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The paper presents a digital adaptive controller of recurrent neural networks for the active flutter suppression of a wing structure
over a wide transonic range.The basic idea behind the controller is as follows. At first, the parameters of recurrent neural networks,
such as the number of neurons and the learning rate, are initially determined so as to suppress the flutter under a specific flight
condition in the transonic regime.Then, the controller automatically adjusts itself for a newflight condition by updating the synaptic
weights of networks online via the real-time recurrent learning algorithm. Hence, the controller is able to suppress the aeroelastic
instability of the wing structure over a range of flight conditions in the transonic regime. To demonstrate the effectiveness and
robustness of the controller, the aeroservoelastic model of a typical fighter wing with a tip missile was established and a single-
input/single-output controller was synthesized. Numerical simulations of the open/closed-loop aeroservoelastic simulations were
made to demonstrate the efficacy of the adaptive controller with respect to the change of flight parameters in the transonic regime.

1. Introduction

Aeroelastic instability, induced by the interaction of unsteady
aerodynamics and structural dynamics, is a disaster for
any flight vehicles. Hence, recent years have witnessed a
great number of studies, both numerical and experimental
ones, on the design of aeroelastic control systems [1–5]. For
example, Mukhopadhyay synthesized a flutter suppression
controller for the active flexible wing model by using the
linear quadratic Gaussian theory [1]. Furthermore, based on
the unified linear quadratic Gaussian and minimax method,
Mukhopadhyay proposed a flutter suppression controller,
which was tested in the NASA Langley Transonic Dynam-
ics Tunnel [2]. Then, Zhao proposed a flutter suppression
controller for the aeroelastic system with input time delay
in control loop via the 𝐻

∞
control theory [3]. Afterwards,

Moulin et al. studied the classic and robust controllers [4] and
Zeng et al. studied an experimental model-based feedback-
control framework [5] for flutter suppression and gust load
alleviation of the supersonic semispan transport wind-tunnel
model. An active flutter controller should work well over a

range of flight conditions since the flight parameters, such
as flight velocity and Mach number, are always subject to
variations during a flight. However, it is difficult to synthesize
a controller for aeroelastic stabilization over a range of flight
parameters via conventional control theory, such as linear
quadratic Gaussian (LQG) control, because the aeroelastic
systemusually changes the stabilitywith the variation of flight
conditions.

Adaptive controlmethodology seems to be an appropriate
solution because the parameters in such a control strategy are
capable of adapting to the change of flight conditions. Differ-
ent kinds of adaptive control methodology have been used
to design the flutter suppression control laws. For example,
Andrighettoni andMantegazza designed an indirect adaptive
control law for a wing model with a leading-edge and a
trailing-edge control surface [6]. Then, Zhang and Singh
proposed a new adaptive control system based on amodeling
error compensation technique for an aeroelastic system
with unstructured uncertainties [7]. Afterwards, Behal et
al. proposed an adaptive strategy via employment of the
full-state feedback for a wing section with multiple flaps
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[8]. Furthermore, Huang et al. proposed an adaptive output
feedback-control law for the flutter suppression of a wind-
tunnel model [9]. In addition, Mannarino and Mantegazza
proposed a full-state immersion and invariance controller for
active flutter suppression [10]. Very recently, Lee and Singh
proposed an adaptive control system for an uncertain aeroe-
lastic system by using leading-edge and trailing-edge control
surfaces [11]. Compared with the vast body of applications of
adaptive controls to aeroelastic systems, only a few adaptive
control strategies involving the variation of flight conditions
have been available. For example, Pak et al. [12] proposed a
digital adaptive controller for aeroelastic stabilization under
time-varying flight conditions.Their methodology combines
Auto Regressive Moving Average (ARMA) model and online
parameter estimation and a Riccati solver together to synthe-
size the online adaptive optimal control law. However, the
performance of the controller depends on the flight paths
as shown in the study. Then, Scott and Pado [13] designed
and testified the flutter control systems based on static neural
networks for the wind-tunnel model of Benchmark Active
Controls Technology (BACT). They fixed the parameters
of neural networks and used the gain scheduled control
theory. Nevertheless, many control designs are essential for
gain scheduled control to suppress aeroelastic instability
over a range of flight conditions. Afterwards, Chen et al.
[14] proposed the Linear Parameter-Varying (LPV) control
theory so as to design a robust and implicit gain scheduled
flutter controller in a transonic regime. In practice, the LPV
aeroservoelastic (ASE) model for a range of flight conditions
has to be established at first. Furthermore, Huang et al. [15]
synthesized an adaptive flutter suppression system for the
wingmodel of BACT in a transonic regime but had to initiate
the adaptive controller by exciting the control surface with a
white noise signal at each Mach number. As a matter of fact,
it is difficult and dangerous for actuators of control surfaces
to follow the command signals during real flight.Therefore, it
is necessary to develop an adaptive flutter suppression system
over a range of flight conditions.

In this study, the recurrent neural networks (RNNs) were
used to design an adaptive flutter suppression system in a
wide transonic range. Although RNNs have been applied to
aeroelastic control in previous studies [16, 17], some issues
are subject to further research, such as the application of
the controller to flutter suppression in a transonic regime,
and the robustness of the controller over a range of flight
conditions. In the study, these issues were addressed for
the adaptive flutter suppression over a wide range of flight
conditions, including transonic regime, where the unsteady
aerodynamic influence coefficient matrices were generated
via an efficient methodology proposed by Chen et al. [18]
for different flight parameters. After the ASE model was
established, the parameters of RNNs based control system
were initialized to suppress the aeroelastic instability at
a Mach number and a dynamic pressure at first. Then,
by updating the synaptic weights of networks online, the
controller could automatically adjust itself to a new flight
condition. As shown by numerical simulations, the adaptive
controller for flutter suppression worked well over a wide
range of flight conditions. As it is very difficult to establish an

Table 1:Mode frequencies of a typical fighter wingwith a tipmissile.

Mode number Frequency (Hz) Description
1 2.33 Wing bending
2 6.39 Wing torsional
3 16.99 Wing bending
4 19.56 Missile bending (in-plane)
5 25.83 Missile bending
6 29.91 Wing torsional

ASE model of high fidelity for designing a flutter controller,
an important advantage of the RNNs based controller is no
requirement for any information of the aeroelastic system
except for the acceleration signalsmeasured.TheRNNs based
controller is also a basis of the ongoing research on the
suppression of Limit Cycle Oscillations (LCO).

The remainder of the paper is organized as follows. In
Section 2, the ASE model of a typical fighter wing with a tip
missile is established. Then, the main theory of RNNs based
controller is presented in Section 3. In Section 4, numerical
simulations are given to demonstrate the effectiveness and
robustness of the proposed active flutter controller against
changing flight parameters in a wide transonic regime.
Finally, some conclusions are drawn in Section 5.

2. Aeroservoelastic Model of a Typical Fighter
Wing with a Tip Missile

2.1.TheFinite ElementModel. In the study, the Finite Element
Model (FEM), containing 486 nodes and 1973 elements, for
a typical fighter wing with a tip missile was constructed
by using MSC/NASTRAN. The first ten natural frequen-
cies and the corresponding mode shapes were obtained
via MSC/NASTRAN and used for open/closed-loop ASE
analysis in Section 4. Figure 1 shows the first six mode shapes
and Table 1 presents the corresponding natural frequencies.
The first sixmodes are the first bendingmode of the wing, the
first torsional mode of the wing, the second bending mode
of the wing, the in-plane bending mode of the missile, the
first bending mode of the missile, and the second torsional
mode of the wing, respectively. Among the first six modes,
the in-plane bending mode of the missile has little effect on
the flutter characteristics of the aeroelastic system.

2.2. Unsteady Aerodynamic Model. Although the double-
lattice method has been widely used to compute the unsteady
aerodynamic loads in subsonic regime, it can not be used
to predict the unsteady aerodynamic loads directly in the
transonic regime because of the nonlinear flow character-
istics. In this study, for the transonic flight parameter, an
efficient methodology proposed by Chen et al. [18] was used
to generate the unsteady aerodynamic influence coefficient
matricesQ(𝑘,𝑀

∞
), which depended on the freestreamMach

number𝑀
∞
and reduced frequency 𝑘.Themethodology was

based on a transonic equivalent strip method with steady
pressure data provided by CFD. Figure 2(a) presents the
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Figure 1: Mode shapes of a typical fighter wing with a tip missile.
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Figure 2: Aerodynamic model of the typical fighter wing with a tip missile.

planform of the typical fighter wing with a tip missile and
the aerodynamic grid used to compute the unsteady transonic
aerodynamic influence coefficient matrices. The wing model
was designed with symmetric NACA 65A004 airfoil and the
steady pressure coefficient of the wing surface at zero angle
of attack was computed for Mach number 0.95, as shown in
Figure 2(b).

When the FEM and the unsteady aerodynamic influence
coefficient matrices are available, the aeroelastic equation in
frequency domain can be established as

[M𝑠
2

+D𝑠 + K − 𝑞
∞
Qq (𝑘,𝑀∞)] q

= [−Mq𝛿𝑠
2

+ 𝑞
∞
Q𝛿 (𝑘,𝑀∞)] 𝛿,

(1)
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where M, D, and K are the generalized mass, damping,
and stiffness matrices and q is the vector of generalized
displacements. In (1) Mq𝛿 represents the inertia coupling
between the control surfaces and the wing and 𝑞

∞
represents

the freestream dynamic pressure. The rigid deflections of
control surfaces are represented by 𝛿. In (1), Qq(𝑘,𝑀∞)
and Q𝛿(𝑘,𝑀∞) represent the unsteady transonic aerody-
namic influence coefficient matrices. Based on the rational
function approximation proposed by Karpel and Strul [19],
the unsteady aerodynamic influence coefficient matrices can
be transformed into those in time domain. Now, (1) is
transformed into the aeroelastic equation in state space as
follows:

ẋae = Aaexae + Baeuae, (2)

where

xae = [q q̇ x
𝑎
]
𝑇

,

uae = [𝛿 𝛿̇ 𝛿̈]
𝑇

,

Aae

=

[
[
[
[
[
[

[

0 I 0

−M−1 (K − 𝑞
∞
Aq0) −M−1 (D − 𝑞

∞

𝑏

𝑉
∞

Aq1) 𝑞
∞
M−1D

𝑠

0 Eq𝑠
𝑏

𝑉
∞

R
𝑠

]
]
]
]
]
]

]

,

Bae

=

[
[
[
[

[

0 0 0

𝑞
∞
M−1A𝛿0 𝑞∞

𝑏

𝑉
∞

M−1A𝛿1 −M
−1

(Mq𝛿 − 𝑞∞
𝑏
2

𝑉
∞

2
A𝛿2)

0 E𝛿𝑠 0

]
]
]
]

]

,

M = M − 𝑞
∞

𝑏
2

𝑉
∞

2
Aq2.

(3)

The output equations of the accelerometers attached to
the wing can be given as

yae = Caexae +Daeuae, (4)

where
Cae

= ΦaccM
−1

[− (K − 𝑞
∞
Aq0) −(D − 𝑞

∞

𝑏

𝑉
∞

Aq1) 𝑞
∞
D
𝑠
] ,

Dae

= ΦaccM
−1

[𝑞
∞
A𝛿0 𝑞∞

𝑏

𝑉
∞

A𝛿1 −(Mq𝛿 − 𝑞∞
𝑏
2

𝑉
∞

2
A𝛿2)] .

(5)

Φacc in (5) is the modal displacement matrix at the accelera-
tion sensor location.

2.3. Actuator Model. The dynamics of an actuator for a
control surface can be represented in frequency domain as

𝛿
𝑖
(𝑠)

𝑢
𝑎𝑐𝑖
(𝑠)

=
𝑎
3,𝑖

𝑠3 + 𝑎
1,𝑖
𝑠2 + 𝑎

2,𝑖
𝑠 + 𝑎
3,𝑖

, (6)

where 𝛿
𝑖
is the control surface deflection and 𝑢

𝑎𝑐𝑖
is the con-

trol command of the 𝑖th control surface. The corresponding
equation of (6) in state space is given by

ẋ
𝑖
=
[
[

[

0 1 0

0 0 1

−𝑎
3,𝑖

−𝑎
2,𝑖

𝑎
1,𝑖

]
]

]

x
𝑖
+
[
[

[

0

0

𝑎
3,𝑖

]
]

]

𝑢
𝑎𝑐𝑖
, x
𝑖
=

[
[
[

[

𝛿
𝑖

𝛿̇
𝑖

𝛿̈
𝑖

]
]
]

]

. (7)

For multiple control surfaces, the dynamic equations of all
actuators in the state space can be arranged in a correspond-
ing order as shown by (7). Thus, the assembled dynamic
equations of all actuators in the state space are in the following
form:

ẋac = Aacxac + Bacuac, xac = [𝛿 𝛿̇ 𝛿̈]
𝑇

. (8)

The final open-loop aeroservoelastic model in the state
space is a combination of the aeroelastic model and the
actuator model as follows:

ẋ
𝑝
= A
𝑝
x
𝑝
+ B
𝑝
u
𝑝
,

y
𝑝
= C
𝑝
x
𝑝
,

(9)

where

A
𝑝
= [

Aae Bae

0 Aac
] ,

B
𝑝
= [

0
Bac

] ,

x
𝑝
= [

xae
xac

] ,

u
𝑝
= uac,

C
𝑝
= [Cae Dae] .

(10)

3. Control Methodology

According to the theory of RNNs in Bernelli-Zazzera and
Lo-Rizzo [20], an adaptive controller with a recurrent neural
network structure, as shown in Figure 3, can be constructed
to extend the flutter boundary of the aeroelastic systems over
a wide range of flight conditions.

This controller consists of two networks, that is, the
identification network and the control network as shown in
Figure 4. At time instant 𝑘, the identification network is used
to predict the acceleration signal y𝑝(𝑘 + 1) of time instant
𝑘 + 1 such that a predictive control can be implemented for
the aeroelastic system. The prediction of acceleration signal
y𝑝(𝑘 + 1) generated by the identification network is used as
part of the input variables for the control network.The output
of the control network is the desired control command u𝑐(𝑘+
1) to stabilize the aeroelastic system. The synaptic weights
of the identification network and the control network are
updated online according to a real-time recurrent learning
(RTRL) algorithm proposed by Williams and Zipser [21]. In
this section, the main parts of the identification network and
the control network are presented.
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Figure 3: Recurrent neural network structure.

3.1. Identification Network. In this work, the identification
network is used to make one-step ahead prediction of the
acceleration signal measured by the accelerometers, which
are attached to particular points of the wing. As shown in
Figure 4, the inputs to the identification network contain
the accelerometer measurement y𝑚(𝑘), the control command
u𝑐(𝑘), and the feedback signals from all neurons of the
identification network. Hence,

uId (𝑘) = [yId (𝑘) y𝑚 (𝑘) u𝑐 (𝑘) −1]
𝑇

, (11)

where yId(𝑘) are the feedback signals from all neurons of the
identification network.Then, the outputs from all neurons of
the identification network can be evaluated as

𝜐
Id
𝑗
(𝑘) =

𝑁Id

∑

𝑖=1

𝑤
Id
𝑗𝑖
(𝑘) 𝑢

Id
𝑖
(𝑘) ,

𝑦
Id
𝑗
(𝑘 + 1) = 𝛼 tanh (𝛽𝜐Id

𝑗
(𝑘)) ,

(12)

where 𝑤Id
𝑗𝑖
(𝑘) is a synaptic weight of the identification net-

work. The acceleration predictions y𝑝(𝑘 + 1) are the outputs
from all the visible neurons of the identification network.
The identification network is trained online according to
the RTRL algorithm to minimize the quadratic identification
error 𝐸Id defined as

𝐸
Id
=
1

2

𝑁
𝑚

∑

𝑖=1

(𝑦
𝑚

𝑖
(𝑘) − 𝑦

𝑝

𝑖
(𝑘))
2

, (13)

where 𝑁𝑚 is the number of accelerometers mounted on the
wing. Through the RTRL algorithm, the synaptic weights are
updated online as follows:

𝑤
Id
𝑗𝑖
(𝑘 + 1) = 𝑤

Id
𝑗𝑖
(𝑘) − 𝜂

Id 𝜕𝐸
Id
(𝑘)

𝜕𝑤
Id
𝑗𝑖
(𝑘)

, (14)

where 𝜂Id is the learning rate of the identification network.
As a high learning rate may stabilize the training algorithm
and a low value will limit the capability of the identification
network to quickly adapt the network to system variations,
the learning rate needs to be chosen as a compromise.
Because there is no strict theory about how to choose the
appropriate learning rate, the value has to be tuned through
extensive numerical tests.

3.2. Control Network. Because the aeroelastic system to be
controlled in this study is a nonminimum phase system, the
control network is based on a pseudo inversion technique as
shown in Bernelli-Zazzera et al. [16] to obtain the desired
control command signals u𝑐(𝑘 + 1). The inputs to the control
network contain the acceleration predictions y𝑝(𝑘 + 1), the
control command u𝑐(𝑘), and the feedback signals from all
neurons of the control network. Hence, one has

uCon (𝑘) = [yCon (𝑘) y𝑝 (𝑘 + 1) u𝑐 (𝑘) −1]
𝑇

, (15)

where yCon(𝑘) is the feedback signals from all neurons of the
control network. Similar to the identification network, the
outputs from all neurons of the control network are evaluated
as

𝜐
Con
𝑗

(𝑘) =

𝑁Con

∑

𝑖=1

𝑤
Con
𝑗𝑖

(𝑘) 𝑢
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𝑖

(𝑘) ,

𝑦
Con
𝑗

(𝑘 + 1) = 𝛼 tanh (𝛽𝜐Con
𝑗

(𝑘)) ,

(16)

where 𝑤Con
𝑗𝑖

(𝑘) is a synaptic weight of the control network.
The desired control command signals u𝑐(𝑘+1) are the outputs
from all the visible neurons of the control network. The cost
function to minimize for the pseudo inversion technique is

𝐸
Con

=
1

2

𝑁
𝑚

∑

𝑖=1

(𝑦
𝑚

𝑖
(𝑘 + 1) − 𝑦

𝑝

𝑖
(𝑘 + 1))

2

+
1

2
𝛾

𝑁
𝑐

∑

𝑖=1

(𝑢
𝑐

𝑖
(𝑘))
2

,

(17)

where a penalization term due to the control action is
introduced to limit the control effort and 𝛾 is the weight of the
penalization term. For the nonminimum phase system, the
penalization term is necessary to make the control network
stable as shown in Isermann et al. [22]. The control network
is trained online according to RTRL algorithm. The synaptic
weights are updated to minimize the cost function of the
control network as given by

𝑤
Con
𝑗𝑖

(𝑘 + 1) = 𝑤
Con
𝑗𝑖

(𝑘) − 𝜂
Con 𝜕𝐸

Con
(𝑘)

𝜕𝑤
Con
𝑗𝑖

(𝑘)
, (18)
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where 𝜂Con is the learning rate of the control network. The
value of the learning rate also has to be tuned through
extensive numerical tests tomaximize the performance of the
controller.

4. Numerical Simulations

4.1. Open-Loop Aeroservoelastic Analyses. No-matched point
flutter analysis was performed first for the fighter wingmodel
described in Section 2. Figure 5 presents the flutter boundary
of the open-loop ASE system, with respect to the Mach
numbers 0.80, 0.85, 0.90, 0.95, and 1.0, respectively.The figure
clearly shows a drop of the flutter boundary in the transonic
regime, which limits the performance of the wing.

4.2. Closed-Loop Aeroservoelastic Analyses. Figure 2(a) pre-
sents the location of accelerometer used for flutter stabiliza-
tion. The trailing-edge control surface was used to suppress
possible flutters. According to the theory of RNNs based
controller shown in Section 3, the single-input/single-output
(SISO) flutter suppression systemwas synthesized to improve
the performance of the typical wing with a tip missile.

At first, the sample frequency was set to be 200Hz as
a tradeoff between the computational power of computer
in a real flight and the following ability of control system.
Extensive numerical simulations were performed to tune the

Table 2: Parameters of the identification network and the control
network.

Identification network Control network
Number of neurons 6 6
Learning rate 0.3 0.2
Weight of penalty term — 0.2

parameters of networks, such as number of neurons, the
learning rate, and the weight of the penalization term. The
parameters of the identification network and the control
network were determined and presented in Table 2. The
synaptic weights of networkswere initializedwith theweights
determined during numerical simulations atMachnumber of
0.80 and postflutter dynamic pressure of 51.8 kPa.

To evaluate the capability of the identification network,
the control command of the trailing-edge control surface was
selected as white noise. Figure 6(a) shows the control com-
mand of the trailing-edge control surface at Mach number of
1.00 and dynamic pressure of 37.6 kPa. Figure 6(b) shows the
corresponding acceleration signal measured and the signal
predicted by the identification network. As shown in Figure 6,
the synaptic weights are able to generate a fairly good
prediction after only 5 s, which shows that the identification
network can follow the aeroelastic system quickly.
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To testify the robustness of the proposed adaptive con-
troller for flutter suppression, the accelerometer signals
were assumed to contain the white noise with intensity of
0.05 g. Figure 7(a) presents the accelerations of open- and
closed-loop systems at Mach number of 0.80 and under
postflutter dynamic pressure of 51.8 kPa. Figure 7(b) gives
the corresponding control command of the trailing-edge
control surface. To test the adaptive ability of the controller
at different flight conditions, Figure 8(a) presents the accel-
erations of open- and closed-loop systems at Mach number
0.90 and under a dynamic pressure 32.8 kPa. Figure 8(b)
presents the corresponding control command of the trailing-
edge control surface, too. Although the measured acceler-
ations were assumed to be contaminated by noise, Figures

7 and 8 clearly showed that the flutter instability of the
wing was effectively suppressed via the RNNs based con-
troller.

Figure 9 presents the comparison of the dynamic pres-
sures of open- and closed-loop flutters. Figure 10 shows the
increase of dynamic pressure of flutter via the controller at
different Mach numbers. There is a little increase in flutter
boundary at Mach numbers of 0.80 and 0.85 as shown
in Figures 9 and 10. The flutter boundary was extended
significantly over the transonic dip where the performance
of the fighter wing was limited, such as Mach numbers 0.90,
0.95, and 1.0.

Numerical results in this section showed that RNNs
based controller could be used to stabilize the flutter of wing
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Figure 8: Control effectiveness at a Mach number of 0.90.
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Figure 9: Open/closed-loop flutter boundary of the wing model.

structure over a wide range of Mach numbers. Hence, the
proposed adaptive controller exhibited excellent robustness.

5. Conclusions

In this study, an adaptive flutter controller was synthesized
via recurrent neural networks to suppress the instability
of a wing structure over a wide transonic regime. The
digital controller was verified by numerical simulations.
Although the wing structure changed the stability features
with the variation of flight conditions, the adaptive controller
could automatically adjust itself to current flight condition
by updating the synaptic weights of networks online via
the real-time recurrent learning algorithm. An important
advantage of the proposed controller was no requirement
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Figure 10: Increase of dynamic pressure of flutter via the controller.

for any information of the aeroelastic system except for the
acceleration signals measured.The aeroservoelastic model of
a typical fighter wing with a tip missile was established and
a single-input/single-output controller was synthesized. The
adaptive flutter controller was testified to successfully extend
the flutter boundary of the model, especially in the transonic
dip region where the performance of the model is limited.
Although a three-dimensional wing model with a symmetric
airfoil was studied in this study, the active flutter controller
for the nonsymmetric airfoil wings can also be synthesized
via the same approach. It should be noted, however, that the
static aeroelastic effect has to be taken into consideration for
the nonsymmetric airfoil wings.
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