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The main purpose of this paper is to develop an onboard adaptive and robust flight control system that improves control, stability,
and survivability of a small unmanned aerial system in off-nominal or out-of-envelope conditions. The aerodynamics of aircraft
associatedwith hazardous and adverse onboard conditions is inherently nonlinear and unsteady.Thepresented flight control system
improves functionalities required to adapt the flight control in the presence of aircraft model uncertainties. The fault tolerant inner
loop is enhanced by an adaptive real-time artificial neural network parameter identification to monitor important changes in the
aircraft’s dynamics due to nonlinear and unsteady aerodynamics. The real-time artificial neural network parameter identification
is done using the sliding mode learning concept and a modified version of the self-adaptive Levenberg algorithm. Numerically
estimated stability and control derivatives are obtained by delta-based methods. New nonlinear guidance logic, stable in Lyapunov
sense, is developed to guide the aircraft. The designed flight control system has better performance compared to a commercial
off-the-shelf autopilot system in guiding and controlling an unmanned air system during a trajectory following.

1. Introduction

The effectiveness of aircraft flight control systems in off-
nominal conditions is heavily dependent upon the qual-
ity and accuracy of physics-based models and numerical
simulations. The accuracy of these models depends on the
mathematical formulation that describes the true physics,
how uncertainty affects the outputs, and whether the model
mismatch can be identified and estimated. In classical flight
dynamics, the measured aerodynamic forces and moments
are represented by differentiable functions and expanded in
Taylor series. Although it is effective in benign portions of
the flight envelope, thismathematical structure is incapable of
modeling nonlinear and unsteady aerodynamics associated
with hazardous and adverse onboard conditions. Adverse
onboard conditions include vehicle impairment; system
faults, failures, and errors and vehicle damage. External haz-
ards and disturbances include wind shear and poor visibility;
wake vortices; thunderstorms; snow and icing conditions.
Aircraft robust control systems are designed to deal with
uncertainty in dynamicmodels due tomodeling errors, noise,
and disturbances.

The motivation of this work is to develop a robust flight
control system to improve control, stability, and survivability
of a small unmanned aerial system (UAS) in hazardous
and abnormal flight conditions. The presented flight control
system consists of guidance, navigation, and control modules
with adaptive control technologies and incorporated real-
time learning-based system identification using artificial
neural networks (ANNs) to update the physics-based model
of UAS. An extended Kalman filter (EKF) is used to improve
the measurements and to estimate inaccessible variables
including the inertial wind components. The research is
aimed at advancing flight control systems by the integration
of functionalities required to update the physics-basedmodel
and adapt the control-law in presence of model uncertainties
due to unsteady and nonlinear aerodynamics. The overall
configuration comprises a set of stabilizing robust H-infinity
controllers in the inner loop for adjacent trim points, to
be scheduled when required. New nonlinear guidance logic,
stable in Lyapunov sense, is developed to guide the aircraft.
The new guidance law can achieve a stable and steady-state
error-free guidance through the use of integral effect and by
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lifting constraints related to maximum distances and relative
position with respect to the trajectory, expanding them to the
entire state space.

Significant research has been carried out in areas of
nonlinear guidance, navigation, adaptive control, and estima-
tion. A broad range of research can be found on trajectory
tracking, path following, and robust nonlinear controllers
[1–9]. In [1], authors presented the design of guidance
and control algorithms for autonomous vehicles through
a simultaneous process that achieved a zero steady-state
error about a trim point and, at the same time, guaranteed
stability by avoiding possible cross-coupling between loops.
In [2], a lateral track control-law for an autonomous aerial
system that handles a larger range of wind disturbance was
presented. A different approach is presented in [3] where
the tracking control problem is formulated as a constrained
nonlinear optimization problem. Unlike receding horizon
methods, the minimizationmust be performed at the current
instant. Reference [4] introduced nonlinear guidance logic
for curved trajectory tracking reducing to a proportional-
derivative control when applied to straight lines. In [5, 6],
waypoint guidance was improved by including the horizontal
wind estimation, allowing the aircraft to smoothly converge
to a new course after switching to the next trajectory segment.
A different approach for path following is presented in [7]
where vector fields are used to represent desired ground track
and to direct the aircraft to the desired track. More recently,
in [8], a Lyapunov-based adaptive back stepping approach is
used to design a flight-path controller for a nonlinear F-16
model. A nonlinear lateral guidance law, introduced in [4],
is extended and modified by the authors to the longitudinal
plane in [9] and tested in simulation.

Estimation of unmeasured states from noisy observations
has become an essential part of flight control systems. The
Kalman filter, either with an adaptive matrix gain or a fixed
one, appears to be the most widely used observer (see [10–
13]). Different versions of the Kalman filter ranging from
linear to nonlinear, with static or time-varying Kalman
gains, have been used. More refined filters such as Particle
Filtering [14] and Sigma-Point [15] are designed to achieve
better estimations. Another interesting approach is detailed
in [16], where a nonlinear filter is designed using the state-
dependent Riccati equation (SDRE) method. This technique
is applicable whenever the UAS is describable in a time-
varying linear format. Reference [17] estimates the external
wind component in the horizontal plane to correct the
velocity transformations between the respective coordinate
systems. Reference [18] presents application of Kalman filters
in estimation of wind components.

Different approaches using ANN for estimation of aero-
dynamic coefficients have been reported. In references [19–
25], ANNs were propagated in a feedforward manner and
their weights and biases were numerically searched by back
propagating the estimation quadratic error. References [22,
23] extract the stability and control derivatives of an unstable
aircraft under closed loop using a technique called Delta
method. In [26–29], the fuzzy logic method was used as
an alternative to ANN. The fuzzy logic modeling is used

to capture nonlinear unsteadiness aerodynamic. In [26–
28], fuzzy logic was used as an alternative to ANN to
capture nonlinearities and unsteadiness in aerodynamics. In
[29], using postflight fuzzy logic analysis, instability, high
nonlinearity, and time-dependency were found in aircraft
dynamics in crosswind.

The paper is structured as follows. Section 2 presents the
nonlinear modeling of the aircraft and its linear equivalent at
equilibriumpoints. Section 3 describes the inner loop and the
H-infinity controller design, techniques for gain scheduling,
the outer loop and its attitude guidance logics, and assessment
of guidance logic inherent stability. Section 4 describes the
design of the extended Kalman filter and its main properties,
and Section 5 describes the ANN and its role in aerodynamic
coefficient estimation. The paper is finalized with results
from comparison of the designed flight control system (FCS)
with flight test data obtained from a commercial off-the-shelf
(COTS) autopilot.

2. Aircraft Modeling

Following [30], a 33% scale Yak-54, shown in Figure 1(a),
is modeled using Newton-Euler equations for 6-DOF
rigid-body motion, as detailed in Appendix A. Its dynamics,
defined in the coordinate systems shown in Figure 1(b), is
a function of the states x𝑇(𝑡) = [𝑉
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uncontrollable, but measurable, disturbances to the model
and will be estimated by an extended Kalman filter.

Controllable inputs to the system are propulsive and
aerodynamic forces and moments, and gravity is understood
as an uncontrollable input. By assuming perfect alignment
with𝑋-axis in body frame B, propulsion or thrust𝑋𝑃
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Figure 1: 33% Scale Yak-54 UAS flight test at Pegasus Airfield, Antarctica (2010) (a). Coordinate Systems (b).

where 𝑏 and 𝑐 are the wing span and wing geometric mean
chord, 𝑆 is the wing reference area, and 𝑞 = 0.5𝜌𝑉

𝑇
is the

dynamic pressure, with air density 𝜌.
Although limited, a widely accepted parametricmodeling

is the component build-up approach, a time quasisteady and
linear (in perturbed states Δx(𝑡) = x(𝑡) − xtrim around the
trim condition xtrim) model. Given its linearity and time-
invariant structure, the model is valid in close proximity
to the selected trim point. The present work chooses this
method, based on [31], to assemble and compute these
aerodynamic coefficients, as detailed in Appendix C. All
constant coefficients, called stability and control derivatives,
are obtained offline for selected trim conditions xtrim. A
useful tool, used to obtain stability and control derivatives in
this work, is the engineering level software AdvancedAircraft
Analysis (AAA) [32], developed by Design, Analysis, and
Research Corporation (DARcorporation) that has a built-in
aerodynamic database for different types of aircraft models.
The AAA modeling is based on the chosen trim condition
and the aircraft geometric parameters.

Designing a set of linear time-invariant controllers
requires linear and time-invariant representations of the
UAS in each equilibrium or trim point. For this purpose,
a UAS nonlinear state space model derived from previous
development and denoted ẋ(𝑡) = f(x(𝑡), u(𝑡)) ∈ 𝑅

𝑛 and
y(𝑡) = h(x(𝑡), u(𝑡)) ∈ 𝑅𝑟 with u(𝑡) ∈ 𝑅𝑚, with u𝑇(𝑡) =
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superscript 𝑖. Subscript 𝑒 refers to the equilibrium point. The
following truncated Taylor series expansion of the state space
equation up to a first-order derivative, at each equilibrium
point,
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(2)

gives the linear representation of the system at equilibrium.
After cancellation of constant terms and defining the partial
derivatives evaluated at each equilibrium point, the following
linear time-invariant model, denominatedG𝑖, is obtained for
control design purposes:

Δẋ (𝑡) = A𝑖

𝐺
Δx (𝑡) + B𝑖

𝐺
Δu (𝑡) ,

Δy (𝑡) = C𝑖

𝐺
Δx (𝑡) +D𝑖

𝐺
Δu (𝑡) .

(3)

From AAA, for a straight and level flight at a constant
speed of 70 (knots) with 𝐽

𝑥
= 1.0886 (slug ⋅ ft2), 𝐽

𝑦
=

2.1068(slug ⋅ ft2), 𝐽
𝑧
= 3.0382 (slug ⋅ ft2), 𝐽

𝑥𝑧
= 0.05 (slug ⋅ ft2),

𝑚 = 28 (lb) and 𝑔 = 32.17 (ft/sec2), [33] calculates the
stability and control derivatives of a 33% scale Yak54; shown
in Table 1.

The work done in [33] employed the vortex lattice model
(VLM) as a second method for estimation of some of the sta-
bility and control derivatives. For uncertainty analysis, results
from the AAA and VLM estimations were compared with
results from flight tests system identification. Table 2 shows
stability and control derivatives, the level of uncertainty
(maximum and minimum), and the resultant center values
and half range of each uncertainty derived from comparison.
In order to switch trim conditions using gain scheduling, the
same set of information and analysis had to be generated at
those different trim points. In this research, and for the sake
of abstraction, only information for one trim point, at 70
(knots), is presented.

At the chosen trim condition, the linear model is stable
in the roll, dutch roll, phugoid, and short period modes and
is unstable in the spiral mode. Figure 2 shows the linearized
system poles, zeros and modes.

3. Inner and Outer Loops Design

3.1. Inner Loop. The inner loop is constituted by a set of
robust H-infinity controllers and a mechanism to perform
gain scheduling among them based on current dynamic
conditions. The linear time-invariant plant, given in (3), is
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Table 1: AAA stability and control derivatives for 70 knots (from
[33]).

Parameter Value Units
𝐶
𝐷0

0.0513 [—]
𝐶
𝐷𝛼

0.0863 [1/rad]
𝐶
𝐷𝛿𝑒

0 [1/rad]
𝐶
𝐷𝛼̇

0 [1/rad]
𝐶
𝐷𝑞

0 [1/rad]
𝐶
𝐷𝑢

0.0011 [1/rad]
𝐶
𝐿0

0 [—]
𝐶
𝐿𝛼

4.5465 [1/rad]
𝐶
𝐿𝛿𝑒

0.3792 [1/rad]
𝐶
𝐿𝛼̇

1.8918 [1/rad]
𝐶
𝐿𝑞

5.5046 [1/rad]
𝐶
𝐿𝑢

0.0017 [1/rad]
𝐶
𝑚0

0.0020 [—]
𝐶
𝑚𝛼

−0.3937 [1/rad]
𝐶
𝑚𝛿𝑒

−0.8778 [1/rad]
𝐶
𝑚𝛼̇

−4.3787 [1/rad]
𝐶
𝑚𝑞

−8.0532 [1/rad]
𝐶
𝑚𝑢

0.0002 [1/rad]
𝐶
𝑦𝛽

−0.3602 [1/rad]
𝐶
𝑦 ̇𝛽

0 [1/rad]
𝐶
𝑦𝑝

0.0085 [1/rad]
𝐶
𝑦𝑟

0.2507 [1/rad]
𝐶
𝑦𝛿𝑎

0 [1/rad]
𝐶
𝑦𝛿𝑟

0.1929 [1/rad]
𝐶
𝑙𝛽

−0.0266 [1/rad]
𝐶
𝑙 ̇𝛽

0 [1/rad]
𝐶
𝑙𝑝

−0.3819 [1/rad]
𝐶
𝑙𝑟

0.0514 [1/rad]
𝐶
𝑙𝛿𝑎

0.3490 [1/rad]
𝐶
𝑙𝛿𝑟

0.0154 [1/rad]
𝐶
𝑛𝛽

0.1022 [1/rad]
𝐶
𝑛 ̇𝛽

0 [1/rad]
𝐶
𝑛𝑝

−0.0173 [1/rad]
𝐶
𝑛𝑟

−0.1270 [1/rad]
𝐶
𝑛𝛿𝑎

−0.0088 [1/rad]
𝐶
𝑛𝛿𝑟

−0.0996 [1/rad]

Table 2: Stability and control derivatives uncertainty range knots
(from [33]).

Parameter Maximum Minimum Central value Half range
𝐶
𝑚𝑞

−4.3720 −16.1064 −10.2398 5.8666
𝐶
𝑚𝛿𝑒

−0.7572 −1.2289 −0.9930 0.2359
𝐶
𝑙𝛽

−0.0220 −0.0314 −0.0267 0.0047
𝐶
𝑛𝑟

−0.1156 −0.2890 −0.2023 0.0867
𝐶
𝑛𝛿𝑟

−0.0996 −0.1404 −0.1200 0.0204

augmented with design weighting matricesW
1
,W

2
, andW

3
,

as shown in Figure 3(a), with inputs u
1
∈ 𝑅𝑚1 , u

2
∈ 𝑅𝑚2 and

outputs y
1
∈ 𝑅𝑝1 , y

2
∈ 𝑅𝑝2 , becoming the augmented plant

P𝑖.
This is done in order to harmonize otherwise conflicting

performance objectives, as low frequency reference tracking
and disturbance rejection, and high frequency noise cancella-
tion, by appropriately shaping particular closed loop sensitiv-
ity functions through these frequency-dependent weighting
matrices. Plant P𝑖 is then expressed as

ẋ
𝑃
= A𝑖x

𝑃
+ B𝑖

1
u
1
+ B𝑖

2
u
2
,

y
1
= C𝑖

1
x
𝑃
+D𝑖

11
u
1
+D𝑖

12
u
2
,

y
2
= C𝑖

2
x
𝑃
+D𝑖

21
u
1
+D𝑖

22
u
2
,

(4)

where superscript 𝑖 continues to be an index among the set of
augmented plants corresponding to each linearized plant G𝑖.
One of the main requirements of the chosen gain scheduling
procedure is to have a homogeneous augmented plant set in
terms of same structure, states, inputs, and outputs. This is
achieved by having a homogeneous linearized plant set, in
terms of the similar nature of zeros and poles, sameweighting
matrices, and same controller calculation method.

The state vector x
𝑃
is constructed by adding the states of

the linearized plant and the states of the weighting matrices.
In particular, the inertial positions 𝑝

𝑁
, 𝑝

𝐸
, 𝑝

𝐻
are left out

of the augmented state vector as they will be used in the
guidance, and also yawing angle 𝜓 is not included for being
superfluous.

If the conditions detailed inAppendix D aremet, then the
suboptimal𝐻

∞
control problem [34, 35] provides a controller

K𝑖 that internally stabilizes the closed-loop system such that
󵄩󵄩󵄩󵄩󵄩
Ty1u1(𝑠)

󵄩󵄩󵄩󵄩󵄩∞
= sup⏟⏟⏟⏟⏟⏟⏟

𝑗𝑤

𝜎 [Ty1u1 (𝑗𝑤)] ≤ 𝛾, (5)

for a given 𝛾 > 0, where Ty1u1 is the closed-loop transfer
function from exogenous inputs u

1
(including references,

disturbances, and noises) to error responses y
1
(including

weighted error, control, and output signals). In the present
work, Ty1u1 is constructed as follows:

󵄩󵄩󵄩󵄩󵄩
Ty1u1(𝑠)

󵄩󵄩󵄩󵄩󵄩∞
=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

W
1
(𝑠)S(𝑠)

W
2
(𝑠)R(𝑠)

W
3
(𝑠)T(𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∞

, (6)

as a combination of desired weighted closed loop objectives,
S(s), R(s), and T(s), that is, sensitivity, output sensitivity, and
complementary sensitivity, respectively. Weighting allows
their joint minimization. For an effective low frequency
reference tracking and disturbance rejection, the weighting
matrixW

1
is built to have high singular values at the required

range. For high frequency noise cancelation,W
3
is designed

to have high singular values in those higher frequencies. The
weighting matrix W

2
is designed as a constant matrix to

uniformly penalize the control effort from getting unfeasible
values and saturate actuators. Figure 3(b) shows singular
values of the dynamic weightings chosen for the current trim
condition.
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Figure 2: Linearized system poles: zeros (a) and modes (b).
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Figure 3: Augmented system (a). Singular values of weighting matricesW1 andW3 (b).

In order to characterize parameter uncertainty (see
Table 2), a linear fractional transformation (LFT) is
employed. Uncertainties are extracted and packed into
Δ
𝑖, as shown in Figure 4(a), leaving a deterministic plant

P̂𝑖, as opposed to the previous uncertain plant P𝑖. This LFT
interconnection can be defined as

[

[

𝜐

y1
y2
]

]

= P̂𝑖 [
[

𝜂

u
1

u
2

]

]

=
[
[
[

[

P̂𝑖
11
(𝑠) P̂𝑖

12
(𝑠) P̂𝑖

13
(𝑠)

P̂𝑖
21
(𝑠) P̂𝑖

22
(𝑠) P̂𝑖

23
(𝑠)

P̂𝑖
31
(𝑠) P̂𝑖

32
(𝑠) P̂𝑖

33
(𝑠)

]
]
]

]

[

[

𝜂

u
1

u
2

]

]

,

𝜂 = Δ
𝑖
𝜐, u

2
= K𝑖y

2
,

(7)

or as y
1
= F

𝑢
(F

𝑙
(P̂𝑖,K𝑖

),Δ𝑖)u
1
= F

𝑙
(F

𝑢
(P̂𝑖,Δ𝑖),K𝑖

)u
1
, where

F
𝑙
corresponds to the lower LFT and F

𝑢
to the upper LFT.

Assuming that ‖Δ‖
∞

≤ 1, then by the Small Gain Theorem,
the interconnected system shown in Figure 4(a) is internally
stable if and only if ‖F

𝑙
(P̂𝑖,K𝑖

)‖
∞

< 1, [34].
For each derivative given in Table 2, an uncertainty

range is built considering the highest and lowest values.
These extreme values are used to calculate the central value
and half range value. With this information, a normalized
uncertainty range is constructed and pulled out of the plant.
Figure 4(b) shows the arrangement for𝐶

𝑙𝛽
which is extensible

to remaining uncertain derivatives. Rearrangement of 𝐶
𝑙𝛽
in

terms of central value𝐶
𝑙𝛽

𝐶 and half range value𝐶
𝑙𝛽

𝐻 leaves its
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Figure 4: General LFT connection (a). Uncertainty normalization (b).

uncertainty block with ‖Δ𝑖

𝑗
‖
∞

≤ 1. From pulling out of the
system P𝑖 each uncertainty block, an overall block Δ𝑖, from
𝜐 = [𝜐

1
, . . . , 𝜐

𝑗
, . . . ]

𝑇 to 𝜂 = [𝜂
1
, . . . , 𝜂

𝑗
, . . . ]

𝑇, is assembled as
shown in Figure 4(a).

The 70 knots trim condition is labeled as 𝑖 = 1, where,
utilizing a set of weighting matrices as described before, a
robust controller K1, with ‖Ty1u1(𝑠)‖∞ = 𝛾1 = 0.543, is
achieved. For this closed-loop configuration, after extracting
the uncertainties blocks, the infinity norms ‖F

𝑙
(P̂1,K1

)‖
∞
, for

each uncertain derivative, are shown in Table 3. The last row
shows the worst case, the infinity norm for all uncertainties
together; that is, ‖F

𝑙
(P̂1,K1

)‖
∞

= 0.5617. As by construction
of ‖Δ1

𝑗
‖
∞

≤ 1, the Small Gain Theorem ensures that the
controller robustness keeps stability facing the parameter
uncertainty.

The flight control system’s inner loop is equipped with a
moderate fault tolerant capability. It is based on the ability
to detect and identify dynamic changes due to faults that
are characterized by changes in the aerodynamic forces and
moment’s causal functions.The implicitly assumed that static
relation from aircraft states and state derivatives and controls
to forces andmoments is monitored through an online ANN.
Changes in the network’s parameters indicate unsteadiness
in the aircraft dynamics, or an important trim condition
transition. This information is utilized to adapt the cur-
rent controller (and potentially the extended Kalman filter’s
model) for the new known dynamic condition, implementing
a gain scheduling technique.The management of the ANN is
addressed in Section 5.

Following the approach used in [36], the idea is to
update the current controller K𝑖 based on an updated linear
representation of the system G𝑖, as described in (3). Its
matrices (A𝑖

𝐺
,B𝑖

𝐺
,C𝑖

𝐺
,D𝑖

𝐺
) are then used to compute a new

robust controller through a new parameterization of P𝑖,
utilizing initially the same design parameters used in the
computation of K𝑖 (i.e., same weighting matrices and same
𝛾𝑖). Some simulation results are presented in Section 6. Before
applying the new controller, assumptions in Appendix D
should be assessed.

3.2. Outer Loop. The overall task of the inner loop, through
the robust controller, is to drive the aircraft to follow external

commands generated by the outer loop, by minimizing the
error between the commanded and the actual state. This
minimization is performed over the error in airspeed, pitch
angle, bank angle, and side slip angle; that is,

𝑒
𝑉𝑇

(𝑡) = 𝑉
𝑇

cmd
(𝑡) − 𝑉

𝑇 (𝑡) , 𝑒
𝜃 (𝑡) = 𝜃

cmd
(𝑡) − 𝜃 (𝑡) ,

𝑒
𝜙 (𝑡) = 𝜙

cmd
(𝑡) − 𝜙 (𝑡) , 𝑒

𝛽 (𝑡) = 𝛽
cmd

(𝑡) − 𝛽 (𝑡) .

(8)

The outer loop’s task is to follow a trajectory path
integrated by a set of waypoints {a⃗, b⃗, ⃗c, . . .}, the straight
segments subtended between them {ab, bc, cd, . . .}, and their
assigned inertial speed {𝑉ab, 𝑉bc, 𝑉cd, . . .}. To this end, it
has two main subsystems; one is to generate the attitude
commands 𝜙cmd, 𝜃cmd based on the current inertial position
𝑝
𝑁
, 𝑝

𝐸
, 𝑝

𝐻
and speed V

𝑁
= 𝑝̇

𝑁
, V

𝐸
= 𝑝̇

𝐸
, V

𝐻
= 𝑝̇

𝐻
, and

the relative location of the aircraft with respect to the path
to follow; a second subsystem is to generate the airspeed
command 𝑉

𝑇

cmd based on the path inertial speed corrected
with the estimated wind. The sideslip command 𝛽cmd does
not require any specific logic, and it is set to zero for the entire
flight.

The logic in the generation of attitude commands
𝜙
cmd, 𝜃cmd, to keep the aircraft on path, is based on a non-

linear guidance logic developed in [4] for lateral guidance,
which for small errors and straight lines approximates a
proportional-derivative controller acting on the cross-track
error. It generates the 𝜙

cmd. To calculate the 𝜃cmd, a novel
extension to the longitudinal plane from [9] is developed
and employed. This extension also adds new features to
the original guidance idea, ensuring its stability for any
location and any attitude of the aircraft. Stability in the
sense of Lyapunov is proven hereinafter for the extended
logic. Figure 5 shows the quantities involved for each plane
separately.

The guidance logic calculates the angles 𝜂Lat and 𝜂Lon
between the lateral and longitudinal components of the
inertial velocity vector V⃗Lat and V⃗Lon and the corresponding
components vectors L⃗Lat and L⃗Lon from the position vector
subtended from the current UAS position p⃗ and an imaginary
point ⃗r. Point ⃗r is located in the current segment between a⃗ to
b⃗; see Figure 5.
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Figure 5: Attitude guidance logic geometry.

This point ⃗r is also located at a fixed distance | ⃗r − d⃗| = 𝑑
𝑟
,

a numerical value which is closely dependent on the dynamic
characteristics of the aircraft. The intersection between the
perpendicular line from the UAS position to the current
segment ab is called d⃗. Point ⃗r moves as d⃗ moves in the
direction of point b⃗. From the geometry seen in Figure 5, it
is evident that a small or zero angle 𝜂Lat or 𝜂Lon is equivalent
to a small or zero lateral or longitudinal cross-track error
(distance between points p⃗ and d⃗) and the UAS flying in the
segment direction, or that the UAS is off-track, but flying
toward the trajectory. Once point ⃗r reaches a predetermined
distance to the end of the segment, the segment switches to
the next waypoint, now between b⃗ to ⃗c, and the error angles
are recalculated, based on the new position vectors.

These error angles 𝜂Lat and 𝜂Lon (being both negative as
shown in Figure 5) are translated into attitude commands
through the following nonlinear relations (see [9]):

𝜙cmd = tan−1 {𝑘
𝑎Lat

⋅ 𝜂Lat ⋅ (𝑘𝑝Lat +
𝑘
𝑖Lat

𝑠
)} ,

𝜃cmd = tan−1 {𝑘
𝑎Lon

⋅ 𝜂Lon ⋅ (𝑘𝑝Lon +
𝑘
𝑖Lon

𝑠
)} ,

(9)

where gains 𝑘
𝑝
and 𝑘

𝑖
are convenient gains resembling PI

controllers. The integral action has been added to force the
steady state angle error to zero. The arctangent function
acts as a smooth limiter, avoiding unrealistic growth of the
commands. The adaptive gains 𝑘

𝑎Lat
= 2|V⃗Lat|

2/|L⃗Lat| and
𝑘
𝑎Lon

= 2|V⃗Lon|
2/|L⃗Lon| are used to adequately neutralize

changes in the aircraft’s speed due to external disturbances,
such as a wind gusts; see [4]. For the particular geometry of
the nonlinear logic, errors will be zero onlywhen both vectors
are aligned and the UAS is flying with zero cross-distance or
when it is pointing toward the trajectory.

As the inner loop controller also works with the airspeed
state error 𝑒

𝑉𝑇
, the predefined segment inertial speed is

converted from inertial I to wind W coordinate systems
and adapted for the current wind estimation. So, when the

aircraft, driven by the controller, is reaching the commanded
airspeed and is on the track, it will also be flying closer to the
desired inertial speed.

3.3. Stability in the Sense of Lyapunov. In order to test the
stability of the guidance law (similar to [37]), a state space rep-
resentation is developed in terms of the variables 𝜂Lat(𝑡) and
𝑑
𝑑
(𝑡), the shortest distance from the UAS to the trajectory.

Then, its stability in the sense of Lyapunov is assessed. From
Figure 6(a), relations are defined among guidance variables,
where the time dependence has been included for clarity. Rate
of change of distance 𝑑

𝑑
(𝑡) is described as follows:

̇𝑑
𝑑 (𝑡) =

󵄨󵄨󵄨󵄨󵄨
V⃗Lat (𝑡)

󵄨󵄨󵄨󵄨󵄨
sin (𝜂Lat (𝑡) − 𝜂

𝑐

Lat (𝑡)) , (10)

where positive distance is as shown and 𝜂𝑐Lat(𝑡) is defined
as 𝜂𝑐Lat(𝑡) = tan−1(𝑑

𝑑
(𝑡)/𝑑

𝑟
). As a sign convention, angles

measured counterclockwise are taken positive.
For the dynamics of 𝜂Lat(𝑡) the centripetal acceleration

𝑎cent(𝑡), shown in Figure 6(a), is defined as

𝑑

𝑑𝑡
(𝜂Lat (𝑡) − 𝜂

𝑐

Lat (𝑡)) = −
𝑎cent (𝑡)
󵄨󵄨󵄨󵄨󵄨
V⃗Lat (𝑡)

󵄨󵄨󵄨󵄨󵄨

. (11)

By assuming the inner controller accomplishes a close
tracking of 𝜙cmd, and assuming 𝑎cent = 𝑔 tan𝜙, which is valid
for coordinated turns, the following dynamics holds:

̇𝜂Lat (𝑡) =
−
󵄨󵄨󵄨󵄨󵄨
V⃗Lat (𝑡)

󵄨󵄨󵄨󵄨󵄨
𝜂Lat (𝑡)

√𝑑2
𝑑
(𝑡) + 𝑑2

𝑟

+

󵄨󵄨󵄨󵄨󵄨
V⃗Lat (𝑡)

󵄨󵄨󵄨󵄨󵄨
𝑑
𝑟

(𝑑2
𝑑
(𝑡) + 𝑑2

𝑟
)
sin(𝜂Lat (𝑡) − tan−1

𝑑
𝑑 (𝑡)

𝑑
𝑟

) ,

(12)

where the speed is assumed to be constant; that is, |V⃗Lat(𝑡)| =
120 [ft/sec] ≈ 70 knots, 𝑘

𝑖Lat
= 0, 𝑘

𝑝Lat
= 1/2𝑔, and 𝑑

𝑟
=

300 [ft]. The dynamics from (10) and (12) are used to form
an autonomous nonlinear state space system and to evaluate
its stability. Using a numerical and graphical solution, these
equations are propagated in time for different initial condi-
tions. Figure 6(b) shows phase portrait of the autonomous
system, where all trajectories converge to the origin. It is clear
that the lateral guidance logic is asymptotically stable in the
sense of Lyapunov for any initial distance 𝑑

𝑑
and −𝜋 > 𝜂Lat >

𝜋.

4. Extended Kalman Filter

To improve the quality of measurements and to provide
estimations of unmeasured quantities, an EKF is designed
based on [38] (method briefly reviewed in Appendix E) for
the following dynamic model ̇̂x(𝑡) = f̂(x̂(𝑡), u(𝑡)) composed
of the aircraftmodeling defined in Section 2. Biases and wind
components are defined as new states
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f̂ :

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

̇̂𝑝
𝑁
= 𝑈̂ cos𝜙 cos 𝜓̂ + 𝑉̂ (− cos𝜙 sin 𝜓̂ + sin𝜙 sin 𝜃 cos 𝜓̂) + 𝑊̂ (sin𝜙 sin 𝜓̂ + cos𝜙 sin 𝜃 cos 𝜓̂) − 𝑤

𝑁
,

̇̂𝑝
𝐸
= 𝑈̂ cos 𝜃 sin 𝜓̂ + 𝑉̂ (cos𝜙 cos 𝜓̂ + sin𝜙 sin 𝜃 sin 𝜓̂) + 𝑊̂ (− sin𝜙 cos 𝜓̂ + cos𝜙 sin 𝜃 sin 𝜓̂) − 𝑤

𝐸
,

̇̂𝑝
𝐻
= 𝑈̂ sin 𝜃 − 𝑉̂ sin𝜙 cos 𝜃 − 𝑊̂ cos𝜙 cos 𝜃 − 𝑤

𝐻
,

̇̂
𝑉
𝑇
=

(𝑈̂𝑈̇ + 𝑉̂
̇̂

𝑉 + 𝑊̂
̇̂

𝑊)

𝑉̂
𝑇

,

̇̂𝛼 =
(𝑈̂

̇̂
𝑊 − 𝑊̂𝑈̇)

(𝑈̂𝑈̂ + 𝑊̂𝑊̂)
,

̇̂
𝛽 =

(𝑉̂
𝑇

̇̂
𝑉 − 𝑉̂

̇̂
𝑉
𝑇
)

(𝑉̂2

𝑇
cos𝛽)

,

̇̂
𝜙 = 𝑃̂ + tan 𝜃 (𝑄 sin𝜙 + 𝑅̂ cos𝜙) ,
̇̂
𝜃 = 𝑄 cos𝜙 − 𝑅̂ sin𝜙,

̇̂𝜓 =
(𝑅̂ cos𝜙 + 𝑄 sin𝜙)

cos 𝜃
,

̇̂
𝑃 = (𝑐

2
𝑃̂ + 𝑐

1
𝑅̂) 𝑄 + 𝑞𝑆𝑏 (𝑐

3
𝐶
𝑙
+ 𝑐

4
𝐶
𝑛
) ,

̇̂
𝑄 = 𝑐

5
𝑃̂𝑅̂ + 𝑐

6
(𝑅̂2 − 𝑃̂2) + 𝑞𝑆𝐶𝑐

7
𝐶
𝑚
,

̇̂
𝑅 = 𝑐

8
𝑃̂𝑄 − 𝑐

2
𝑅̂𝑄 + 𝑞𝑆𝑏𝑐

4
𝐶
𝑙
+ 𝑞𝑆𝑏𝑐

9
𝐶
𝑛
,

̇̂
𝛿
𝑇
= −10𝛿

𝑇
+ 10𝛿

𝑇cmd,

̇̂
𝛿
𝐸
= −14.30𝛿

𝐸
+ 14.30𝛿

𝐸cmd,

̇̂
𝛿
𝐴
= −14.30𝛿

𝐴
+ 14.30𝛿

𝐴cmd,

̇̂
𝛿
𝑅
= −5𝛿

𝑅
+ 5𝛿

𝑅cmd,

̇̂𝑤
𝑁
= ̇̂𝑤

𝐸
= ̇̂𝑤

𝐻
=

̇̂
𝑉
𝑇𝑏

= ̇̂𝛼
𝑏
=

̇̂
𝛽
𝑏
=

̇̂
𝑃
𝑏
=

̇̂
𝑄
𝑏
=

̇̂
𝑅
𝑏
= ̇̂𝑎

𝑋𝑏
= ̇̂𝑎

𝑌𝑏
= ̇̂𝑎

𝑍𝑏
=

̇̂
𝐻

𝑋𝑏
=

̇̂
𝐻

𝑌𝑏
=

̇̂
𝐻

𝑍𝑏
= 0,

(13)

where body velocities {𝑈̂, 𝑉̂, 𝑊̂} and their time rate of
changes are defined as in Section 2 and Appendix A. The
EKF model also utilizes the following output equation ŷ =

ĥ(x(𝑡), û(𝑡)), designed based on available sensors including

inertial position (GPS), Euler angles (IMU), body angular
rates (IMU), airflow angles vane and airspeed probe, 3D
magnetic flux, body angular rate (3D gyros), translational
accelerations (3D accelerometers), and elevator, aileron, and
rudder deflection sensors

ĥ :

{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{

{

𝑦
1
= 𝑝

𝑁
, 𝑦

2
= 𝑝

𝐸
, 𝑦

3
= 𝑝

𝐻
, 𝑦

4
= 𝜙,

𝑦
5
= 𝜃, 𝑦

6
= 𝜓̂, 𝑦

7
= 𝑃̂, 𝑦

8
= 𝑄,

𝑦
9
= 𝑅̂, 𝑦

10
= 𝑉̂

𝑇
+ 𝑉̂

𝑇𝑏
, 𝑦

11
= 𝛼̂ + 𝛼̂

𝑏
, 𝑦

12
= 𝛽 + 𝛽

𝑏
,

𝑦
13

= 𝐻̂
𝑋
+ 𝐻̂

𝑋𝑏
, 𝑦

14
= 𝐻̂

𝑌
+ 𝐻̂

𝑌𝑏
, 𝑦

15
= 𝐻̂

𝑍
+ 𝐻̂

𝑍𝑏
, 𝑦

16
= 𝑃̂ + 𝑃̂

𝑏
,

𝑦
17

= 𝑄 + 𝑄
𝑏
, 𝑦

18
= 𝑅̂ + 𝑅̂

𝑏
, 𝑦

19
=

(𝑋𝑃 + 𝑋𝐴)

𝑚
+ 𝑎

𝑋𝑏
, 𝑦

20
=

𝑌̂
𝐴

𝑚
+ 𝑎

𝑌𝑏
,

𝑦
21

=
𝑍𝐴

𝑚
+ 𝑎

𝑍𝑏
, 𝑦

22
= 𝛿

𝐸
, 𝑦

23
= 𝛿

𝐴
, 𝑦

24
= 𝛿

𝑅
.

(14)
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Figure 6: Lateral guidance geometry (a). Phase portrait of lateral guidance (b).

State vector x̂[𝑘] ∈ 𝑅𝑛, input vector u[𝑘] ∈ 𝑅𝑚̂, equivalent
to the system input, and measurement vector ŷ[𝑘] ∈ 𝑅

𝑟 are
defined as

x̂ [𝑘] = [𝑝
𝑁 [𝑘] , 𝑝𝐸 [𝑘] , 𝑝𝐻 [𝑘] , 𝑉̂𝑇 [𝑘] , 𝛼̂ [𝑘] , 𝛽 [𝑘] ,

𝜙 [𝑘] , 𝜃 [𝑘] , 𝜓̂ [𝑘] , 𝑃̂ [𝑘] , 𝑄 [𝑘] , 𝑅̂ [𝑘] , 𝛿𝑇 [𝑘] , 𝛿𝐸 [𝑘] ,

𝛿
𝐴 [𝑘] , 𝛿𝑅 [𝑘] , 𝑤𝑁 [𝑘] , 𝑤𝐸 [𝑘] , 𝑤𝐻 [𝑘] , 𝑉̂𝑇𝑏 [𝑘] ,

𝛼̂
𝑏 [𝑘] , 𝛽𝑏 [𝑘] , 𝑃̂𝑏 [𝑘] , 𝑄𝑏 [𝑘] , 𝑅̂𝑏 [𝑘] , 𝑎𝑋𝑏 [𝑘] ,

𝑎
𝑌𝑏 [𝑘] , 𝑎𝑍𝑏 [𝑘] , 𝐻̂𝑋𝑏 [𝑘] , 𝐻̂𝑌𝑏 [𝑘] , 𝐻̂𝑍𝑏 [𝑘]]

𝑇

,

u [𝑘] = [𝛿
𝑇cmd

[𝑘] , 𝛿𝐸cmd
[𝑘] , 𝛿𝐴cmd

[𝑘] , 𝛿𝑅cmd
[𝑘]]

𝑇

,

ŷ [𝑘] = [𝑝
𝑁 [𝑘] , 𝑝𝐸 [𝑘] , 𝑝𝐻 [𝑘] , 𝜙 [𝑘] , 𝜃 [𝑘] , 𝜓̂ [𝑘] , 𝑃̂ [𝑘] ,

𝑄 [𝑘] , 𝑅̂ [𝑘] , 𝑉̂𝑇 [𝑘] + 𝑉̂
𝑇𝑏
[𝑘] , 𝛼̂ [𝑘] + 𝛼̂

𝑏 [𝑘] ,

𝛽 [𝑘] + 𝛽
𝑏 [𝑘] ,𝐻𝑋0

+ 𝐻̂
𝑋𝑏 [𝑘] ,𝐻𝑌0

+ 𝐻̂
𝑌𝑏 [𝑘] ,

𝐻
𝑍0

+ 𝐻̂
𝑍𝑏 [𝑘] , 𝑃̂ [𝑘] + 𝑃̂

𝑏 [𝑘] , 𝑄 [𝑘] + 𝑄
𝑏 [𝑘] ,

𝑅̂ [𝑘] + 𝑅̂
𝑏 [𝑘] , 𝑎𝑋 [𝑘] + 𝑎

𝑋𝑏 [𝑘] , 𝑎𝑌 [𝑘] + 𝑎
𝑌𝑏 [𝑘] ,

𝑎
𝑍 [𝑘] + 𝑎

𝑍𝑏 [𝑘] , 𝛿𝐸 [𝑘] , 𝛿𝐴 [𝑘] , 𝛿𝑅 [𝑘]]
𝑇

,

(15)

where the subscript 𝑏 refers to bias, 𝑎 refers to acceleration,
and 𝐻̂ indicates magnetic flux. Subscripts {𝑋, 𝑌, 𝑍} are
defined in body frame B and the subscript zero denotes the
inertial reference magnetic flux for the flying area, assumed

fixed. Variable 𝑎 is defined as a function of estimated states,
as follows:

[

[

𝑎𝑥

𝑎𝑦

𝑎𝑧

]

]

=

[
[
[
[
[
[
[
[
[

[

𝑅̂𝑉̂ − 𝑄𝑊̂ +
(𝑇̂ + 𝑞̂𝑆𝐶

𝑋
)

𝑚

−𝑅̂𝑈̂ + 𝑃̂𝑊̂ +
𝑞̂𝑆𝐶

𝑌

𝑚

𝑄𝑈̂ − 𝑃̂𝑉̂ +
𝑞̂𝑆𝐶

𝑍

𝑚

]
]
]
]
]
]
]
]
]

]

, (16)

where 𝑞̂ is the estimated dynamic pressure and {𝐶
𝑋
, 𝐶

𝑌
, 𝐶

𝑍
}

are the estimated body aerodynamic force coefficients. The
calculated accelerations {𝑎

𝑋
, 𝑎

𝑌
, 𝑎

𝑍
} plus the estimated biases

{𝑎
𝑋𝑏
, 𝑎

𝑌𝑏
, 𝑎

𝑍𝑏
}, as shown in (15), are used as the estimated

accelerations. They do not include gravity effects to keep
consistency to accelerometer measurements. As in Section 2
and Appendix A, the same relations apply to the estimated
stability and body aerodynamic coefficients and to the
estimated thrust 𝑇̂. The body magnetic flux {𝐻

𝑋
, 𝐻

𝑌
, 𝐻

𝑍
}

is related to the inertial magnetic flux {𝐻
𝑁0

, 𝐻
𝐸0
, 𝐻

𝐷0
} as

follows:

[

[

𝐻
𝑋

𝐻
𝑌

𝐻
𝑍

]

]

= 𝐶
𝐵

𝐼
(𝜙, 𝜃, 𝜓)[

[

𝐻
𝑁0

𝐻
𝐸0

𝐻
𝐷0

]

]

+ [

[

𝐻̂
𝑋𝑏

𝐻̂
𝑌𝑏

𝐻̂
𝑍𝑏

]

]

, (17)

where 𝐶𝐵

𝐼
corresponds to the direction cosine matrix for

rotation from inertial reference I to body reference B. The
inertial magnetic flux {𝐻

𝑁0
, 𝐻

𝐸0
, 𝐻

𝐷0
} is a known fixed data

obtained for the area to be flown.

5. Artificial Neural Network

A feedforward ANN with a single hidden layer, containing
a finite number of neuron cells with sigmoid-type activation
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functions and a linear activation functions at the output cells,
intrinsically materializes the universal approximation theo-
rem. It approximates any multivariate continuous function
on a compact domain subset of 𝑅𝑚 to any degree of accuracy.
Based on this theorem, proven originally in [39], for any given
continuous function𝑓

𝑗
(X) ∈ 𝑅1, withX = [𝑥

1
, 𝑥

2
, . . . , 𝑥

𝑛
]
𝑇
∈

𝑅𝑛, both normalized within the range [−1, 1] and for 𝛿 > 0,
there exist an integer𝑁 and a set of parameters (weights and
biases) 𝑏

𝑖
, 𝑐
𝑗
∈ 𝑅, andw

𝑖
∈ 𝑅𝑛 and 𝑎

𝑗𝑖
∈ 𝑅with 𝑖 = 1 ⋅ ⋅ ⋅ 𝑁 and

𝑗 a fixed value from the set {1 ⋅ ⋅ ⋅ 𝑝} indicating a particular
function within a set of related functions, as is the case of
aircraft accelerations, such that

𝐹
𝑗 (X) =

𝑁

∑
𝑖=1

𝑎
𝑗𝑖
𝜑 (w𝑇

𝑖
X + 𝑏

𝑖
) + 𝑐

𝑗
(18)

is as an approximation of the function 𝑓
𝑗
(X); that is, |𝐹

𝑗
(X) −

𝑓
𝑗
(X)| < 𝛿, where𝜑(⋅) is a boundedmonotonically increasing

activation function. Figure 7 shows the general structure of
the ANN and its interconnections.

To develop an iterative adaptive online algorithm, one
learning epoch at each sample time is performed.This is done
using a sliding window of data. This moving window has a
constant length in time, but as new data is measured, the
oldest data is discarded and the new is added as the most
recent (concept similar to shift registering). Using the concept
of slidingmode learning, the ANN is kept permanently in the
training stage adapting its parameters to reflect changes in the
dynamics of the aircraft.

For vertical acceleration estimation 𝑎
𝑍

= 𝑎
𝑍

+ 𝑎
𝑍𝑏

(reducing theANN to one single output), the slidingwindows
of input and target data, X̂[𝑘] ∈ 𝑅𝑁𝐴×𝑛 and Ŷ[𝑘] ∈ 𝑅𝑁𝐴 , are
defined as follows, where𝑁

𝐴
sets the window’s length:

X̂𝑇
[𝑘] =

[
[
[
[
[
[
[
[
[
[

[

𝑉̂
𝑇
[𝑘 − 𝑁

𝐴
+ 1] 𝑉̂

𝑇
[𝑘 − 𝑁

𝐴
+ 2] ⋅ ⋅ ⋅ 𝑉

𝑇 [𝑘 − 1] 𝑉
𝑇 [𝑘]

𝛼̂ [𝑘 − 𝑁
𝐴
+ 1] 𝛼̂ [𝑘 − 𝑁

𝐴
+ 2] ⋅ ⋅ ⋅ 𝛼̂ [𝑘 − 1] 𝛼 [𝑘]

𝛽 [𝑘 − 𝑁
𝐴
+ 1] 𝛽 [𝑘 − 𝑁

𝐴
+ 2] ⋅ ⋅ ⋅ 𝛽 [𝑘 − 1] 𝛽 [𝑘]

𝑄 [𝑘 − 𝑁
𝐴
+ 1] 𝑄 [𝑘 − 𝑁

𝐴
+ 2] ⋅ ⋅ ⋅ 𝑄 [𝑘 − 1] 𝑄 [𝑘]

̇̂𝛼 [𝑘 − 𝑁
𝐴
+ 1] ̇̂𝛼 [𝑘 − 𝑁

𝐴
+ 2] ⋅ ⋅ ⋅ ̇̂𝛼 [𝑘 − 1] 𝛼̇ [𝑘]

𝛿
𝑇
[𝑘 − 𝑁

𝐴
+ 1] 𝛿

𝑇
[𝑘 − 𝑁

𝐴
+ 2] ⋅ ⋅ ⋅ 𝛿

𝑇 [𝑘 − 1] 𝛿
𝑇 [𝑘]

𝛿
𝐸
[𝑘 − 𝑁

𝐴
+ 1] 𝛿

𝐸
[𝑘 − 𝑁

𝐴
+ 2] ⋅ ⋅ ⋅ 𝛿

𝐸 [𝑘 − 1] 𝛿
𝐸 [𝑘]

]
]
]
]
]
]
]
]
]
]

]

,

Ŷ𝑇
[𝑘] = [𝑎𝑍 [𝑘 − 𝑁

𝐴
+ 1] 𝑎

𝑍
[𝑘 − 𝑁

𝐴
+ 2] ⋅ ⋅ ⋅ 𝑎

𝑍 [𝑘 − 1] 𝑎
𝑍 [𝑘]] .

(19)

The training is done by minimizing the accumulated
quadratic error between 𝑎

𝑍
= 𝑎

𝑍
+ 𝑎

𝑍𝑏
and the estimated

ANN vertical accelerations 𝑎
𝑍
, that is, minimizing the cost

function𝑊(𝜂) = 𝜀
𝑇
(𝜂) ⋅ 𝜀(𝜂) ∈ R, where

𝜀 (𝜂) =
[
[

[

𝜀 [𝑘 − 𝑁
𝐴
+ 1, 𝜂]

...
𝜀 [𝑘, 𝜂]

]
]

]

×
[
[

[

𝑎
𝑧
[𝑘 − 𝑁

𝐴
+ 1] − 𝑎

𝑧
[𝑘 − 𝑁

𝐴
+ 1, 𝜂]

...
𝑎
𝑧 [𝑘] − 𝑎

𝑧
[𝑘, 𝜂]

]
]

]

,

(20)

where the line subscript is used to identify the ANN estima-
tions, and where 𝜂 ∈ 𝑅𝑚 is the parameter vector

𝜂
𝑇
= [𝜂

1
, . . . , 𝜂

𝑚
]

= [𝑎
11
, . . . , 𝑎

𝑝1
, . . . , 𝑎

1𝑁
, . . . , 𝑎

𝑝𝑁
, 𝑏
1
, . . . , 𝑏

𝑁
,

𝑤
11
, . . . , 𝑤

1𝑛
, . . . , 𝑤

𝑁1
, . . . , 𝑤

𝑁𝑛
, 𝑐
1
, . . . , 𝑐

𝑝
]

(21)

with𝑚 = 𝑝× 𝑛 +𝑁× 𝑛+𝑁+𝑝. Using a Newton-type search
method, the following iterative update is defined as

𝜂 [𝑘 + 1] = 𝜂 [𝑘] − [∇
2
𝑊(𝜂 [𝑘])]

−1

⋅ ∇
𝑇
𝑊(𝜂 [𝑘]) , (22)

where ∇𝑊(𝜂[𝑘]) and ∇2𝑊(𝜂[𝑘]) are the gradient and the
Hessian of the cost function𝑊 with respect to the parameter
vector, defined as follows:

∇𝑊(𝜂) = [
𝜕𝑊

𝜕𝜂
1

⋅ ⋅ ⋅
𝜕𝑊

𝜕𝜂
𝑚

] ,

∇
2
𝑊(𝜂) =

[
[
[
[
[
[
[

[

𝜕
2𝑊

𝜕𝜂2
1

⋅ ⋅ ⋅
𝜕2𝑊

𝜕𝜂
1
𝜕𝜂

𝑚

... d
...

𝜕2𝑊

𝜕𝜂
𝑚
𝜕𝜂

1

⋅ ⋅ ⋅
𝜕2𝑊

𝜕𝜂2
𝑚

]
]
]
]
]
]
]

]

.

(23)

These quantities are approximated numerically at each
iteration where the error vector 𝜀(𝜂) can be approximated by
a first-order Taylor series

𝜀 (𝜂 + Δ𝜂) ≈ 𝜀 (𝜂) + 𝐽 (𝜂) ⋅ Δ𝜂, (24)
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Figure 7: Structure of ANN.

where the rows of J(𝜂), the Jacobian of 𝜀(𝜂), include the gra-
dients of each element of 𝜀(𝜂) with respect to the parameter
vector 𝜂 as follows:

J (𝜂) = [
[

[

∇𝜀 [𝑘 − 𝑁
𝐴
+ 1, 𝜂]

...
∇𝜀 [𝑘, 𝜂]

]
]

]

=

[
[
[
[
[
[
[

[

𝜕𝜀 [𝑘 − 𝑁
𝐴
+ 1, 𝜂]

𝜕𝜂
1

⋅ ⋅ ⋅
𝜕𝜀 [𝑘 − 𝑁

𝐴
+ 1, 𝜂]

𝜕𝜂
𝑚

... d
...

𝜕𝜀 [𝑘, 𝜂]

𝜕𝜂
1

⋅ ⋅ ⋅
𝜕𝜀 [𝑘, 𝜂]

𝜕𝜂
𝑚

]
]
]
]
]
]
]

]

.

(25)

Then, the cost function 𝑊(𝜂), evaluated at 𝜂 + Δ𝜂, is
expressed as

𝑊(𝜂 + Δ𝜂) ≈

𝑊(𝜂)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜀
𝑇
(𝜂) ⋅ 𝜀(𝜂) +

∇𝑊(𝜂)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
2𝜀

𝑇
(𝜂) ⋅ 𝐽(𝜂) ⋅Δ𝜂

+
1

2
Δ𝜂

𝑇
⋅ 2𝐽

𝑇
(𝜂) ⋅ 𝐽 (𝜂)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

∇
2
𝑊(𝜂)

⋅ Δ𝜂.

(26)

From (26), the cost function’s gradient ∇𝑊(𝜂[𝑘]) and
Hessian ∇

2
𝑊(𝜂[𝑘]) are then obtained as functions of the

error vector 𝜀(𝜂) and its Jacobian J(𝜂). Then, (22) is rewritten
as

𝜂 [𝑘 + 1] = 𝜂 [𝑘] − [2J𝑇 (𝜂 [𝑘]) ⋅ J (𝜂 [𝑘])]
−1

⋅ [2𝜀
𝑇
(𝜂 [𝑘]) ⋅ J (𝜂 [𝑘])]

𝑇

.

(27)

As a way to improve the numerical search, the Levenberg
approach is chosen (see [40]), where a factor called Levenberg
adaptive parameter 𝜆 is introduced. This method permits
a transition from a steepest descent to a quadratic method

Table 3: Closed-loop infinity norm associated to each uncertainty.

Parameter ‖Fl(P̂1
,K1

)‖
∞

𝐶
𝑚𝑞

0.3846
𝐶
𝑚𝛿𝑒

0.2451
𝐶
𝑙𝛽

0.0100
𝐶
𝑛𝑟

0.3816
𝐶
𝑛𝛿𝑟

0.1674
All 0.5617

when closer to the minimum. Based on this approach, (27) is
modified as

𝜂 [𝑘 + 1] = 𝜂 [𝑘] − [2J𝑇 (𝜂 [𝑘]) ⋅ J (𝜂 [𝑘]) + 𝜆𝐼]
−1

⋅ [2𝜀
𝑇
(𝜂 [𝑘]) ⋅ J (𝜂 [𝑘])]

𝑇

.

(28)

Under Levenberg’s logic, this adaptive parameter is
adjusted during each iteration based on the cost function
evolution. In this paper, the logic is modified to reset the
Levenberg’s adaptive parameter, that is, 𝜆[𝑘], when reaching
predefined extreme values to avoid unbounded growing
specially when the cost function has reached aminimum and
consecutive iterations remain closer to it (a common occur-
rence in one-shot offline minimizations). This modification
is required to keep the ANN under permanent training. The
modification is as follows:

Start with 𝜆 [𝑘] = 𝜆
0

IF 𝑊([𝑘 + 1]) < 𝑊 ([𝑘]) 󳨀→ 𝜆 [𝑘 + 1] =
𝜆 [𝑘]

𝜆dec

IF 𝜆 [𝑘 + 1] < 𝜆min 󳨀→ 𝜆 [𝑘 + 1] = 𝜆
0

IF 𝑊([𝑘 + 1]) ≥ 𝑊 ([𝑘]) 󳨀→ 𝜆 [𝑘 + 1] = 𝜆 [𝑘] ⋅ 𝜆inc

IF 𝜆 [𝑘 + 1] > 𝜆max 󳨀→ 𝜆 [𝑘 + 1] = 𝜆
0
,

(29)

where 0 < 𝜆min < 𝜆max are the minimum and maximum
allowed values, and 𝜆dec > 0 and 𝜆inc > 0 are the
decrement and increment correction factors. All these factors
are empirically obtained after extensive simulations.

6. Simulation and Testing

This section is devoted to test previous designs in simulation,
by employing stored flight test data, and also by comparing
the designed FCS performance in contrast with a COTS
autopilot under similar conditions, for the same aircraft. The
manufacture of COTS system cannot be revealed due to
contractual obligations.

6.1. ANN Simulation Results. TheANN estimation capability
is evaluated for a window length of 𝑁

𝐴
= 400 (samples),

which corresponds to 10 seconds of past flight for a sampling



12 International Journal of Aerospace Engineering

C
os

t f
un

ct
io

n 
(—

)
104

102

100

10−2

10−4

10−6

10−8

5554.55453.55352.55251.55150.550
Time (s)

(a)

4

3

2

1

0

−1

−2

−3
5554.55453.55352.55251.55150.550

Time (s)

Pa
ra

m
et

er
s (

w
ei

gh
ts 

an
d 

bi
as

es
)

(b)

Figure 8: Cost function minimization, no noise (a). Parameter evolution, no noise (b).

interval 𝑑𝑡 = 1/40 seconds. For the logic defined in (29),
𝜆
0
= 0.001, 𝜆max = 1, 𝜆min = 0.00001, 𝜆dec = 3, and 𝜆inc = 2.
Two simulations are run for a 33% Yak-54 UAS, with and

without measurement noise. Figures 8 and 9 show the con-
vergence of the parameters, the cost function minimization,
the Levenberg adaptive parameter, and the measured and
estimated vertical acceleration, considering noise. Figures 10
and 11 show the same information for the case without noise.

By using the Delta method, which is a numerical tech-
nique to approximate partial derivatives, stability and control
derivatives can be extracted.

The standard application of this technique, in previous
cited articles, is generally offline postprocessing analysis. The
idea presented here is to allocate a specific logic and to
compute these approximate partial derivatives online. Two
identical structures of the ANN are kept in parallel. They are
fed incomingmeasurements, similar to theANNunder train-
ing. Also, these two structures are updated with the current
weight and biases from theANN.One of these structure is fed
with a perturbed input (i.e., measured angle of attack plus a
small added perturbation), while the second structure is kept
fed by unperturbed inputs. By taking the quotient between
the differences of the two structures outputs, with respect to
the magnitude of the added perturbation, an approximation
of the partial derivative is obtained in real time.

For this case, the partial derivative of the vertical accelera-
tionwith respect to some input of the ANN is obtained.These
quantities can then be used to calculate more specific stability
and control derivatives by converting from body to stability
coordinates. This allows the capability of detecting dynamic
changes due to internal or external changing conditions, or
due to failures, by monitoring the time tendency of these
values.

By comparing Figures 8 and 9, with Figures 10 and 11,
the effect of measurement noise is clear. Cost function values
are considerably higher. Also, the parameter vector does not

settle permanently and it adjusts continuously due to the
inherent variability condition of the Levenberg parameter.

As shown in Figure 11(b), a fairly good prediction is
achieved. Further precaution needs to be observed to avoid
deep changes, as seen between seconds 54 and 55 when a
steep readjustment occurred. Using a desktop, each iteration
took less than 1.2 seconds; this means that a dedicated
microprocessor must be used for real-time estimations.

6.2. Adaptive Artificial Neural Network Testing. To verify the
performance of ANN’s adaptive capability in the modeling
of unsteady aerodynamic forces, actual 33% scale Yak-54
UAS flight test data from the 2009 flight test at Pegasus
Airfield in Antarctica is used. The data was collected with
a sampling frequency of 10 (Hz). For comparison and val-
idation purposes, the same ANN for 𝑍-axis acceleration is
trained and tested with and without adaptiveness. This ANN
is constructed from twenty cells (𝑀 = 20) in the hidden layer
and fed with same inputs as defined earlier for online ANN.
Figure 12 shows the flight test data and the estimations with
and without adaptiveness.

The flight had a well-defined pattern. From a prolonged
circular autonomous period of flight, the aircraft is switched
to remote control for landing around second 1145. During
autonomous flight, the nonadaptive ANN is trained. It is then
tested in both the remaining autonomous flight segment and
during the remote controlled period. The adaptive ANN is
tested in the same interval as the nonadaptive ANN.

Figure 12 shows a close estimation of both types of ANN
before mode switching. After changing control sources, a
significant dynamic behavior experienced by the aircraft left
nonadaptive ANN outdated.

6.3. Gain Scheduling Simulation Results. To assess the gain
scheduling techniques, hypothetical failures are induced
through changes in the numerical value of stability and
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control derivatives. The gain scheduling adapts controllers
to guarantee the aircraft stability and performance in the
event of an adverse condition (e.g., servo failure or damage).
Extreme changes could be a result of system failure or a result
of damage to the aircraft. An adaptive flight control system
must have the potential to adjust for failure or damage to
maintain control in flight and meet the required handling
qualities that allow for safe recovery of the airplane. As a
condition for successful gain scheduling, the FCS is expected
to achieve a similar level of performance and required uncer-
tainty management before and after detection of dynamic
changes.

To replicate a major change in the lateral-directional
dynamics of UAS due to a failure or unsteady aerodynamics,

at 120 seconds of a horizontal level flight, the numerical value
of 𝐶

𝑛𝛽
(Table 1) is reduced by a factor of 4. This reflects a

sudden change in the UAS dynamics, affecting the stability
of UAS directionally. After inducing this change, the current
controller loses its stabilizing capability and oscillation can
be traced in the aircraft’s lateral-directional states. As it
was demonstrated in Section 6.2, the adaptive ANN allows
identification of sudden changes in the aircraft dynamics in
real time.

At 138 seconds and after detection of an unexpected
change in the aircraft’s stability and control derivative (i.e.,
change in 𝐶

𝑛𝛽
), the adaptive controller replaced the old

controller with a new one and successfully mitigated sudden
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Figure 12: 𝑍-axis measured and predicted acceleration: larger flight portion (a); zoom after switching control (b).

change in the aircraft’s dynamics. The growing amplitude of
oscillation is damped out and the roll and yaw rates and
sideslip angle are effectively controlled.

The resultant period of time taken to implement the gain
scheduling (18 seconds) is affected by the fact that the failure
does not showup immediately and the vehicle remainsmostly
unaffected. The induced failure is an alteration of the rate
of change in yaw rate with respect to changes in sideslip
angle, that is, 𝐶

𝑛𝛽
, so for an original constant and close to

zero sideslip (horizontal level flight), no immediate effect is

observed. After sideslip angle starts to change, the failure has
a multiplicative effect and grows faster. This is evident after
second 130.

It is important to point out that although the closed loop
remains (linearly) stable, the uncertainty robustness is lost,
as the infinity norm grows over the unity ‖F

𝑙
(P̂1,K1

)‖
∞

=

4.6355. In other words, a well-designed flight control system
is robust to a fairly large range of uncertainty or changes
in aircraft dynamics, however, if the changes become more
extreme the performance degrades and the aircraft may
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go unstable. An adaptive system has the ability to readjust
the controller to achieve desired performance or regain
robustness about the new point.

In transition between controllers and to avoid significant
sensitivity, the gain scheduling must be coupled with the
ANN output. Figures 13 and 14 show the failure and conse-
quent gain scheduling effects, on primarily involved states.
All simulations were performed with the full FCS.

To broaden the applicability of FCS technologies and to
extend assessment process, a failure which degrades aircraft’s
longitudinal stability is modeled. It is assumed that at 200
seconds of a horizontal level flight, a failure in the aircraft
caused amajor change in themagnitude of𝐶

𝑚𝛼
(Table 1).The

numerical value of 𝐶
𝑚𝛼

is reduced by a factor of 10. As it is
shown in Figures 15, 16, and 17 and after the failure took place,
the longitudinal robust stability is severely affected; that is,
‖F

𝑙
(P̂1,K1

)‖
∞

= 0.8895.

Detection of the failure, calculation of a new controller,
and gain scheduling are assumed to happen after 5 seconds
(200–205 (sec)). At 205 seconds, the new controller is online
modifying control surface commands. Severe impact is seen
in all major longitudinal variables, as shown in Figures 15, 16,
and 17.

The abrupt change in the angle of attack stability coef-
ficient (𝐶

𝑚𝛼
) increases the pitch angle and subsequently

reduces the airspeed. To mitigate these effects, the elevator
is commanded to quickly recover the equilibrium about
pitch axes and restoring the pitch angle. To restore the
airspeed, the throttle is also commanded. As demonstrated
with the simulated failure, the system without adaptation
cannot achieve the desired tracking or performance.

6.4. Functionality Tests and Comparison with Flight Test
Data. The purpose of this subsection is to assess different



16 International Journal of Aerospace Engineering

105

100

95

90

85

80

75
270260250240230220210200190

Gain scheduling

A
irs

pe
ed

 (ft
/s

)

Time (s)

(a)

4.6

4.4

4.2

4

3.8

3.6

3.4

3.2

3

2.8

2.6
270260250240230220210200190

Gain scheduling

A
ng

le
 o

f a
tta

ck
 (d

eg
)

Time (s)

(b)

Figure 15: Airspeed (a). Angle of attack (b).

En
gi

ne
 th

ro
ttl

e d
efl

ec
tio

n 
(0

-1
)

Gain scheduling

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0
240235230225220215210205200195190

Time (s)

(a)

240235230225220215210205200195190

2

1.5

1

0.5

0

−0.5

−1

−1.5

−2

Gain scheduling

Time (s)

El
ev

at
or

 d
efl

ec
tio

n 
(d

eg
)

(b)

Figure 16: Engine throttle (a). Elevator deflection (b).

functionalities of the designed FCS and to compare its
performance in closed loop with autonomous flight test
data obtained using a COTS autopilot system. It is known
that the COTS system uses an H-infinity controller. For
comparison purposes, similar flight conditions are induced
in the simulation, and same waypoints/trajectory are used for
path following. Superficially, performances of the designed
FCS and the COTS autopilot are compared in the following
categories:

(i) extended Kalman filter performance (flight measure-
ments versus EKF estimation);

(ii) inner loop: H-infinity robust controller performance
(e.g., the maximum commanded bank angle);

(iii) outer loop: accuracy of guidance logic and path
following in tight turns in presence of crosswind (e.g.,
deviation from the desired trajectory);

(iv) airspeed and altitude control;

(v) saturation of controls.

6.4.1. Extended Kalman Filter Testing. A slow update rate
GPS position sampled at 2 (Hz) is employed to test the
smooth interpolation capability of the EKF. Figure 18 shows
the measured and estimated geographical position and alti-
tude.

6.4.2. Flight Control System Testing. As part of the compar-
ison, inner and outer loops and extended Kalman filter, as
defined before, are included in testing. In this subsection,
no gain scheduling and no ANN estimations are performed.
These two features are tested independently and presented in
previous two subsections.
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The FCS controls the aircraft to follow a trajectory
autonomously flown by a 33% Yak-54 UAS equipped with a
COTS autopilot. This system contains an H-infinity robust
controller in the inner loop, an outer loop logic for waypoint
following, and an extended Kalman filter, running at 10 (Hz).
Its sensors include a GPS, an IMU, a 3D accelerometer, a 3D
gyro, a 3D magnetometer, a barometer, and a pitot tube.

For the similarity of the flight test and simulation com-
parisons, same initial conditions are extracted and used from
the flight test data. To replicate external disturbance, COTS
estimated wind information was also injected.

Figure 19 shows 3D views, and Figures 20 and 21 show the
control signals for both the designed FCS and COTS autopi-
lot. The top view of 3D simulation in Figure 19 demonstrates
superior performance of new nonlinear guidance logic in
guiding UAS on curved and tight trajectories in presence of
a crosswind. The wind was blowing from the west, and the
maximum deviation from the desired trajectory happened
when the UAS equipped with a COTS autopilot was in a
crosswind (magenta line Figure 19).

By design, the COTS autopilot does not command rud-
der.This imposed extra demand on the aileron causing higher
banking angles when initiating turns. Despite dissimilarity
of COTS system and the designed FCS, some basic but
important comparisons can bemade.As it is shown in Figures
20 and 21, the COTS autopilot and the designed FCS are not
subject of control saturation issues.

Figure 22(a) shows the comparison between the COTS
autopilot and the designed FCS in airspeed command follow-
ing. For the sake of unbiased comparison, the COTS autopilot
wind estimation is used in the simulation 14.1 (ft/sec) from
291∘.The airspeed command has a step increment around 380
seconds.

The ground speed is shown in Figure 22(b) in a wider
portion of the flight. The error in airspeed control of the
COTS autopilot is seen as the result of bias.This presumption
is confirmed by adding a bias of about 10–12 (ft/sec) to the
measured airspeed and disabling the FCS’s Kalman filter for

an even comparison. After inducing the bias, ground speeds
achieve higher similarity.

Figure 23 shows the attitude angles. It is important to
notice that the extended Kalman filter takes a few seconds
to converge from the given initial conditions affecting the
first part of the estimation, but showing a good command
following after possible transients.

7. Conclusions

An adaptive control comprising a robust inner controller,
stable outer nonlinear guidance logic, and neural network
fault detection is designed to provide increased resiliency to
mitigate effects of on-board adverse conditions and unsteady
aerodynamics. The aerodynamic models of UAS associated
with hazardous weather or on-board adverse conditions
are inherently nonlinear and unsteady. Under these con-
ditions, although the closed-loop H-infinity is still linearly
stable, the controller does not have uncertainty robustness
and the infinity norm can grow over unity. A modified
artificial neural network is successfully implemented for
real-time nonlinear estimations of the aerodynamic forces.
The Levenberg’s adaptive parameter resets when reaching
predefined extreme values.Thismodification allows avoiding
unbounded growing when the cost function has reached a
minimum.The sliding mode learning concept is used to keep
the artificial neural network in learning phase continuously.
A dynamic learning process of artificial neural networks
increases the robustness against on-board adverse conditions
and external disturbances. New nonlinear guidance logic
which is extended from the lateral plane to the longitudinal
plane has demonstrated superior performance in guiding
unmanned air systems on curved trajectories in presence
of external disturbances such as crosswind. The new logic
adds new features ensuring its stability for any location and
any attitude of the aircraft. The flight control system shows
a satisfactory level of adaptability and resilience which is
achieved by the adaptive nonlinearmodeling, noise rejection,
and biases attenuation. The robustness is assured by the
proper gain scheduling between predefined trim points and
for identified dynamic changes. It was found that in transition
between gains and to avoid significant sensitivity, the gain
scheduling must be coupled with the ANN output.

Appendices

A. Aircraft Dynamic Modeling

Based on a Newton-Euler modeling approach, the aircraft
dynamic model comprises a 6-DOF rigid-body set of equa-
tions for a fixed-wing aircraft in flat earth. Referred to the
aircraft’s center of gravity CG, as shown in Figure 1(b), it is
defined in four interrelated coordinate systems, that is, the
inertial coordinate system I aligned with the inertial local
flat earth coordinate system I, the body coordinate system B
fixed to the aircraft, the wind coordinate system W oriented
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toward the relative wind, and the stability coordinate system
S oriented as shown. Consider
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where moments of inertia 𝐽
𝑥
, 𝐽
𝑦
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, product of inertia 𝐽
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,

mass 𝑚, and gravity acceleration 𝑔 are assumed constant.
Body velocities 𝑈,𝑉,𝑊 in body frame B are define by 𝑈 =
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where aerodynamic forces 𝑋
𝐴, 𝑌𝐴, 𝑍𝐴 and moments

𝐿𝐴,𝑀𝐴, 𝑁𝐴, together with the engine thrust 𝑋
𝑇
, act in the

system as controllable inputs.

B. Polynomial Time-Invariant Engine
Thrust Modeling

Highly dependent on the type and configuration of the
engine, thrust𝑋𝑃 is modeled parametrically as a polynomial
function on 𝛿

𝑇
as
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(B.1)

where 𝑇2

𝑋
, 𝑇1

𝑋
, 𝑇0

𝑋
are constant parameters to be estimated

from flight test data for the trim point xtrim.

C. Linear and Time-Invariant Aerodynamic
Coefficient Modeling

The following relations, defined in the stability axis S, are used
to model the aerodynamic coefficients 𝐶

𝐷
, 𝐶

𝐿
, 𝐶

𝑚
, 𝐶

𝑦
, 𝐶

𝑙
, 𝐶

𝑛

as

𝐶
𝐷
= 𝐶

𝐷0
+ 𝐶

𝐷𝛼
𝛼 + 𝐶

𝐷𝛿𝑒
𝛿𝑒 + 𝐶

𝐷𝛼̇

𝛼̇𝑐

2𝑈trim

+ 𝐶
𝐷𝑞

𝑞𝑐

2𝑈trim
+ 𝐶

𝐷𝑢

𝑢

𝑈trim
,

𝐶
𝐿
= 𝐶

𝐿0
+ 𝐶

𝐿𝛼
𝛼 + 𝐶

𝐿𝛿𝑒
𝛿𝑒 + 𝐶

𝐿𝛼̇

𝛼̇𝑐

2𝑈trim

+ 𝐶
𝐿𝑞

𝑞𝑐

2𝑈trim
+ 𝐶

𝐿𝑢

𝑢

𝑈trim
,

𝐶
𝑚
= 𝐶

𝑚0
+ 𝐶

𝑚𝛼
𝛼 + 𝐶

𝑚𝛿𝑒
𝛿𝑒 + 𝐶

𝑚𝛼̇

𝛼̇𝑐

2𝑈trim

+ 𝐶
𝑚𝑞

𝑞𝑐

2𝑈trim
+ 𝐶

𝑚𝑢

𝑢

𝑈trim
,

𝐶
𝑦
= 𝐶

𝑦𝛽
𝛽 + 𝐶

𝑦 ̇𝛽

̇𝛽𝑏

2𝑈trim
+ 𝐶

𝑦𝑝

𝑝𝑏

2𝑈trim
+ 𝐶

𝑦𝑟

𝑟𝑏

2𝑈trim

+ 𝐶
𝑦𝛿𝑎

𝛿𝑎 + 𝐶
𝑦𝛿𝑟

𝛿𝑟,

𝐶
𝑙
= 𝐶

𝑙𝛽
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𝑙 ̇𝛽

̇𝛽𝑏

2𝑈trim
+ 𝐶

𝑙𝑝

𝑝𝑏

2𝑈trim
+ 𝐶

𝑙𝑟

𝑟𝑏

2𝑈trim

+ 𝐶
𝑙𝛿𝑎

𝛿𝑎 + 𝐶
𝑙𝛿𝑟
𝛿𝑟,

𝐶
𝑛
= 𝐶

𝑛𝛽
𝛽 + 𝐶

𝑛 ̇𝛽

̇𝛽𝑏

2𝑈trim
+ 𝐶

𝑛𝑝

𝑝𝑏

2𝑈trim
+ 𝐶

𝑛𝑟

𝑟𝑏

2𝑈trim

+ 𝐶
𝑛𝛿𝑎

𝛿𝑎 + 𝐶
𝑛𝛿𝑟

𝛿𝑟,

(C.1)

where 𝑝, 𝑞, 𝑟 are the deviations of the body angular velocities
from their constant trim values 𝑃trim , 𝑄trim , 𝑅trim, and 𝑢 is
the deviation from the constant trim speed 𝑈trim. Aerody-
namic coefficients in the stability coordinate system S are
transformed into body axes B coefficients by a rotation in the
amount of angle of attack trim value 𝛼trim.

D. H-Infinity Robust Controller
Design Conditions

Conditions to obtain a stabilizing H-infinity controller are

(a) (A𝑖,B𝑖
2
) stabilizable and (C𝑖

2
,A𝑖) detectable;

(b) rank(D𝑖

12
) = 𝑚

2
and rank(D𝑖

21
) = 𝑝

2
;
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Figure 19: 3D full view path following (a). 3D zoom view path following (b) and (c).

(c) D𝑖

12
= [0 𝐼

𝑚2
]
𝑇 and D𝑖

21
= [0 𝐼

𝑝2
], and D𝑖

11
is ex-

pressible as

D𝑖

11
=

[
[
[
[

[

D𝑖

1111⏟⏟⏟⏟⏟⏟⏟⏟⏟

(𝑝1−𝑚2)𝑥(𝑚1−𝑝2)

D𝑖

1112⏟⏟⏟⏟⏟⏟⏟⏟⏟
(𝑝1−𝑚2)𝑥(𝑝2)

D𝑖

1121⏟⏟⏟⏟⏟⏟⏟⏟⏟
(𝑚2)𝑥(𝑚1−𝑝2)

D𝑖

1122⏟⏟⏟⏟⏟⏟⏟⏟⏟
(𝑚2)𝑥(𝑝2)

]
]
]
]

]

; (D.1)

(d) D𝑖

22
= 0;

(e) rank [ A𝑖−𝑗𝑤𝐼 B𝑖
2

C𝑖
1

D𝑖
12

] = 𝑛 + 𝑚
2
;

(f) rank [ A𝑖−𝑗𝑤𝐼 B𝑖
1

C𝑖
2

D𝑖
21

] = 𝑛 + 𝑝
2
,

where assumption 𝑐, if not achieved by the chosen weighting
matrices, can be obtained via scaling of u

2
and y

2
together

with a unitary transformation of u
1
and y

1
. After previous

assumptions are met, there is 𝛾𝑖 > 0, for which the following
relations holds:

max (𝜎 [D𝑖

1111
D𝑖

1112
] , 𝜎 [D𝑖

1111

𝑇 D𝑖

1112

𝑇
]) < 𝛾

𝑖
,

X𝑖
≥ 0, Y𝑖

≥ 0,

𝜌 (X𝑖
⋅ Y𝑖

) < (𝛾
𝑖
)
2

.

(D.2)

This is equivalent to the existence of an internal stabilizing
controller K𝑖

K𝑖

=

[
[
[
[
[

[

A𝑖 B𝑖
1

B𝑖
2

C𝑖

1
D𝑖

11
D𝑖

12

C𝑖

2
D𝑖

21
0

]
]
]
]
]

]

(D.3)
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Figure 20: Engine throttle deflection (a). Elevator deflection (b).
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Figure 21: Aileron deflection (a). Rudder deflection (b).

whose components are given by

A𝑖

= A𝑖
+H𝑖C𝑖

+ B𝑖
2
(D𝑖

12
)
−1

C𝑖

1
,

B𝑖
1
= −H𝑖

2
+ B𝑖

2
(D𝑖

12
)
−1

D𝑖

11
,

B𝑖
2
= (B𝑖

2
+H𝑖

12
)D𝑖
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,

C𝑖

1
= F𝑖

2
Z𝑖 +D𝑖

11
(D𝑖

21
)
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C𝑖

2
,

C𝑖

2
= −D𝑖
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(C𝑖

2
+ F𝑖

12
)Z𝑖,

D𝑖

11
= −D𝑖

1121
D𝑖
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𝑇

((𝛾
𝑖
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I −D𝑖

1111
D𝑖
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𝑇

)
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D𝑖

1112
−D𝑖

1122
,

(D.4)

and D𝑖

12
and D𝑖

21
are any matrices satisfying the relation

D𝑖

12
D𝑖

12

𝑇

= I − D𝑖

1121
((𝛾𝑖)

2
𝐼 −D𝑖

1111

𝑇

D𝑖

1111
)
−1

D𝑖

1121

𝑇

and the
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Figure 22: Airspeed (a). Ground speed (b).
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Figure 23: Bank angle (a). Pitch angle (b).

relationD𝑖

21
D𝑖
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𝑇

= I −D𝑖

1112
((𝛾𝑖)

2
𝐼 −D𝑖

1111

𝑇

D𝑖

1111
)
−1

D𝑖

1112

𝑇

.
The feedback F𝑖 and state feedbackH𝑖 matrices are

F𝑖 =
[
[
[

[

F𝑖
11
}
(𝑚1−𝑝2)𝑥(𝑛)

F𝑖
12
}
(𝑝2)𝑥(𝑛)

F𝑖
2
}
(𝑚2)𝑥(𝑛)

]
]
]

]

= −(R𝑖

𝑎
)
−1

[D𝑖

1𝑎

𝑇

C𝑖

1𝑖
+ B𝑖

𝑇

X𝑖
] ,

H𝑖
= [

H𝑖

11⏟⏟⏟⏟⏟⏟⏟
(𝑛)𝑥(𝑝1−𝑚2)

H𝑖
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= − [B𝑖D𝑖

1𝑏

𝑇

+ Y𝑖C𝑖𝑇

] (R𝑖

𝑏
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−1

,
(D.5)

where

B𝑖 = [B𝑖
1
B𝑖
2
] , C𝑖

= [
C𝑖

1

C𝑖

2

] ,

Z𝑖 = (I − (𝛾
𝑖
)
−2

Y𝑖
⋅ X𝑖

)
−1

,
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] , D𝑖

1𝑏
= [
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(D.6)

Matrices X𝑖 and Y𝑖 are the solutions of the following Riccati
equations:

(A𝑖
− B𝑖(R𝑖
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(D.7)

E. Extended Kalman Filter Algorithm

The filter’s functions f̂ and ĥ represent the observed system.
They incorporate all available information of the aircraft
characterized by functions f and h and other variables to be
estimated as biases and wind; that is, f̂ ⊇ f and ĥ ⊇ h. Model
mismatch k(𝑡) and sensor noisew(𝑡) are included through the
Kalman gainK(𝑡) calculation as shown later.The continuous-
time observer is defined as

̇̂x (𝑡) = f̃ (x̂ (𝑡) , u (𝑡)) + K̃ (𝑡) (y (𝑡) − ŷ (𝑡)) ,

ŷ (𝑡) = h̃ (x̂ (𝑡)) ,
(E.1)

where x̂(𝑡) ∈ 𝑅
𝑛 is the filter state vector and û(𝑡) ∈ 𝑅𝑚̂ is the

filter input vector.
Aircraft dynamics and observation equations ẋ(𝑡) =

f(x(𝑡), u(𝑡)) + k(𝑡) and y(𝑡) = h(x(𝑡), u(𝑡)) +w(𝑡) are assumed
to be additively corrupted by uncorrelated Gaussian noise
signals k and w. Applying the Euler discretization method,
the 𝑛 order discrete version is obtained x̂[𝑘 + 1] = x̂[𝑘] +
Δ𝑇[f̂(x̂[𝑘], û[𝑘]) and ŷ[𝑘] = ĥ(x̂[𝑘], û[𝑘]), valid at each
sampling time interval Δ𝑇, where index [𝑘] corresponds to
time (𝑡) sampled at 𝑡 = 𝑘Δ𝑇. The discrete extended Kalman
filter algorithm is defined in two phases:

prediction
{

{

{

x̂ [𝑘/𝑘 − 1] = f̂ (x̂ [𝑘 − 1/𝑘 − 1] , û [𝑘 − 1]) ,

P [𝑘/𝑘 − 1] = F [𝑘 − 1]P [𝑘 − 1/𝑘 − 1] F𝑇 [𝑘 − 1] +Q [𝑘 − 1] ,

correction

{{{{{

{{{{{

{

K [𝑘] = P [𝑘/𝑘 − 1]H𝑇
[𝑘] (H [𝑘]P [𝑘/𝑘 − 1]H𝑇

[𝑘] + R [𝑘])
−1

,

x̂ [𝑘/𝑘] = x̂ [𝑘/𝑘 − 1] + K [𝑘] (y [𝑘] − ĥ (x̂ [𝑘/𝑘 − 1] , û [𝑘])) ,

P [𝑘/𝑘] = [𝐼 − K [𝑘]H [𝑘]]P [𝑘/𝑘 − 1] .

(E.2)

No new information is considered in the prediction stage,
and the one-step ahead prediction state vector x̂[𝑘/𝑘 − 1] is
obtained by propagating the equation f̂ from previous state
and input vectors at time [𝑘−1].The correction phase delivers
x̂[𝑘/𝑘] by adjusting x̂[𝑘/𝑘−1] based on the difference between
measurements and prediction, that is, y[𝑘] − ĥ(x̂[𝑘/𝑘 −

1], û[𝑘]), through the Kalman gain K[𝑘]. In (E.2), P acts as
the state error (x − x̂) covariance, and matrices F and H
constitute the Jacobian of the propagation equation f̂ and
observation equation ĥ, respectively; that is, F̃[𝑘 − 1] =

𝜕f̃/𝜕xx̂[𝑘−1/𝑘−1],u[𝑘−1] and H̃[𝑘] = 𝜕h̃/𝜕xx̂[𝑘/𝑘−1]. Q̃ and R̃ are
the covariance matrices of k and w, respectively.

Acknowledgment

This research was supported by the NSF Center for Remote
Sensing of Ice Sheet (CReSIS) Grant NSF-0066685, at the
University of Kansas.

References

[1] I. Kaminer, A. Pascoal, E. Hallberg, and C. Silvestre, “Trajectory
tracking for autonomous vehicles: an integrated approach
to guidance and control,” Journal of Guidance, Control, and
Dynamics, vol. 21, no. 1, pp. 29–38, 1998.

[2] M. Niculescu, “Lateral track control law for Aerosonde UAV,”
in Proceedings of the 39th AIAA Aerospace Sciences Meeting and
Exhibit, Reno, Nev, USA, 2001.

[3] D. Boyle and G. Chamitoff, “Robust nonlinear lasso control: a
new approach for autonomous trajectory tracking,” in Proceed-
ings of the AIAA Guidance, Navigation, and Control Conference
and Exhibit, Austin, Tex, USA, 2003.

[4] S. Park, J. Deyst, and J. How, “A new nonlinear guidance logic
for trajectory tracking,” in Proceedings of the AIAA Guidance,
Navigation, and Control Conference and Exhibit, Providence, RI,
USA, 2004.

[5] J. Osborne and R. Rysdyk, “Waypoint guidance for small
UAVs in wind,” in Proceedings of the AIAA Infotech, Aerospace
Conference, Arlington, Va, USA, 2005.



24 International Journal of Aerospace Engineering

[6] R. Rysdyk, “Unmanned aerial vehicle path following for target
observation inwind,” Journal of Guidance, Control, andDynam-
ics, vol. 29, no. 5, pp. 1092–1100, 2006.

[7] D. R. Nelson, D. B. Barber, T. W. McLain, and R. W. Beard,
“Vector field path following for miniature air vehicles,” IEEE
Transactions on Robotics, vol. 23, no. 3, pp. 519–529, 2007.

[8] L. Sonneveldt, E. R. Van Oort, Q. P. Chu, and J. A. Mulder,
“Nonlinear adaptive trajectory control applied to an F-16
model,” Journal of Guidance, Control, and Dynamics, vol. 32, no.
1, pp. 25–39, 2009.

[9] G. Garcia, S. Keshmiri, and R. Colgren, “Advanced H-infinity
trainer autopilot,” in Proceedings of the AIAA Modeling and
Simulation Technologies Conference, Toronto, Canada, 2010.

[10] J. A. Rios and E. White, “Fusion filter algorithm enhancements
for a MEMS GPS/IMU,” in Proceedings of the 14th International
Technical Meeting of the Satellite Division of the Institute of
Navigation (ION GPS ’01), pp. 1382–1393, Salt Lake City, Utah,
USA, September 2001.

[11] P. Zhang, J. Gu, E. E. Milios, and P. Huynh, “Navigation with
IMU/GPS/digital compass with unscented Kalman filter,” in
Proceedings of the IEEE International Conference on Mechatron-
ics and Automation (ICMA ’05), pp. 1497–1502, Niagara Falls,
Canada, August 2005.

[12] Y. Li, J. Wang, C. Rizos, P. Mumford, and W. Ding, “Low-
cost tightly coupled GPS/INS integration based on a nonlinear
Kalman filtering design,” in Proceedings of the Institute of
Navigation,National TechnicalMeeting (NTM ’06), pp. 958–966,
Monterey, Calif, USA, January 2006.

[13] X. Lin-lin, W. Jian-guo, Z. Li-hui, and G. Li-jun, “Nonlinear
gaussian filter algorithm enhacements for los-cost integrated
navigations systems,” in Proceedings of the IEEE International
Conference on Mechatronics and Automation, pp. 4566–4571,
Changchun, China, August 2009.

[14] Y. Ren and X. Ke, “Particle filter data fusion enhancements for
MEMS-IMU/GPS,” Intelligent Information Management, vol. 2,
pp. 417–421, 2010.

[15] R. Van der Merwe and E. Wan, “Sigma-point kalman filters
for integrated navigation,” in Proceedings of the 60th Annual
Meeting of the Institute of Navigation (ION ’04), Dayton, Ohio,
USA, 2004.

[16] A. Nemra and N. Aouf, “Robust INS/GPS sensor fusion for
UAV localization using SDRE nonlinear filtering,” IEEE Sensors
Journal, vol. 10, no. 4, pp. 789–798, 2010.

[17] A. Eldredge, Improved state estimation for miniature air vehicles
[M.S. thesis], Department of Mechanical Engineering, Brigham
Young University, Provo, Utah, USA, 2006.

[18] M. Pachter, N. Ceccarelli, and P. R. Chandler, “Estimating
MAV’s heading and the wind speed and direction using
GPS, inertial, and air speed measurements,” in Proceedings of
the AIAA Guidance, Navigation and Control Conference and
Exhibit, Honolulu, Hawaii, USA, August 2008.

[19] D. J. Linse and R. F. Stengel, “Identification of aerodynamic
coefficients using computational neural networks,” Journal of
Guidance, Control, and Dynamics, vol. 16, no. 6, pp. 1018–1025,
1993.

[20] W. E. Faller and S. J. Schreck, “Real-time prediction of unsteady
aerodynamics: application for aircraft control and maneuver-
ability enhancement,” IEEE Transactions on Neural Networks,
vol. 6, no. 6, pp. 1461–1468, 1995.

[21] M. Larson, P. De Raedt, and M. Hedlund, “Aerodynamic
identification using neural networks,” Reptort LiTH-154-1937,

Department of Electrical Engineering, Linköping University,
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