrated from a model with limited accuracy to one of
higher accuracy (e.g., circular restricted three-body model
versus ephemeris model or actual flight), it may be no more
accurate in that high-fidelity model than a solution from a
low-precision approach (e.g., finite-differencing). Moreover,
the FDM is simple to formulate and offers an improved
understanding of the design space. Partial derivatives are
easily obtained via standard analytical techniques, without
having to resort to numerical or automatic differentiation
(each is often computationally expensive). Once the analyst
is familiar with the feasible options, higher-fidelity methods
for solving the BVP can be used to refine trajectories or
combined with optimization techniques to produce optimal
trajectories. Another option is to employ the FDM technique
to generate trajectories that fit path constraints to quickly
explore a broad design space. Using the MATLAB computing
environment, Wawrzyniak and Howell [32] survey over 10
million combinations of initial guesses for the path and
control profile, as well as a range of characteristic acceler-
ations and path constraints appropriate to the lunar south
pole coverage problem. The time to generate the millions of
trajectories for the survey is approximately one week when
the algorithms run on eight cores over five platforms.

In the following sections, an FDM is described and
applied to solar sail orbits in the Earth-Moon circular
restricted three-body (CR3B) system. Also included is a
modified FDM for the same application, where the velocity
is incorporated as part of the solution at each node along the
discretized trajectory. Neither method is strictly a straightfor-
ward, “textbook” FDM [11–13], since both are augmented
with trajectory and control constraints. Additionally, in
contrast to a simple two-point BVP, where the states are fixed
at the extremes, the trajectory is required to be periodic;
nowhere along the arc is the solution prespecified.

A description of the dynamical model in the Earth-
Moon CR3B system is followed by an algorithm using the
augmented FDMs for generating trajectories. The strategies
are based on minimizing the difference between accelerations
from the equations of motion (as well as the velocities as
another alternative) and the corresponding values numeri-
cally derived from positions along a discretized trajectory. An
error analysis is also included. A separate study uses these
FDMs for surveying the solution space and assessing the
required solar sail and spacecraft characteristics necessary for
the lunar south pole (LSP) coverage problem [32].

2. System Dynamical Model

The problem that represents this application is defined
within the context of the CR3B system, that is, the problem
is formulated in a frame, R, that is rotating with respect to
an inertial system, I . A CR3B model that incorporates the
gravity contributions of two primary bodies is geometrically
advantageous for understanding the problem. Consistent
with McInnes [33], the nondimensional vector equation
of motion for a spacecraft at a location r relative to the
barycenter (center of mass of the primaries) is

Ra + 2
(

IωR × Rv
)

+∇U(r) = as(t), (1)

where the first term is the acceleration relative to the rotating
frame (more precisely expressed as Rd2r/dt2, where the left
superscript R indicates a derivative in the rotating frame) and
the second term is the corresponding Coriolis acceleration,
which requires the velocity relative to the rotating frame, Rv
(more precisely Rdr/dt). Vectors are denoted with boldface.
Derivatives of the position vector, Rv and Ra, are assumed
to be relative to the rotating frame and, consequently, R is
dropped. The angular-velocity vector, IωR (or ω), relates
the rate of change the rotating frame with respect to the
inertial frame. The applied acceleration, from a solar sail
in this case, is indicated on the right side by as(t). The
pseudogravity gradient, ∇U(r), combines centripetal and
gravitational accelerations:

∇U(r) = (ω × (ω × r)) +

((
1− μ

)

r3
1

r1 +
μ

r3
2

r2

)
, (2)
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where μ represents the mass fraction of the smaller body, or
m2/(m1 +m2), and r1 and r2 are the distances from the larger
and smaller bodies, respectively, that is,

r1 =
√(

μ + x
)2 + y2 + z2,

r2 =
√(

μ + x − 1
)2 + y2 + z2.

(3)

Solar gravity is neglected in this model. At a distance of 1
AU, an appropriate distance to assume for a sailcraft in the
Earth-Moon system, the applied acceleration from a solar sail
is modeled as

as(t) = β
(
l̂(t) · û

)2
û, (4)

where û is the sail-face normal, l̂(t) is a unit vector in the
sun-to-spacecraft direction, and β is the sail characteristic
acceleration in nondimensional units. These vectors appear
in Figure 1. Observed from the rotating frame, R, the Sun
moves in a clockwise direction about the fixed primaries.
The sail mass, m3, is negligible compared to the masses of
the Earth and Moon, which are m1 and m2, respectively.

The term (l̂(t) · û) is also expressed as cosα, where α is
the sail pitch angle, or the angle between the solar incidence
direction and the sail normal.

To generate the magnitude of the sail acceleration in
dimensional units, a0, β is multiplied by the system charac-
teristic acceleration, a∗, which is the relationship between the
dimensional and nondimensional acceleration in (1). In fact,
a∗ is the ratio of the characteristic length, L∗ (384,400 km for
the Earth-Moon distance), to the square of the characteristic
time, t∗ (2πt∗ = 27.321 days), that is,

a∗ = L∗

t∗2 = 2.7307 mm/s2. (5)

A recent sailcraft design for NASA’s Space Technology
competition (ST9) that was built by L’Garde possesses
overall characteristic acceleration, a0, of 0.58 mm/s2, while
the characteristic acceleration of the sail and its support
structure alone is closer to 1.70 mm/s2 (0.212 to 0.623 in
units of nondimensional acceleration, resp.) [34].

The sunlight direction is expressed relative to the rotating
frame and is a function of time, that is,

l̂(t) = cos(Ωt)x̂− sin(Ωt)ŷ + 0ẑ, (6)

where Ω is the ratio of the synodic rate of the Sun as it moves
along its path to the system rate, approximately 0.9192.
One physical constraint is imposed on the attitude of the
spacecraft: the sail normal, û, which is coincident with the
direction of the resultant force in an ideal model, is always
directed away from the Sun. This is written mathematically
as

l̂(t) · û ≥ cosαmax, (7)

where αmax is 90◦.
The sail modeled here is a perfectly reflecting, flat solar

sail. Billowing is not incorporated in this force model;
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Figure 1: Earth-Moon system model.

however, αmax could be less than 90◦, as sail luffing (i.e.,
flapping) is assumed to occur at high pitch angles [35].
Higher fidelity models include optical models [33], para-
metric models that incorporate billowing in addition to
optical effects [33, 36], and realistic models based on finite-
element analysis that incorporates optical properties and
manufacturing flaws [37]. Optical effects can represent a
nonperfectly reflecting solar sail; some energy is absorbed,
and some is reflected diffusely as well as specularly. An
ideal sail reflects only specularly. In all of these models, the
resulting acceleration from a solar sail is not perfectly parallel
to the sail-face normal but, instead, is increasingly offset from
the sail-face normal as the sail is pitched further from the
sunlight direction [33]. Fully accounting for realistic solar
sail properties attenuates the sail characteristic acceleration
by nearly 25% and places an upper limit on the pitch angle
between 50◦ and 60◦, depending on the properties of the
sail [37]. Nevertheless, this analysis will employ an ideal sail
to lend insight into the technology level that is required
to solve the LSP coverage problem and into the use of
augmented finite-difference methods for generating solar sail
trajectories.

3. Augmented Finite-Difference Methods

The derivation for an augmented finite-difference method
begins with generic, nonlinear, second-order, two-point BVP
that can be represented as

r̈ = f(t, r, ṙ), (8)

where r(t1) and r(tn) are fixed at the extremes of the time
span, [t1, tn] in interval notation [11–14]. The solution of
(8) is a trajectory, r(t). To solve the BVP, the classic FDM
discretizes the domain into nodes, or epochs, t1, t2, . . . , tn
and replaces the derivatives in (8) by their respective
finite differences. Central-difference approximations (CDAs)
are commonly used because they are more accurate than
forward or backward differences. The first and second time
derivatives of r(t) are, of course, the velocity and acceleration
vectors and are approximated by CDAs as

ṽi = ri+1 − ri−1

ti+1 − ti−1
, (9)

ãi = 2
(ri+1 − ri)(ti − ti−1)− (ri − ri−1)(ti+1 − ti)

(ti − ti−1)(ti+1 − ti−1)(ti+1 − ti)
, (10)



4 International Journal of Aerospace Engineering

where r(ti) is defined as ri and ti ∈ (ti−1, ti+1) and the
symbol “ ·̃ ” indicates a numerical approximation. Equation
(10) arises from three central-differences: one for the velocity
at ti−1/2, which is midway between ti−1 and ti, another at
ti+1/2, midway between ti and ti+1, and a third using the first
two intermediate velocities resulting in the acceleration at ti.
The FDM does not require uniform node placement (mesh
refinement and nonuniform node spacing may improve the
accuracy of the FDM), but when the time steps between ti−1,
ti, and ti+1 are fixed at a value of Δt, then the midpoint of
[ti−1, ti+1] is ti and (9) and (10) simplify to

ṽi = ri+1 − ri−1

2Δt
, (11)

ãi = ri+1 − 2ri + ri−1

Δt2
. (12)

Note that rn−1 is used for r0 when calculating ṽ1 for a
periodic solution. Similarly, r1 substitutes for rn in ṽn−1, so
the problem does not include redundant constraints. The
calculations for a1 and an−1 are similar. The differences
between the actual velocity and acceleration and their
respective CDAs at ti are

vi − ṽi = −Δt2

6
r′′′
(
ρv
)
, (13)

ai − ãi = −Δt2

12
riv(ρa

)
, (14)

where ρv,a ∈ (ti−1, ti+1) and r′′′(t) and riv(t) are continuous
on [ti−1, ti+1]. Derivations of these truncation errors are
available in the literature [11–13]. The approximations in
(11) and (12) replace the first and second time derivatives
in (8), and the result is an equation at each epoch of the form

ri−1 + 2ri + ri+1

Δt2
= f

(
t, r,

ri+1 − ri−1

2Δt

)
. (15)

Equation (15) may still be nonlinear, but it can be linearized
into a system of equations, one for each ti, excluding the
extremes, and solved iteratively. Due to the approximations
in (11) and (12), the classic FDM results in a solution that
will approximate each component of the true solution to the
BVP by an error proportional to Δt2 at each node [11, 13].

For the current problem, the FDM is augmented to
incorporate path and system constraints, as well as a control
history. Two variations of this FDM are developed. In the
first, the position is the only explicitly discretized trajectory
state (FDM-R). The second FDM is formulated to directly
solve for position and velocity along the discretized trajectory
(FDM-RV).

The FDM-R formulation is based on approximating (1)
via the CDAs for velocity and acceleration given by (11) and
(12), respectively, that is,

ãi + 2(ω × ṽi) +∇U(ri)− as(ti) = 0. (16)

Note that the velocity term in (16) is replaced with its CDA,
ṽi. To solve the BVP, the trajectory is discretized at t1, t2 . . . , tn.

Position is expressed in terms of Cartesian coordinates at
each node:

ri =
{
xi yi zi

}T
, (17)

where “T” indicates a vector transpose. The control, ui, that
is, the sail pointing vector in this application, as well as a set
of m slack variables, ηi, are also included at each node. Note
that the control, ui, is not necessarily a unit vector until the
FDM converges on a solution. The positions, control, and
slack variables at node i for the FDM-R are collected into the
subvector,

qi =
{

rT
i uT

i ηT
i

}T

(6+m)
, (18)

where the length of qi is (6 +m). The subvectors correspond-
ing to each node are collected into a column vector,

X =
{

qT
1 qT

2 · · · qT
n−1 qT

n

}T

(6+m)n
, (19)

which represents the discretized trajectory as well as the
associated control history and slack variables. The velocities
associated with the trajectories generated by the FDM-R can
be reconstructed with CDAs of r(t) during postprocessing.

The FDM-RV process is similarly formulated, but there
are two distinct sets of ODEs to solve, that is,

ṽi − vi = 0, (20)

ãi + 2(ω × vi) +∇U(ri)− as(ti) = 0. (21)

Note the difference in the velocity terms in (16) and (21).
With this FDM-RV alternative, the subvector is

qi =
{

rT
i vT

i uT
i ηT

i

}T

(9+m)
, (22)

since vi is now explicitly part of the solution. This formula-
tion results in an X vector with length (9 + m)n.

Both the FDM-R and the FDM-RV algorithms constrain
the difference between the evaluated EOMs at node i and the
associated numerically derived approximations to be zero.
Additional constraints are required for periodicity, control-
direction magnitude, and path characteristics. All of these
constraints are dependent on X and are collected in the
column vector F(X). An expansion of F(X) about X j yields a
linear approximation for F(X j+1), that is,

F
(

X j+1
)
= F

(
X j
)

+ DF
(

X j
)(

X j+1 −X j
)

+ O
(
ΔX2), (23)

where the DF(X j) is the Jacobian, ∂F(X j)/∂X j. Superscripts
on vectors refer to iteration number. The initial guess is
denoted j = 0; a converged solution by j = f . Partial
derivatives used in the Jacobian are derived analytically, but
are not specifically presented here. By assuming that X j is in
the neighborhood of F(X) = 0 (i.e., ‖X j+1 − X j‖ 	 1), (23)
is rearranged into a least-norm problem, that is,

X j+1 = X j −DF
(

X j
)T
[
DF
(

X j
)
·DF

(
X j
)T
]−1

F
(

X j
)
.

(24)
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Equations (23) and (24) reflect the Newton-Raphson
method of root finding for several variables. For efficient
computation,DF(X) is preallocated and stored in memory as
a sparse matrix [38]. Iterations based on (24) continue until
some convergence tolerance is met, that is,

∥∥X j+1 −X j
∥∥

∥∥X j
∥∥ ≤ tol. (25)

When an initial guess is in the neighborhood of a solution,
convergence is quadratic. Specifying tol ≈ 1 × 10−7 is
sufficient, since any further iteration approaches double
precision. If the initial guess is not in the neighborhood of
a solution, X j+1 bears little resemblance to X j ; the step from
X j to X j+1 may even be chaotic. However, the new X j+1

might be in the neighborhood of an alternate solution and
subsequently lead to convergence. The converged discretized
solution, X f , that satisfies these constraints is the trajectory
that solves the EOMs to within a theoretical error.

Algebraically, these FDMs are equivalent. In practice,
the two formulations yield slightly different results and,
sometimes, dramatically different results. This problem is
sensitive to the initial guess; because the initial condition may
or may not explicitly include velocity, the vector of initial
guesses is not the same for the two FDMs. Additionally,
the least-norm update in (24) minimizes the norm of the
correction to the state vector; the state vectors for the two
formulations are different, and the least-norm update for
an initial guess that includes velocity states may move the
solution to a different region when compared to an update
that does not contain velocity states between iterations. The
convergence criterion (25) also depends on the norm of
the update to the state vector. Because the size of the state
vectors differs between the methods, the vector norm of the
update will also differ for converged solutions. The current
formulations do not control specified states for convergence
(e.g., position and not velocity), and other variations on the
implementation of these methods will yield different results.
Given that the objective is a simple and quick method to
approximate the design space, neither strategy should be
considered superior to the other; both achieve the stated goal
and results from both are insightful.

At each epoch, the converged subvector qi differs from
the true solution, qi, due to the truncation error associated
with the FDMs and the limited machine precision. The
proceeding error analysis is described by Kincaid and Cheney
[13, pages 589–592]. For a step size Δt that is greater than
some value, the error due to truncation in (9)–(14) will
dominate the machine error. Assuming that there exists a
true set of position states, r, that solve (1) and (13) as
formulated for the FDM-R approach, (8) is written as

ri−1 + 2ri + ri+1

Δt2
− Δt2

12
riv(ρa

)

= −ω × (ri+1 − ri−1)
Δt

+
Δt2

6
ω × r′′′

(
ρv
)

−∇U(ri) + as(ti).

(26)

The pseudogravity gradient associated with the true solution,
ri, is expanded as a function of an approximate solution, ri,
that is,

∇U(ri) = ∇U(ri) + M(ri)ei + O
(

eT
i ei
)

, (27)

where ei = ri − ri and M(ri) is the Hessian of U . Using the
solution from the FDM-R algorithm, (15) is subtracted from
(26), resulting in

Δt−2(ei−1 + 2ei + ei+1)

= −Δt−1(ω × (ei+1 − ei−1))−Miei + Δt2hi,
(28)

where hi = (1/12)riv(ρa)+(1/6)r′′′(ρv). It is assumed that r(t)
is continuously differentiable to fourth order. Rearranging
and multiplying by Δt2 yields

(−I + Δtω×)ei−1 +
(
2I− Δt2Mi

)
ei + (−I− Δtω×)ei+1

= −Δt4hi,
(29)

where I is the identity matrix and ω× is the skew-symmetric
gyroscopic matrix. Some terms in (29) can be simplified to a
form that will be useful later, that is

(−I + Δtω×) +
(
2I− Δt2Mi

)
+ (−I− Δtω×) = −Δt2Mi.

(30)

Now, let λ correspond to the difference element ei that
possesses the largest magnitude. Equation (29) reduces to an
upper bound on λ,

(−I + Δtω×)λ +
(
2I− Δt2Mi

)
λ + (−I− Δtω×)λ ≥ −Δt4hi.

(31)

Using (30), (31) simplifies to

−Δt2Miλ ≥ −Δt4hi, (32)

Miλ ≤ Δt2hi, (33)

λ ≤ Δt2M−1
i hi. (34)

The inequality in (34) represents three scalar equations.
Thus, the position error corresponding to the FDM-R
formulation is O(Δt2) as Δt → 0. To calculate the velocity
from the FDM-R algorithm, the CDA from (11) is used, also
with an error O(Δt2). The error analysis for the alternate
FDM-RV algorithm incorporates the fact that the velocity,
v = f(t, r), possesses errors that can also be expressed by (13),
and, therefore, the derivation continues with the same steps
as those for the FDM-R formulation beginning with (26).

The augmented finite-difference methods sacrifice preci-
sion for simplicity. At each node, the error in the trajectory is
proportional to Δt2, significantly less precise than common
collocation methods [26, 39]. In this analysis, Δt = 0.067,
or n = 101, which translates to an error of 0.452% of
the Earth-Moon distance, approximately 1740 km, in each
direction. To improve the precision of the FDM, the step size
between nodes, Δt, can be decreased. The Jacobian DF(X)
becomes quite large, imposing a significant computational
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cost. Furthermore, the smaller the step size, the larger the
machine error [12]. Alternatively, Richardson extrapolation,
or extrapolation to the limit, could be employed to further
minimize the error of the solutions [12]. Incorporating a
process to determine the specific step size that minimizes
some combination of truncation and machine errors or
incorporating an additional process, like Richardson extrap-
olation, adds complexity to a method that is formulated to
be simple to understand and implement, as well as quick to
yield results.

Prior to any analysis, the design space for this problem
is not well known, so a trajectory that is precise to within
Δt2 relative to an actual solution is meaningful. If the goal
is a general understanding of the design space, accomplished
in a relatively quick analysis, then these results can be very
insightful.

4. Algebraic Constraint Vector: F(X)

At the core of the augmented finite-difference methods is
the algebraic constraint vector, F(X), which contains the
algebraic approximations to the equations of motion and
other constraints necessary for the desired periodic solar
sail trajectory. In this formulation, each element in F(X)
should be zero to simultaneously satisfy the ODEs and path
constraints. For a periodic solar sail trajectory, subject to path
constraints g(X),

F(X) =
{
Δa(X)T

[
Δv(X)T

]
T(X)T y1 N(X)T g(X)T

}T
.

(35)

The presence of Δv(X) depends on whether the formulation
is the FDM-R or FDM-RV, and the length of the F(X) vector
is either (2 + (4 + m)n) or (2 + (7 + m)n), accordingly.
The order of these elements within the vector is arbitrary
and no difference in performance is apparent when F(X)
and X are rearranged such that DF(X) is a sparse, banded-
diagonal matrix. Using the configuration in (35), each
element set appears as block diagonal in the corresponding
Jacobian, DF(X). Each set is subsequently discussed, and the
corresponding size of each set is indicated in a subscript
outside of the braces.

The first element set in (35) is the difference in accel-
eration. The acceleration at a given epoch, i, as evaluated
from the equations of motion, depends only on the position,
velocity, and control, ai = f(ri, vi, ui). The numerically
derived acceleration, ãi from (10) or (12), depends on the
state at multiple epochs. A valid trajectory possesses the same
acceleration whether computed from the EOMs or from the
CDAs, within the truncation error. Therefore, the difference
between accelerations resulting from the EOMs and those
from numerical calculation should nominally be zero for a
converged solution; thus, the difference forms the first set of
equality constraints in the composite constraint vector:

Δa(X) =

⎧⎪⎪⎨
⎪⎪⎩

a1(r1, v1, u1)− ã1
...

an−1( (r, v, u)|n−1)− ãn−1

⎫⎪⎪⎬
⎪⎪⎭

3(n−1)

. (36)

Likewise, the difference between the velocity from the EOMs
and the numerically derived velocity is zero for a valid
trajectory. Velocity from the EOMs at each epoch, vi, is
available from X (see (19) and (22)). This difference forms
a second set of equality constraints (only in the FDM-RV
algorithm) in F(X):

Δv(X) =

⎧⎪⎪⎨
⎪⎪⎩

v1 − ṽ1
...

vn−1 − ṽn−1

⎫⎪⎪⎬
⎪⎪⎭

3(n−1)

, (37)

where vi may be approximated as ṽi. These differences in
acceleration and velocity may also be denoted as defects and
are located at the node corresponding to each ti. In an initial
guess for the trajectory state vector, the defects Δai and Δvi at
each node will most likely not be zero. The Newton-Raphson
iteration process adjusts the path of the trajectory to resolve
these differences.

The next constraints enforce periodicity and unit length
of the control vector. To enforce periodicity, the goal is an
originating and final state vector that are equal, which is
represented as a set of constraints in the algebraic constraint
vector, F(X), that is,

T(X) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

rn − r1

[vn − v1]
un − u1

ηn − η1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(6|9+m)

, (38)

where m is the number of path constraints at the first and
last node, expressed as slack variables. The length of T(X)
depends on the application of an FDM-R or an FDM-
RV approach. Although the only boundary condition is
periodicity, for consistency the position at the boundary
is constrained to be in the xz-plane. Therefore, the y-
coordinate at the first point along the trajectory is con-
strained, y1 = 0. In practice, without this constraint, y1

remained very close to zero, approximately 40 km from the
xz plane once the solution is converged. With this constraint,
y1 is reduced to 0.004 mm from the plane. Next, the
magnitude of the control vector must remain of unit length
in the iteration process

N(X) =

⎧⎪⎪⎨
⎪⎪⎩

uT
1 u1 − 1

...
uT
n−1un−1 − 1

⎫⎪⎪⎬
⎪⎪⎭

(n−1)

. (39)

Formulating the constraint in terms of uT
i ui − 1 as opposed

to
√

uT
i ui − 1 results in a simpler partial derivative while

retaining the intended effect; this constraint is incorporated
into the implementation of the FDM since the control history
in this analysis is described in terms of a unit vector.

Path constraints are included as inequality constraints,
which are converted to equality constraints by use of slack
variables, a successful numerical adaptation from nonlinear
programming [2, 40]. The slack variables are incorporated
into X and are associated with the other state elements at
their particular epoch, i. In this analysis, the elevation angle
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constraint, Emin, maintains the visibility of the spacecraft
from an outpost located near the south pole of the Moon,
and the spacecraft altitude constraint, Amax, is imposed for
radio power restrictions. Altitude is defined as the distance
from the lunar south pole, that is,

Ai =
√(

xi − 1 + μ
)2 + y2

i + (zi + Rm)2. (40)

The third path constraint requires that the sail-face normal,
or control ui, is always directed away from the Sun (the

sunlight vector is l̂i), or αmax = 90◦ in (7). Of the inequality
constraints, only this attitude requirement is mandated.
Together, these three inequality constraints are written as

Emin ≤ Ei ≡ arcsin
(
−zi + Rm

Ai

)
, (41a)

Amax ≥ Ai, (41b)

cosαmax ≤ l̂i · ui. (41c)

For the given problem and model, adding a path constraint
to avoid the penumbra and umbra of the Earth or the Moon’s
shadows is unnecessary because of the elevation constraint. A
shadow constraint could be added for another application or
shadowing effects could be incorporated into the dynamical
model directly [41]. Additional inequality path constraints
could include limits on the body turn rates and accelerations
governed by the attitude control system of the spacecraft.
The associated slack variables are squared and added to the
inequality constraints, resulting in the following equality
constraints:

gi
(

ri,ηi
)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sinEmin +
zi + Rm

Ai
+ η2

E,i

Ai −Amax + η2
A,i

cosαmax −
(
l̂i · ui

)
+ η2

�,i

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
m

. (42)

Combining the path constraints at all epochs results in m(n−
1) total elements in g(X). When using the path constraints
in (42), m = 3. The first two path constraints in (42) as
well as the periodicity constraint in (38) are illustrated in
Figure 2. The cosαmax constraint appears in Figure 1. The
sailcraft in Figure 2 orbits below the Moon. Feasible solutions
could exist that do not orbit below the Moon, but do orbit
below either the L1 or the L2 point.

Only the first (n− 1) epochs are required in formulating
Δa, Δv, N, and g(X) in the constraint vector F(X). Due to
periodicity, the first and nth epochs are identical. Activating
the nth epoch yields a problem that is overconstrained and
the Jacobian, DF(X), is not full rank.

As mentioned, the Jacobian is a sparse matrix. A diagram
of the sparsity pattern based on partial derivatives of F(X)
with respect to X for the FDM-RV formulation appears in
Figure 3. Diagonals corresponding to the specific element
sets in F(X) are labeled in the figure. For a scenario
employing 101 nodes, the size of the Jacobian is 1013 rows
by 1212 columns where approximately 0.38% of the elements
are nonzero. The sparsity pattern for the FDM-R formulation
is similar to that of the FDM-RV, except that the diagonal

L1

Emin

L2

−ẑ

T(X)

−x̂

û

Amax

Figure 2: Path constraints for an orbit below the Moon (Moon
image from nasa.gov).
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Figure 3: Sparsity pattern for the Jacobian DF(X) in the FDM-RV
formulation.

corresponding to v(X) does not exist in the FDM-R option.
The size of the Jacobian for the FDM-R option associated
with 101 nodes is 710 rows by 909 columns; approximately
0.62% of the entries are nonzero.

The advantage of a finite-difference approach is its ease
of implementation and the speed improvements enabled
by its simplicity. Partial derivatives are easily accessible via
analytical derivation, especially for an idealized force model
such as (1). As complexity of the formulation increases,
which is the case with collocation, for example, analysts rely
on numerical or automatic differentiation to generate partial
derivatives. MATLAB supplies the function NUMJAC.M,
which numerically approximates a derivative using a forward
difference approximation [42]. Third-party software for
MATLAB exists for automatic (a.k.a. algorithmic) differ-
entiation. TOMLAB Optimization’s MAD (MATLAB Auto-
matic Differentiation) suite employs automatic differentia-
tion [43], and Shampine’s PMAD (Poor Man’s Automatic
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Table 1: Computation times for various differentiation strategies.

Strategy Time

Analytic 0.003269 seconds

PMAD 0.013798 seconds

NUMJAC 0.014924 seconds

TOMLAB/MAD 0.051849 seconds

Differentiation) exploits complex step differentiation [44].
Both MAD and PMAD result in highly accurate derivatives,
on the order of machine precision when compared to the
partial derivatives determined analytically, while derivatives
calculated by NUMJAC.M are accurate to 10−8. Because
analytical derivatives are directly encoded into the algorithm,
computation times are significantly faster when compared
to the other options listed. Table 1 lists the computations
times for generating ∂∇U/∂r, the most computationally
intensive step in constructing an entry in the Jacobian,
for the four differentiation strategies. Clearly, if analytical
derivatives are easily available, they should be employed.
Furthermore, if the subroutine to generate the derivatives
analytically is programmed in a lower-level language (e.g., C
or FORTRAN) and then complied as a MATLAB Executable
(MEX), further time savings are realized (with compiled code
the computation of ∂∇U/∂r takes less than 0.001 seconds).
The formulation of the FDMs for this analysis exploits
the computational advantage of analytical derivatives and
compiled MEX code.

In summary, a finite-difference method yields a solution
for the path by replacing the path derivatives with their
finite-difference approximations. The differences between
the approximate derivatives and the derivatives determined
by evaluating the equations of motion at a specific point
along a path are minimized by iteratively solving a linearized
system of equations. Inequality path constraints are added
to this set of equality constraints by way of slack variables,
and subsequently augmenting the constraint vector and
linearized system of equations, resulting in a feasible path.

5. Results

The objective when employing a finite-difference method
is to quickly generate a feasible trajectory where system
constraints and sail characteristics are given. Because model
simplification into the CR3B system ignores lunar librations,
the inclined orbits of the primaries, additional perturbations
to the orbit, and lunar surface features, a conservative
minimum elevation angle of Emin = 15◦ is selected. A
generous maximum-altitude constraint of one Earth-Moon
distance (384,400 km) is also selected (in practice most
results are an order of magnitude closer to the lunar south
pole and this constraint is not active) to establish the
constraints in (42).

As mentioned, a recent sail design possesses a character-
istic acceleration of 0.58 mm/s2 [34]. JAXA’s IKAROS is the
first mission to have flown using a sail as its only propulsive
device, and NASA recently deployed the NanoSail-D2. Both

of these sailcraft are relatively small (200 m2 and 10 m2, resp.)
and are designed to demonstrate in-space deployment of the
sail. Designs for larger sailcraft exist, and future solar sail
spacecraft are likely to be hybridized with other propulsion
devices [45]. However, it is instructive to demonstrate the
FDMs with characteristic accelerations for sail spacecraft that
may be available with near-future technological improve-
ments. An assessment of the technology level (i.e., charac-
teristic acceleration) is required for a sail-only LSP mission.
The focus of this analysis is not to demonstrate that a sail-
only LSP mission is feasible based on current technology.
Instead, the results of this investigation demonstrate the use
of finite-difference methods for the sample application of an
LSP mission. Therefore, a high characteristic acceleration,
that is, 1.70 mm/s2, is used to generate example orbits.

To demonstrate the FDM-R and FDM-RV approaches,
three sets of initial guesses for the path and control history
are selected to initialize the process. The initial guesses
corresponding to the slack variables are always established
such that g0(X) = 0 (the superscript “0” indicates an initial
guess). For each orbit, the initial guess of the control history
is one that maximizes the out-of-plane force contributed by
the sail along the initial trajectory. Derived analytically by
McInnes [33, pages 115–118, 223-224], the sail-pitch angle
that maximizes the out-of-plane thrust below the Moon is
α∗ = −35.26◦. The initial guess for the thrust vector is then

û0
i = cos(Ωti) cosα∗x̂ + sin(Ωti) cosα∗ŷ − sin α∗ẑ. (43)

The initial guess for each trajectory is a circle offset below
the Moon. Three sample initial guesses appear in Figure 4.
The dark-blue circle with a radius of 59,000 km is offset
below the Moon by 23,000 km. The radius of the light-
blue circle is 14,000 km and the z-offset is 54,000 km. The
dimensions of the red circle are 67,000 km by 75,000 km.
As previously described, the system is formulated in the
Earth-Moon circular restricted three-body system, where
the reference frame is fixed to the Earth and the Moon.
Therefore, the Sun is initially along the negative x-axis and
moves in this reference frame clockwise around the Earth
and the Moon, per (6). In this frame, the spacecraft is
initially on the opposite side of the Moon from the Sun and
moves clockwise around the Moon. The arrows on the orbits
represent the initial guess for the direction of the sail-face
normal, û, at the specified point along the orbit. Note that
their direction is generally away from the Sun. The arrows
are spaced in time by a little more than one day.

When the estimates from Figure 4 initialize the FDM-R
algorithm, the three orbits in Figure 5 result. While the dark-
blue orbit is not far from its initial approximation, the red
orbit and the light-blue orbit are obviously dissimilar from
their respective initial guesses. This indicates that a good
initial guess for the finite-difference method is not essential
for converging on a trajectory that solves the equations of
motion. When the same initial guesses are used as inputs
for the FDM-RV process, the trajectories in Figure 6 result.
For both the FDM-R and FDM-RV algorithms, the dark-
blue orbits converged in less than 10 iterations. The other
two orbits required between 15 and 20 iterations for both
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Figure 4: Three example initial guesses.

methods. When individual iterations are examined for these
two orbits, it is observed that the general shape of the orbit
emerges quickly from the initial guess and the large number
of iterations results from small attitude and path changes
at the extremities in the ±y directions to accommodate
the elevation constraint. All solutions converge quadratically
over the final four or five iterations.

For all trials of the FDM-R and FDM-RV formulations
(and in the collocation formulation described in the next
section) it is observed that the corrections to the components
of the initial guess of the control history are not smooth
at the first and nth point; this phenomenon is apparent in
the control history from the seventh-degree Gauss-Lobatto
collocation formulation presented in Figure 7 of Ozimek et
al. [2]. All corrections to the discretized path and attitude
profiles are done simultaneously, and the first point and nth
points are the only two points in this simulation that are
constrained to be equal to each other to ensure periodicity.
Because the remaining points in the attitude profile do
appear to be continuous and smooth, a postfit modification
is applied such that the first and nth points are shifted by
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Figure 5: Three converged orbits from the FDM-R process.

interpolating with neighboring points in the periodic profile.
This postfit modification is only applied when the Newton-
Raphson solver is not within the radius of convergence (i.e.,
when the convergence criterion in (25) exceeds 0.1). Control
profiles from subsequent iterations appear smooth thereafter.

Although the dark-blue and red orbits appear to be
similar in both the FDM-R and FDM-RV results, they differ
by up to 8000 km and 1800 km, respectively, at certain
epochs along the respective paths. The difference in the
light-blue orbits in Figures 5 and 6 strongly suggests that
the different methods, FDM-R and FDM-RV, can produce
different solutions to the equations of motion using the same
initial guess. While the theoretical errors in the solutions
from the respective algorithms are equivalent, the differences
in the formulation of the FDM (either -R or -RV) drive the
evolution of the trajectory from iteration to iteration. It is
not appropriate to suggest that the solution from one method
is more “correct” than the other; both methods theoretically
solve the equations of motion to within their errors bounds,
and both methods produce orbits that are not obvious when
the design space is not well understood.
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Figure 6: Three converged orbits from the FDM-RV process.

6. Comparison to a Collocation Method

As stated, prior to any analysis, the design space for this
problem is unknown. Entry into the design space via analytic
techniques is difficult because of coupling of the sail attitude
and thrust vector. However, based on the FDM algorithms,
solutions precise to O(Δt2), or 1740 km for this step size,
in each direction emerge. In work by Ozimek et al. [2], a
Hermite-Simpson collocation method for the LSP coverage
problem that has a theoretical local error on the order of
O(Δt5), or 0.5 km for the same step size as that from the
FDM algorithms. The Hermite-Simpson collocation method
is adapted here as a basis to evaluate the accuracy of the FDM
algorithms.

Using the same initial guesses as those represented in
Figure 4 to seed the collocation method, the three orbits in
Figure 7 result. The three orbits from the Hermite-Simpson
approach are clearly similar to those produced by the FDM-
RV process and only differ by, at most, 3000 km for the
red orbit, 450 km for the light-blue orbit, and 70 km for
the dark-blue orbit. The dark-blue and red paths from the
Hermite-Simpson process are also similar to the dark-blue
and red paths from the FDM-R approach (differing by, at
most, 8000 km and 3500 km, resp.), but the light-blue paths

−8
−6

−2
−4

0
2

1

0.5
0

−0.5
−1 −5

0
5 ×104

×104

z
(k

m
)

y (km)

x (km)

Earth Moon

L1

L2

×105

(a) 3D view

−8

−6

−2

−4

0

2

−5 0 5

×104

×104

z
(k

m
)

x (km)

Earth Moon
L1 L2

(b) Side view

Figure 7: Three converged orbits from the Hermite-Simpson
collocation process.

are significantly different between the two strategies. Since
the theoretical local error in the Hermite-Simpson method
is on the order of O(Δt5), or 0.5 km for this step size, these
differences between the similar orbits are not surprising [30].
Given that the initial guesses for the three sample orbits
do not resemble their associated converged trajectories, it
is remarkable that the converged trajectories from all three
numerical processes are similar.

There is one noteworthy difference between the Hermite-
Simpson collocation method employed by Ozimek et al.
and the adaptation used for this analysis. Ozimek et al.
employ a small step along the imaginary axis to calculate
the partial derivatives related to the defects. For the current
analysis, a simple central difference approximation (CDA)
represents the same partial derivatives. Both are numerical
schemes for computing difficult partial derivatives and
subject to roundoff errors, but the CDA is also subject to
truncation error, while the imaginary-step method is not.
Thus, the error for the CDA employed in the Hermite-
Simpson collocation method is minimized at a step size
greater than zero (on the order of 10−8), but the error for the
imaginary-step method approaches the roundoff error as the
step size approaches zero (on the order of machine precision)
[46]. This difference in precision should not have large
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Figure 8: Differences between the solutions from the Hermite-
Simpson method and their initial guesses supplied by the FDM-R
(a) and FDM-RV (b) solutions.

ramifications for the process to converge, but must be noted.
Furthermore, because the partial derivatives are numerically
formulated for the Hermite-Simpson collocation scheme in
this analysis, the three orbits in Figure 7 took approximately
2 seconds to generate. The orbits in Figures 5 and 6 took
approximately 1 second to generate.

The results from any procedure can be used to seed
another, usually more precise, process. The solutions pro-
duced by the FDM-R and FDM-RV algorithms are used to

initialize the Hermite-Simpson scheme. All orbits reconverge
quadratically in three or four steps when the Hermite-
Simpson strategy is incorporated. The differences in position
and velocity, as well as the direction of the sail-face normal,
along the 29.5 day trajectories appear in Figure 8. Each color
in the figure corresponds to the respective “initial” orbits
appearing in Figures 5 and 6. The differences are well within
the theoretical errors for the finite-difference methods, and,
as such, the augmented finite-difference methods produce
accurate and appropriate reference orbits for preliminary
mission analysis.

7. Conclusions

Augmented finite-difference methods are useful tools for
generating trajectories in poorly understood dynamical
regimes, such as the mechanics of flying a solar sail in a
multibody system. These schemes are simple to understand
and implement, notably in the presence of path constraints.
While the theoretical errors of finite-difference methods
may be larger than other similar methods that examine the
trajectory as a whole, such as collocation, finite-difference
methods can provide a reasonable entrance to the design
space of a complicated nonlinear problem. They also quickly
return results in a regime where little intuition concerning
the trajectory and sail-angle history exist. Because of its speed
and simplicity, this method may also serve as the basis for
generating a large survey of orbit options. Once a viable
trajectory is uncovered by the finite-difference method, other
techniques may be employed to refine it further. The FDM
approach developed for this analysis need not be applied to
just solar sail problems, but should be applicable to a large
variety of mission design problems.
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