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UnmannedAerial Vehicles (UAVs) localization has become crucial in recent years, mainly for navigation or self-positioning and for
UAV based security monitoring and surveillance. In this paper, azimuth and elevation radio positioning of UAVs are considered.
The localization is based on multiple differential phase-of-arrival measures exploiting a 3-Axial Uniform Linear Array of antennas.
An ad hoc particle filtering algorithm is applied to improve the positioning performance using a dynamic motion model. A novel
adaptive algorithm, namely, Particles Swarm Adaptive Scattering (PSAS), is proposed to increment the algorithm stability and
precision. To assess performance a Confined Area Random Aerial Trajectory Emulator (CARATE) algorithm has been developed
to generate actual paths of flying UAVs. The algorithm performance is compared with the baseline method and with the average
trajectory Cramér Rao lower bound to show the effectiveness of the proposed algorithm.

1. Introduction

Unmanned Aerial Vehicles (UAVs) are attracting consid-
erable attention since they can be used for a number of
consumer, industrial, and military applications ranging, for
instance, from sport video making to environmental mon-
itoring and parcel delivery [1, 2]. A key component is the
technology that allows to locate and navigate the UAVs.
Presently, global navigation satellite systems (GNSS) and
inertial sensors are used to provide information on position,
speed, and direction of movement. Reliable localization is
very important also in view of new regulations that aim at
better controlling the use and the status of the UAVs for
higher safety and security [3]. Furthermore, recently, UAVs
technology has started to be under the spotlight of police
audits because of possible security threats [4].

In this paper, a radio localization approach is considered
and it is based on azimuth and elevation positioning using
a transmitting source as a reference. Azimuth and elevation
are determined by processing with particle filtering (PF) the
signals that impinge on a 3-Axial Uniform Linear Array (3A-
ULA). The 3A-ULA can be mounted either on a ground base

station or on the UAVs. In the first case, namely, Ground-
Localization Scenario (GL-S), the base station passively
eavesdrops the signals emitted by the UAVs to determine
their angular coordinates. In the latter case, namely, Self-
Localization Scenario (SL-S), the ground node acts as a
radio anchor allowing UAVs self-localization. The system
can be used in a standalone way or to complement existing
GNSS/inertial or inertial sensors employing data fusion
techniques [5].

In Section 2, the analytical model for the signals received
by the 3A-ULA is described. The baseline method (BM)
coordinates estimates obtained from the 3A-ULA in Section 3
are iteratively processed with an ad hoc particle filtering
algorithm (PF) described in Section 4. The PF technique
uses a novel dynamic particles swarm management rou-
tine, namely, Particles Swarm Adaptive Scattering (PSAS),
introduced in Section 5 to improve both convergence and
precision performance.

In order to quantify the performance of the proposed
tracking algorithm an emulator for the UAV behaviours is
specifically developed in Section 6. This ad hoc numerical
model, namely, Confined Area Random Aerial Trajectory
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Emulator (CARATE), randomly generates trajectories in the
3-dimensional space following a well defined set of rules in
order to emulate real UAV behaviours.

Finally, in Section 8, numerical results are reported
to assess performance as a function of the UAVs motion
model, the PF algorithm parameters, and external detri-
mental impairments, such as phase noise (PN) and carrier
frequencyDoppler shift (DS). A comparisonwith the average
trajectory Cramér Rao lower bound (AT-CRLB) for the
angular estimation of the elevation 𝜃 and azimuth 𝜙 is also
provided.

2. Positioning System Description

A system that determines the position of flyingUAVs through
the analysis of a signal impinging on the 3 branches of a 3A-
ULA is considered.

The GL-S is built as follows. UAVs send narrow band
radio signals that are captured by a ground base station
equipped with a 3A-ULA. The radio signals are properly
frequency/time duplexed to allow multiple UAVs tracking.
The ground node can then compute locally theUAVs azimuth
and elevation coordinates [6]. By sharing the data collected
from more ground nodes, it is possible to achieve a full 3D
positioning for the UAVs trajectories.

The SL-S is analogously arranged. Each 3A-ULA is
mounted on theUAVs so that the ground device takes the role
of a radio beacon anchor [7], allowing the UAVs to be self-
aware of their position. Using more anchors transmitting at
different frequency or in a time divisionmultiplexing fashion,
the UAVs can accomplish a full 3D positioning. Clearly, the
implementation of the SL-S is dependent on the UAV and
array sizes.

The 3A-ULA is constituted, for each one of the 3 branches,
by 𝑁

𝑎
antennas. Each branch is labelled with 𝑎 ∈ [𝑥, 𝑦, 𝑧]

to indicate along which one of the axes it is displaced.
An antenna of the same branch 𝑎 is indexed with 𝑖 ∈

[1, 2, . . . , 𝑁
𝑎
] to indicate its position along the branch. Thus,

the coordinates of the antennas can be written as

𝑥
(𝑎,𝑖)

= (𝑖 − 1)𝐷𝛿
𝑥𝑎
,

𝑦
(𝑎,𝑖)

= (𝑖 − 1)𝐷𝛿
𝑦𝑎
,

𝑧
(𝑎,𝑖)

= (𝑖 − 1)𝐷𝛿
𝑧𝑎
,

(1)

where 𝛿
𝑖𝑗
is the Kronecker delta, that is, 1 for 𝑖 = 𝑗 and 0

otherwise, and𝐷 is the constant distance between antennas.
The signal model considered in the following describes

for simplicity the scenario with only one UAV; this assump-
tion can be easily extended to amulti-UAVs application. Both
GL-S and SL-S scenarios, due to symmetry, can be modelled
in the same way. Hence, in general, the downconverted signal
received by the 𝑖th antenna of the 3A-ULA branch 𝑎 can be
written as

𝑠
(𝑎,𝑖)

𝑛
= 𝐴

𝑛
𝑒
𝑗[𝜓
(𝑎,𝑖)
𝑛 +𝛾

(𝑎,𝑖)
𝑛 +𝜑𝑛+𝜁]

+ 𝑤
(𝑎,𝑖)

𝑛
, (2)

where 𝑛 indexes the time, sampled with period 𝑇. The quan-
tity 𝜓(𝑎,𝑖)

𝑛
is the phase of the demodulated signal impinging

on the 𝑖th sensor of the branch 𝑎, namely, the phase of arrival
(PoA), in the ideal case without impairing effects. 𝛾(𝑎,𝑖)

𝑛
rep-

resents the phase Doppler shift (DS) caused by the nonzero
speed of the radio source with respect to each receiving array
element. The parameter 𝜑

𝑛
is the phase noise (PN) of the

oscillators. It is considered white for this application [8]. The
component 𝜁 is the phase offset (PO) between modulating
and demodulating oscillators. The phase components of (2)
are described in more detail in the following:

𝜓
(𝑎,𝑖)

𝑛
= 2𝜋𝑓

0
𝜏
(𝑎,𝑖)

𝑛
,

𝛾
(𝑎,𝑖)

𝑛
= 2𝜋𝑓

0
𝐶DS (𝑛𝑇 − 𝜏

(𝑎,𝑖)

𝑛
) 𝜏

(𝑎,𝑖)

𝑛
,

(3)

where 𝑓
0
is the carrier frequency of the received modulated

signal and where 𝜏
(𝑎,𝑖)

𝑛
is the time of arrival (ToA) of the

plane wave from the source to the sensor. 𝐶DS(𝑡) = V
𝑟
(𝑡)/𝑐

0

is the DS coefficient due to the movement of the UAV. The
parameter V

𝑟
(𝑡) is theUAV speed in the direction of the center

of the 3A-ULA and 𝑐
0
is the speed of light. Finally, 𝑤(𝑎,𝑖)

𝑛

is circular additive white Gaussian noise (C-AWGN) with
standard deviation 𝜎

𝑤
. The receiving architecture comprises

𝑁
𝑎
downconverting branches for each axis of the 3A-ULA

all fed by the same oscillator. For this reason PN and PO
components are identical for all antennas.

Considering the scenario where the transmitted signals
carry also information, the component 𝐴

𝑛
of (2) is rep-

resentative of the unknown informative part of the signal,
specifically the modulated complex data symbols. For the
application considered in this paper 𝐴

𝑛
is assumed to be an

equiprobable symbol of an unknown order PSK modulation
scheme. For this reason the symbol is modelled as complex
uniform ring shaped noise (RSN) 𝐴

𝑛
= |𝐴|𝑒

𝑗𝜉𝑛 where 𝜉
𝑛
∼

𝑈(0, 2𝜋) is a random uniform variable between 0 and 2𝜋 and
|𝐴| is the constant amplitude of the modulated signal.

In this model, the presence of multipath propagation
is not considered; a line of sight environment is assumed.
This can hold true when the ground and UAV antennas
have a wide vertical lobe, respectively, directed upward and
downward.

3. Azimuth and Elevation Estimation with
3A-ULA

A radio source moving in the 3D Cartesian space is con-
sidered. Its angular spherical coordinates 𝜃

𝑛
and 𝜙

𝑛
are

determined using the same coordinate system of the 3A-ULA
defined in (1). A trajectory example is visible in Figure 2.
The positioning technique used to locate the radio source
is based on the estimation of the phase difference of the
received signals between different antenna couples belonging
to the same 3A-ULA branch 𝑎, namely, the differential phase
of arrival (D-PoA) �̂�(𝑎)

𝑛
. The D-PoA is defined as �̂�(𝑎)

𝑛
=

𝜓
(𝑎,2𝑖−1)

𝑛
− 𝜓

(𝑎,2𝑖)

𝑛
∀𝑖 ∈ [1, 2, . . . , 𝑁

𝑎
/2].

In [8] a technique to estimate �̂�
(𝑎)

𝑛
in a scenario with

impaired signals similar to (2) is described. Applying this
technique for the model considered in this paper, it allows
exploiting the D-PoAs from the signal model introduced in
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(2). �̂�(𝑎)

𝑛
are estimated as 𝑢

(𝑎)

𝑛
, where ⋅ stands for the phase

operator, where

𝑢
(𝑎)

𝑛
=

2

𝑁
𝑎

𝑁𝑎/2

∑

𝑖=1

𝑠
(𝑎,2𝑖−1)

𝑛
𝑠
(𝑎,2𝑖)
∗

𝑛
, (4)

where an average over 𝑁
𝑎
/2 distinct antenna pairs is per-

formed to mitigate noise and compensate other zero mean
impairments. Using 𝑢(𝑎)

𝑛
, the angular spherical coordinates 𝜃

𝑛

and 𝜙
𝑛
are estimated, respectively, with �̃�

𝑛
and �̃�

𝑛
as follows:

�̃�
𝑛
= arctan(√( 𝑢

(𝑥)

𝑛
)
2

+ ( 𝑢
(𝑦)

𝑛
)
2

, 𝑢
(𝑧)

𝑛
) ,

�̃�
𝑛
= arctan ( 𝑢

(𝑦)

𝑛
, 𝑢

(𝑥)

𝑛
) ,

(5)

where arctan(⋅, ⋅) is the arctangent function extended to the
[0, 2𝜋) domain.

The estimations computed in (5) will be referred to as
baseline method (BM) estimations to differ them from the
particle filter (PF) estimations that will be introduced in
Section 4.

4. PF Algorithm Estimation

In this section, the application of the PF algorithms [9]
to the localization problem introduced in Section 3 is
briefly described. PF algorithm techniques have been chosen
because of their simple, scalable, and flexible numerical
implementation with respect to other methods like Extended
Kalman Filter [10] that approach the problem linearising the
system and approximating the probability density functions
as Gaussians. PF is specifically designed to fit complex system
models as well as nonlinear and non-Gaussian configura-
tions. The target of PF methods is to estimate the dynamic
evolution of the hidden states in a system that are the
coordinates 𝜃

𝑛
and𝜙

𝑛
of the radio source, using the sequential

discrete noisy measures 𝑢(𝑎)

𝑛
introduced in (4). In PF, it is

necessary to hypothesize a model for the observations and
for the states temporal evolution [9].The evolutionmodel for
the hidden states 𝜃

𝑛
and 𝜙

𝑛
is

𝜃
𝑛
= 𝑔

𝜃
(𝜃

[𝑛−𝑁𝑚𝑚÷𝑛−1]
, 𝑝

𝜃,𝑛
) ,

𝜙
𝑛
= 𝑔

𝜙
(𝜙

[𝑛−𝑁𝑚𝑚÷𝑛−1]
, 𝑝

𝜙,𝑛
) ,

(6)

while the model for the observations related to the hidden
states introduced in (4) is

𝑢
(𝑎)

𝑛
= ℎ ([𝜃

𝑛
, 𝜙

𝑛
] , 𝑞

𝑛
) . (7)

The relations (6) show how the current hidden state
[𝜃

𝑛
, 𝜙

𝑛
] evolves thanks to the previous 𝑁

𝑚𝑚
states and the

random uncertain variables 𝑝
𝜃,𝑛

and 𝑝
𝜙,𝑛

through the motion
model function 𝑔. Relation (7) shows how the measurements
𝑢
(𝑎)

𝑛
depend only on the current state [𝜃

𝑛
, 𝜙

𝑛
] and on a random

uncertain variable 𝑞
𝑛
through the measure model function ℎ.

For notational simplicity, both 𝜃
𝑛
and 𝜙

𝑛
will be denoted

with the generic angle 𝛼
𝑛
. When needed this generalization

will be removed.

PF has been chosen because of its simplicity and versatil-
ity. PF algorithms are a numeric implementation of Bayesian
estimation [10], a statistical approach to iteratively increase
the knowledge of the states to be estimated by narrowing
their pdf conditioned by the sequential acquisition of new
measures during time. The pdf of 𝛼

𝑛
, defined as 𝑓

𝛼𝑛
[𝛼], is

approximated in a discrete way [11] with a set of𝑀 particles
{𝛼

(𝑚)

𝑛
}
𝑚=1,...,𝑀

and a set of weights {𝑤(𝑚)

𝛼,𝑛
}
𝑚=1,...,𝑀

. Particles and
weights are generated from the partial knowledge given from
the measure model ℎ and the state evolution model 𝑔

𝛼
. This

knowledge is more and more incremented by the continuous
time acquisition of themeasures 𝑢(𝑎)

𝑛
. Clearly, the UAVmoves

so that its coordinates change over time 𝑛.
As shown in (6), in the PF algorithm an assumption about

the model that controls the evolution of the hidden state of
the system 𝑔

𝛼
is made. For this purpose the motion model

used is the Drift Motion Model (DMM) proposed in [12].
The DMM generates the new particles cloud {𝛼(𝑚)

𝑛
} at step 𝑛

shifting the previous step resampled cloud [9] {𝛼(𝑚)

𝑛−1,RES} using
the regression constantm

𝑛−1
:

𝛼
(𝑚)

𝑛
= 𝛼

(𝑚)

𝑛−1,RES +m
𝑛−1

𝑇 + 𝜂, (8)

where 𝛼(𝑚)

𝑛−1,RES is the𝑚th particle of 𝑛 − 1 step cloud after the
resampling process [11]. 𝜂 ∼ N (𝜎

𝑠
, 𝑚

𝑠
= 0) is a Gaussian

random variable that represents the fundamental statistical
scattering part of the motion model. The parameter m

𝑛−1
is

the slope of the linear regression of𝑁
𝑚𝑚

previous values of �̂�
𝑛

that are the PF estimates of 𝛼
𝑛
. It is important to emphasize

that in this regression model, due to the periodic nature of
𝛼

𝑛
, it is necessary to use the previously saved𝑁

𝑚𝑚
unwrapped

values of �̂�
𝑛
.This is necessary to correctly track the azimuthal

coordinate 𝜙
𝑛
during 2𝜋 angular shifts from −𝜋 to +𝜋 going

from the third to the second Cartesian quadrant.
Particles weights 𝑤(𝑚)

𝛼,𝑛
are calculated by the PF algorithm

using in each cycle the temporary estimates �̃�
𝑛
obtained from

the real acquiredmeasures in (5).This temporary estimations
are compared with the cloud of generated particles 𝛼

(𝑚)

𝑛

through an exponential weighting function to obtain the set
of weights 𝑤(𝑚)

𝛼,𝑛
:

𝑤
(𝑚)

𝛼,𝑛
= exp (− 𝛼

(𝑚)

𝑛
− �̃�

𝑛


) , (9)

where, to correct unnecessary 2𝜋 offsets of |𝛼(𝑚)

𝑛
− �̃�

𝑛
| due

to the periodicity of 𝛼
𝑛
, the minimum absolute value of the

distance of the two angles 𝛼(𝑚)

𝑛
and �̃�

𝑛
in 2𝜋-modulo space is

computed. A reshaping technique [12] is then applied, before
estimation, to regularize the particle cloud weights.

The PF estimation �̂�
𝑛
of the hidden state 𝛼

𝑛
is then com-

puted through a weighted average of the reshaped particles
swarm:

�̂�
𝑛
=

𝑀

∑

𝑚=1

𝑤
(𝑚)

𝛼,𝑛,RESH𝛼
(𝑚)

𝑛
, (10)

where 𝑤
(𝑚)

𝛼,𝑛,RESH is the weight after the reshaping process.
Finally, after the estimation stage, the particles cloud is
resampled, generating the set 𝛼(𝑚)

𝑛,RES, to eliminate spurious
particles and avoid fragmentation.
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5. Novel Particles Swarm Adaptive Scattering
Algorithm (PSAS)

The parameter 𝜎
𝑠
is the standard deviation of the random

variable 𝜂 introduced in (8). In the previous section 𝜎
𝑠
, it was

considered constant over time. However, depending on the
situation of the tracking algorithm, it will be shown that it
is better to have a dynamic 𝜎

𝑠,𝑛
. It is possible to define two

parameters that describe the particle cloud: Ω
𝑛
, namely, the

Particles CloudWidth (PC-W) that describes howmuchwide
the set of particles is and, 𝜀

𝑛
, the Particles Cloud Granularity

(PC-G) that indicates the interparticle distance:

Ω
𝑛
= max

𝑚

{𝛼
(𝑚)

𝑛
} −min

𝑚

{𝛼
(𝑚)

𝑛
} ≤ 2𝜋,

𝜀
𝑛
=

Ω
𝑛

(𝑀 − 1)
.

(11)

The value of Ω
𝑛
influences the convergence speed of the

algorithm. In fact, if the particles cloud is positioned over
the value to be estimated the convergence is fast because the
the exponential weighting function introduced in (9) gives
high weights to the nearest particles and negligible weights to
the further ones. Instead, if the particles cloud is located far
from the value to be estimated, convergence is slower because
the exponential weighting function algorithm gives almost
the same weights to all particles. Thus, it will need more
iterations to move the particles swarm, cycle by cycle, near
the convergence point. For these reasons a bigger value ofΩ

𝑛

will lead to wider clouds, encouraging the convergence. On
the other hand, smaller values ofΩ

𝑛
will make the algorithm

slower and more unstable to fast state changes.
The value of 𝜀

𝑛
influences the precision of convergence. In

fact, hypothesising that it has reached the convergence point,
the estimation precision is upper bounded by the average
interparticle distance, that is, the PC-G.

Considering the spreading variable 𝜂 introduced in (8) as
a Gaussian variable with zero mean and standard deviation
𝜎
𝑠
, it is possible to estimate the PC-W using the Tchebysheff ’s

inequality as Ω
𝑛
≈ 6𝜎

𝑠
∝ 𝜎s. Likewise the PC-G can be

estimated as 𝜀
𝑛
≈ 6𝜎

𝑠
/(𝑀−1) ∝ 𝜎

𝑠
.These relations show that

𝜎
𝑠
is directly proportional to PC-W and PC-G. Because of the

previous observation it is possible to conclude that, given a
swarm of𝑀 particles, during the convergence phase a bigger
value of 𝜎

𝑠
would be more appropriate because it would lead

to faster results. On the other hand, after the convergence
phase, smaller values of 𝜎

𝑠
would be more appropriate to

increase the estimation precision.
For these reasons in this paper a novel algorithm that

manages the dynamic evolution of 𝜎
𝑠
across the iterations,

namely, Particle Swarm Adaptive Scattering (PSAS), is pro-
posed.

The distance metric 𝑑(𝑚)

𝑛
is defined as a baseline error

cloud for the particles and is used by the PSAS to select the
convergence status of the PF algorithm. The error cloud 𝑑(𝑚)

𝑛

is calculated between the baseline estimation �̃�
𝑛
introduced

in (5) and the resampled particle swarm 𝛼
(𝑚)

𝑛,RES as follows:

𝑑
+

𝑛
= avg (𝑑(𝑚)

𝑛
) + std (𝑑(𝑚)

𝑛
) ,

𝑑
−

𝑛
= avg (𝑑(𝑚)

𝑛
) − std (𝑑(𝑚)

𝑛
) ,

𝑑
(𝑚)

𝑛
=

𝛼

(𝑚)

𝑛,RES − �̃�𝑛


,

(12)

where the operators avg and std denote, respectively, the
numeric operations of average and standard deviation and
the absolute value operates in the periodic [−𝜋, 𝜋) domain.
The parameters 𝑑−

𝑛
and 𝑑+

𝑛
represent, respectively, the lower

and higher bounds of the error cloud 𝑑
(𝑚)

𝑛
and are used as

thresholds by the PSAS algorithm to trigger the increment or
the decrement of 𝜎

𝑠,𝑛
as follows:

𝜎
𝑠,𝑛
= 𝜎

𝑠,𝑛−1
(1 ± 𝛿𝜎

𝑠
) , (13)

where 𝛿𝜎
𝑠
> 0 is the proportional feedback parameter of

the PSAS. The value of 𝛿𝜎
𝑠
, depending on the two feedback

parameters 𝑑+

𝑛
and 𝑑

−

𝑛
and the threshold value 𝛾th, is set

positive to iterative increment 𝜎
𝑠,𝑛

and negative to decrement
𝜎
𝑠,𝑛

and is set to zero to keep it constant.
The value of 𝜎

𝑠,𝑛
is incremented with respect to its

previous value when the condition of nonconvergence is
detected.This condition holds true when the error cloud 𝑑(𝑚)

𝑛

is reasonably out of [−𝛾th, 𝛾th] convergence interval, that is,
when 𝑑−

𝑛
> 𝛾th or 𝑑

+

𝑛
< −𝛾th. Then, the PC-W is incremented

to encourage convergence. If the previous condition is not
satisfied, the value of 𝜎

𝑠,𝑛
is decremented w.r.t. its previous

value when the convergence state is detected. This condition
holds true when the error cloud 𝑑

(𝑚)

𝑛
is on the edges of

[−𝛾th, 𝛾th] convergence interval, that is, when𝑑
+

𝑛
> 𝛾th or 𝑑

−

𝑛
<

−𝛾th. Then, the PC-G is reduced to increment the precision.
For the remaining values of 𝑑+

𝑛
and 𝑑−

𝑛
the condition of tight

convergence is reached. In this state the value of 𝜎
𝑠,𝑛

is kept
the same w.r.t. its previous value. This PSAS case keeps the
cloud at the same size to avoid instability conditions due to
rapid changes of the convergence point. The values of the
feedback parameter 𝛿𝜎

𝑠
and the threshold parameter 𝛾th are

related to the dynamic behaviour of the convergence point
that is related to the UAV motion model. Optimal values for
𝛿𝜎

𝑠
and 𝛾th were numerically calculated for the trajectories

generated by CARATE in this paper.

6. UAVs Trajectory Emulator

To assess performance of BM and PF algorithms estimations
and to evaluate the effects of different parameters on the esti-
mation process, it is necessary to emulate UAVs trajectories
using a proper coordinates evolution algorithm. Herein, a
possible trajectory generation method is proposed.

The proposed algorithm, named Confined Area Random
Aerial Trajectory Emulator (CARATE), generates iteratively
a 3D path obtained from a variable length previous history of
the trajectory and a tunable set of randomvariables. CARATE
is specifically designed to emulate UAVs trajectories inside a
limited flight area, in the GL-S, around the receiving array.
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Thus, the generated trajectories allow testing the tracking
algorithms for a broad range of arrival angles. An UAV
located far from the receiving array instead would be local-
ized using a limited range of angles. The Cartesian position
[𝑥

𝑛
, 𝑦

𝑛
, 𝑧

𝑛
] at time 𝑛 of the UAV evolves as

𝑥
𝑛
= 𝑥

𝑛−1
+ 𝑇V

𝑛
cos (𝜙

𝑛
) sin (𝜃

𝑛
) ,

𝑦
𝑛
= 𝑦

𝑛−1
+ 𝑇V

𝑛
sin (𝜙

𝑛
) sin (𝜃

𝑛
) ,

𝑧
𝑛
= 𝑧

𝑛−1
+ 𝑇V

𝑛
cos (𝜃

𝑛
) .

(14)

The angle 𝜙


𝑛
, depicted in Figure 1, is the local azimuthal

angle at time 𝑛 of the actual trajectory coordinates [𝑥
𝑛
, 𝑦

𝑛
, 𝑧

𝑛
]

seen from the previous path point [𝑥
𝑛−1

, 𝑦
𝑛−1

, 𝑧
𝑛−1

]. The
local elevation angle 𝜃



𝑛
can be defined analogously. V

𝑛
is

the absolute speed of the UAV. At each step, the trajectory
increments generated by 𝜃



𝑛
, 𝜙

𝑛
, and V

𝑛
are related to the

“seed” components 𝜃seed,𝑛, 𝜙seed,𝑛, and Vseed,𝑛 and to the
random components 𝛿𝜃

𝑛
, 𝛿𝜙

𝑛
, and 𝛿V

𝑛
as follows:

𝜃


𝑛
= 𝜃seed,𝑛 + 𝛿𝜃𝑛,

𝜙


𝑛
= 𝜙seed,𝑛 + 𝛿𝜙𝑛

,

V
𝑛
= Vseed,𝑛 + 𝛿V𝑛.

(15)

The random components are generated following, respec-
tively, the normal distributions 𝛿𝜃 ∼ 𝑁(𝑚

𝛿𝜃
, 𝜎

𝛿𝜃
), 𝛿𝜙 ∼

𝑁(𝑚
𝛿𝜙
, 𝜎

𝛿𝜙
), 𝛿V ∼ 𝑁(𝑚

𝛿V, 𝜎𝛿V). The parameters of the ran-
dom component distributions affect the UAVpath behaviour.
For example, for 𝑚

𝛿
V > 0, the UAV will have an accelerating

trend and for 𝑚
𝛿𝜙

> 0 the UAV will tend to turn anti-
clockwise. The seed values introduced in (15) are the history
parameters that express how much the evolution of the path
is related to its past and are given by

𝜃seed,𝑛 = arccos [Δ𝑧
𝑛
(𝑁ang) , Δ𝑟𝑛 (𝑁ang)] ,

𝜙seed,𝑛 = arctan [Δ𝑦
𝑛
(𝑁ang) , Δ𝑥𝑛

(𝑁ang)] ,

Vseed,𝑛 =
𝑁sp

∑

𝑘=1

V
𝑛−𝑘

𝑁sp
,

(16)

where arctan(⋅, ⋅) is the arctangent function defined within
[0, 2𝜋) and where

Δ𝑥
𝑛
(𝑁ang) = 𝑥

𝑛−1
− 𝑥

𝑛−𝑁ang
,

Δ𝑦
𝑛
(𝑁ang) = 𝑦

𝑛−1
− 𝑦

𝑛−𝑁ang
,

Δ𝑧
𝑛
(𝑁ang) = 𝑧

𝑛−1
− 𝑧

𝑛−𝑁ang
,

Δ𝑟
𝑛
(𝑁ang)

= √Δ𝑥
𝑛
(𝑁ang)

2

+ Δ𝑦
𝑛
(𝑁ang)

2

+ Δ𝑧
𝑛
(𝑁ang)

2

.

(17)

In Figure 1, the relations among theCARATE components for
the variable 𝜙

𝑛
are represented. As shown in (16), the smaller

y

yn

yn−1

yn − Nang

xxnxn−1xn − Nang

𝜙n
𝜙n−1

𝛿𝜙n

𝜙
n

𝜙seed,n

Figure 1: Diagram of CARATE components for variable 𝜙 (𝑁ang =

5).
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Figure 2: Example of UAV 3D trajectory generated with CARATE.

the window width of the seed parameters 𝑁ang and 𝑁sp, the
higher the influence of the path randomization with respect
to the past history of the path itself.The same effect will occur
for higher values of the standard deviation 𝜎

𝛿𝜃
, 𝜎

𝛿𝜙
, and 𝜎

𝛿V
of the random components 𝛿𝜃, 𝛿𝜙, and 𝛿V introduced in (15).

The CARATE algorithm, as visible in the sample path in
Figure 2, generates a 3D trajectory inside a limited flight area,
formed by the horizontal bound region 𝑆

𝑥𝑦
and the vertical

bound region 𝑆
𝑧
. 𝑆

𝑥𝑦
is defined as {|𝑥| < 𝐿

𝑥𝑦
∩|𝑦| < 𝐿

𝑥𝑦
}while

𝑆
𝑧
is defined as {𝑧 > 𝐿

min
𝑧

∩𝑧 < 𝐿
max
𝑧

}. A specific routine of the
algorithm has been developed to keep the trajectory inside
the limited flight area, preserving it smooth and without
sharp edges on region bounds. If 𝑥

𝑛
or 𝑦

𝑛
exceed 𝑆

𝑥𝑦
the

value of 𝜙seed,𝑛 introduced in (16) is forced for the subsequent
𝑁bend steps to follow a set of equispaced values between𝜙seed,𝑛
and 𝜙seed,END. The value of 𝜙seed,END is appropriately defined
depending on the Cartesian quadrant where the trajectory
crosses the surface of 𝑆

𝑥𝑦
. Analogously, if 𝑧

𝑛
exceeds 𝑆

𝑧
the

value of 𝜃seed,𝑛 introduced in (16) is forced for the next𝑁bend
steps to a set of equally spaced values between 𝜃seed,𝑛 and
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𝜃seed,END. The value of 𝜃seed,END is also defined depending
on the Cartesian quadrant where the surface of 𝑆

𝑧
has been

crossed.

7. Cramér-Rao Lower Bound

In statistics the Cramér-Rao Lower Bound (CRLB) expresses
the lowest value of the Root Mean Square Error (RMSE) of
an optimal estimator given a certain set of data [13]. In this
paper the estimations of the coordinates [𝜃

𝑛
, 𝜙

𝑛
] are carried

out from the information given by the measurements 𝑢(𝑥)

𝑛
,

𝑢
(𝑦)

𝑛
, and 𝑢(𝑧)

𝑛
.

Now, we define b
𝑛

= [𝑏
(𝑎)

𝑛
]
𝑛∈[𝑥,𝑦,𝑧]

as the vector of
ideal measured values, namely, 𝑢(𝑎)

𝑛
, in (4) but without the

detrimental effects due to the impairments introduced in (2)
such as PN, DS, and C-AWGN:

𝑏
(𝑎)

𝑛
= |𝐴|

2

𝑒
𝑗�̂�
(𝑎)

𝑛 , (18)

where, as introduced in Section 2, �̂�(𝑎)

𝑛
is the D-PoA for 𝑎th

3A-ULA antenna branch and |𝐴| is the constant amplitude of
the complex downconverted constellation. The vector of real
measurements u

𝑛
= [𝑢

(𝑥)

𝑛
, 𝑢

(𝑦)

𝑛
, 𝑢

(𝑧)

𝑛
], defined in (4), can be

written as

𝑢
(𝑎)

𝑛
=

2

𝑁
𝑎

𝑁𝑎/2

∑

𝑖=1

(|𝐴|
2

𝑒
𝑗�̂�
(𝑎)

𝑛 +𝑊
(𝑎,𝑖)

𝑛
) = �̂�𝑒

𝑗�̂�
(𝑎)

𝑛 + �̂�
(𝑎)

𝑛
, (19)

where the intermediate signal |𝐴|2𝑒𝑗�̂�
(𝑎)

𝑛 + 𝑊
(𝑎,𝑖)

𝑛
is averaged

through antenna pairs and �̂� = (2/𝑁
𝑎
) ∑

𝑁𝑎/2

𝑖=1
|𝐴|

2

= |𝐴|
2.

The noise components in (19) are

𝑊
(𝑎,𝑖)

𝑛
= |𝐴| 𝑒

𝑗𝜓
(𝑎,2𝑖−1)
𝑛 𝑤

(𝑎,2𝑖)
∗

𝑛
+ |𝐴|

∗

𝑒
−𝑗𝜓
(𝑎,2𝑖)
𝑛 𝑤

(𝑎,2𝑖−1)

𝑛

+ 𝑤
(𝑎,2𝑖−1)

𝑛
𝑤

(𝑎,2𝑖)
∗

𝑛
,

�̂�
(𝑎)

𝑛
=

2

𝑁
𝑎

𝑁𝑎/2

∑

𝑖=1

𝑊
(𝑎,𝑖)

𝑛
,

(20)

where the notation (⋅)
∗ denotes the complex conjugate

operator. 𝑤(𝑎,𝑖)

𝑛
is the C-AWGN with zero mean and variance

𝜎
2

𝑤
. 𝜓(𝑎,𝑖)

𝑛
is the PoA as defined in (3). The expectation of

the differential noise 𝑊(𝑎,𝑖)

𝑛
among the antennas of the same

branch is 𝑚
𝑊

= 0, while its variance 𝜎2

𝑊
= 2|𝐴|

2

𝜎
2

𝑤
+ 𝜎

4

𝑤
.

Analogously, the average differential noise �̂�(𝑎)

𝑛
is described

by its mean𝑚
�̂�
= 0 and its variance is 𝜎2

�̂�
= (2/𝑁

𝑎
)𝜎

2

𝑊
.

To calculate the CRLB it is necessary to evaluate the log-
likelihood 𝐿(𝜙, 𝜃) = ln𝑃[u

𝑛
| b

𝑛
] of the acquired data given

the parameters to be estimated. ln(⋅) represents the natural
logarithm. In this context, for the calculation of CRLB, the
measurements vector u

𝑛
is considered affected only by C-

AWGN noise without the influence of the other impairments
introduced in (2). This assumption yields to the likelihood
Gaussianity and is verified via numerical fitting similarly to
[14], so that

𝐿 (𝜙, 𝜃) = −3 ln (𝜋𝜎2

�̂�
) −

1

𝜎2

�̂�

‖b − u‖2 , (21)

where the time index 𝑛 is omitted until the end of the CRLB
derivation for notational simplicity.The CRLB of the variable
𝛼

𝑟
, defined as 𝑟th element of the unknowns vector 𝛼 = [𝜙, 𝜃],

is

CRLB
𝛼𝑟
(𝜙, 𝜃) = {𝐹 (𝜙, 𝜃)

−1

}
(𝑟,𝑟)

, (22)

where 𝐹(𝜙, 𝜃) is the Fischer information matrix:

𝐹 (𝜙, 𝜃) = −𝐸{[
𝜕
2

𝜕𝛼
ℎ
𝜕𝛼

𝑘

𝐿 (𝜙, 𝜃)]

(ℎ,𝑘)∈[1,2]

} . (23)

For the log-likelihood function described in (21), we obtain

𝐹 (𝜙, 𝜃) =

[
[
[
[

[



𝜕𝛽

𝜕𝜙



2

𝜕𝛽

𝜕𝜙

𝜕𝛽
T

𝜕𝜃

𝜕𝛽

𝜕𝜃

𝜕𝛽
T

𝜕𝜙



𝜕𝛽

𝜕𝜃



2

]
]
]
]

]

= 2(
2𝜋 |𝐴|

2

𝐷norm
𝜎
�̂�

)

2

[
(sin 𝜃)2 0

0 1
] ,

(24)

where 𝛽 = [cos𝜙 sin 𝜃, sin𝜙 sin 𝜃, cos 𝜃] is the unit direction
vector and 𝐷norm = 𝐷/𝜆

0
is the normalized interantenna

distance (Figure 4). The notation (⋅)
T denotes the transpose

operator. Finally, the CRLB expressions for 𝜙 and 𝜃 are

CRLB
𝜙
(𝜙, 𝜃) =

1

2
(

𝜎
�̂�

2𝜋 |𝐴|
2

𝐷norm
)

2

(
1

sin 𝜃
)

2

,

CRLB
𝜃
(𝜙, 𝜃) =

1

2
(

𝜎
�̂�

2𝜋 |𝐴|
2

𝐷norm
)

2

.

(25)

The RMSE of every estimator of the unknown 𝛼
𝑟
from the

measurements u is lower bounded by √CRLB
𝛼𝑟
. It is impor-

tant to state again that this C-AWGN-onlyCRLB calculated in
(25) takes into account C-AWGNbut not the other previously
introduced impairments, in particular DS and PN. Given
the previous assumptions, the AWGN-only CRLB is lower
or equal to the fully impaired CRLB. Another relevant point
is that the computed CRLB does not take into account the
motion model and the trajectory history differently from the
PF algorithm. The CRLB is simply computed from the 3

observations 𝑢(𝑎)

𝑛
introduced in (4) at time 𝑛𝑇, as the BM

does. Instead, the proposed PF algorithm exploits the motion
model jointly with PSAS, using information coming from the
trajectory history. For this reason, it may occur that the PF
estimation offers better performance than the CRLB.

8. Performance Analysis

The performance of the PF algorithm is now assessed. A
comparison with the BM estimation introduced in Section 3
and the CRLB calculated in Section 7 is also made. Different
UAV trajectories are generated with the CARATE to assess
performance. Each UAV trajectory is 𝑁 time samples long.
In order to have a commonperformance evaluationmetric, in
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the following we define the average of the Root Mean Square
Error (RMSE) calculated through every trajectory sample,
namely, the Average Trajectory RMSE (AT-RMSE).

𝑛trajth generated trajectory is described with the set

{𝜃
(𝑛traj)
𝑛

, 𝜙
(𝑛traj)
𝑛

}, its BM estimation is {�̃�
(𝑛traj)

𝑛
, �̃�

(𝑛traj)

𝑛
}, and its PF

estimation {�̂�
(𝑛traj)

𝑛
, �̂�

(𝑛traj)

𝑛
}. Their AT-RMSE are, respectively,

RMSE
𝛼,BM = (1/𝑁traj) ∑

𝑁traj
𝑛traj=1 RMSE(𝑛traj)

𝛼,BM and RMSE
𝛼,PF =

(1/𝑁traj) ∑
𝑁traj
𝑛traj=1 RMSE(𝑛traj)

𝛼,PF for 𝛼 ∈ [𝜃, 𝜙] where

RMSE(𝑛traj)

𝛼,BM =
√∑

𝑁

𝑛=1
(𝛼

(𝑛traj)
𝑛

− �̃�
(𝑛traj)
𝑛

)
2

𝑁
,

RMSE(𝑛traj)

𝛼,PF =
√∑

𝑁

𝑛=1
(𝛼

(𝑛traj)
𝑛

− �̂�
(𝑛traj)
𝑛

)
2

𝑁

(26)

are the RMSEs calculated for each trajectory 𝑛traj.𝑁traj is the
number of generated trajectories.

Analogously, with the purpose to allow a performance
comparison with the CRLB, we define the average trajectory
CRLB (AT-CRLB), as CRLB

𝛼
= (1/𝑁traj) ∑

𝑁traj
𝑛traj=1 CRLB

(𝑛traj)
𝛼

for 𝛼 ∈ [𝜃, 𝜙] and where

CRLB(𝑛traj)
𝛼

=
1

𝑁

𝑁

∑

𝑛=1

CRLB
𝛼
(𝜙

(𝑛traj)
𝑛

, 𝜃
(𝑛traj)
𝑛

) . (27)

The default parameters for the performance evaluation
are (a) angles 𝜎

𝛿𝜃
= 7

∘, 𝜎
𝛿𝜙

= 7
∘, and 𝑁ang = 20; (b) speeds

Vmin = 0.5 km/h, Vmax = 10 km/h, and 𝑁sp = 2. The array
parameters are 𝑁

𝑎
= 6 and 𝐷norm = 1/3. The PF algorithm

basic settings are 𝑀 = 20 and 𝑁
𝑚𝑚

= 20. PSAS parameters
𝛿𝜎

𝑠
= 25% and 𝛾th = 10

∘ were numerically optimized for the
CARATE algorithm. In the signal model introduced in (2),
the PN is considered white with standard deviation 𝜎PN =

1
∘, the PO is considered uniform in [0, 2𝜋) for each array
element, and the signal-to-noise ratio is SNR = [|𝐴|

2

/𝜎
2

𝑤
] dB

=10 dB. The number of simulated trajectories 𝑁traj and their
length 𝑁 have been properly dimensioned to guarantee the
statistical confidence of the results.

In Figure 2 an example of 3D-trajectory generated for
performance evaluation is shown.The 3A-ULA is positioned
in the center of the axis.

8.1. Performance with Static and Dynamic 𝜎
𝑠
. We now con-

sider the performance as a function of the signal-to-noise
ratio SNR = |𝐴|

2

/𝜎
2

𝑤
. In Figure 3, the AT-RMSE of the

azimuthal coordinate 𝜙 and the elevation coordinate 𝜃 for
both the PF algorithm and the BM are reported. Furthermore
the impact on performance of the PSAS algorithm introduced
in Section 5 is analysed. It is possible to observe how, due
to the geometrical asymmetry, the performance in terms of
AT-RMSE is significantly different between 𝜃 and 𝜙. Greater
SNR values lead to lower AT-RMSE for both PF and BM
estimations. It is important to state that, for a static value
of 𝜎

𝑠
, PF performs better than BM in a broad range of SNR

values. For example, at 2 dB of SNR, it outperforms the BM

algorithm by about 17∘ for 𝜙 and 10∘ for 𝜃.The analysis shows
that the introduction of the PSAS algorithm leads to a further
improvement of performance. For example, at 2 dB of SNR
the PSAS leads to a performance improvement of 5∘ for 𝜙
and 3∘ for 𝜃 with respect to the use of a static 𝜎

𝑠
. It is visible

in Figure 3 how the introduction of the PF algorithm allows
overcoming the AT-CRLB. This is possible thanks to the a
priori knowledge of the UAV path extracted by the motion
model from the previous steps of the trajectory. For higher
SNR the performance improvement of PF with respect to the
BM algorithm is less prominent than for lower SNR.

8.2. Performance for Different Interantenna Distances 𝐷norm.
Now, the behaviour of the AT-RMSE for the BM and PF
algorithms is analysed varying the normalized interantenna
distance 𝐷norm. To unambiguously extract the phase from
𝑢
(𝑎)

𝑛
the interelement distance must be less than half of the

impinging signal wavelength [15]: 𝐷norm ≤ 0.5. Furthermore
in (25) it is visible that for higher values of 𝐷norm the CRLBs
increase. This leads to 𝐷norm = 0.5 as the optimal value
for the estimation. However, in lower SNR scenarios and
for 𝐷norm values near 0.5 the CRLB is found to be overly
optimistic. In fact, high C-AWGN and the other impairments
in (2) severely impair performance corrupting the value of
𝑢
(𝑥)

𝑛
in (4) and making it exceeding 180∘. The PF algorithm,

thanks to its hypothesised a priori knowledge of theUAVpath
given by the motion model, attenuates this impairing effect.
In Figure 3, we can see that the proposed PF algorithm is
less dependent from 𝐷norm = 𝐷𝑓

0
/𝑐

0
than the BM. Thus, the

same 3A-ULA is usable for a wider set of carrier frequency 𝑓
0

with respect to the BM that exhibits its optimal performance
for a narrow interval of 𝐷norm around 0.4. For this reason,
the PF algorithm can offer good performance also in a
multiple UAVs scenario where multiplexing is implemented
in a frequency division fashion.

9. Conclusions

We have discussed the application of an appropriately
designedPF algorithm for self-localization (SL-S) and ground
localization (GL-S) of UAVs using a 3A-ULA of antennas,
showing an overall increase of performance with respect
to the BM. A novel algorithm to manage the amplitude
of the particle swarm, namely, Particles Swarm Adaptive
Scattering (PSAS), has been developed and tested, showing
a further increase of precision. A complete, fully adjustable,
and effective 3DUAVs trajectory emulator, namely, CARATE,
has been proposed and used to assess performance. Strong
impairing effects like Doppler spread, phase offset, and phase
noise have been considered in the performance evaluation.
The effects on the proposed localization algorithm of the
PF model parameters as well as the SNR and the 3A-ULA
characteristics have been studied. Numerical results show
that the proposed PF algorithm is able of dynamically track
the UAVs angular position better that the BM. A critical
point of this approach is that, similarly to PSAS behaviour,
a dynamic calibration procedure has to be implemented to
optimize the PF parameters. Future work will also investigate
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the integration of ranging algorithms like Received Signal
Strength Estimation (RSSE) and ToA to PF to provide full 3D
localization.
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