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The accuracy of autonomous orbit determination of Lagrangian navigation constellation will affect the navigation accuracy for the
deep space probes. Because of the special dynamical characteristics of Lagrangian navigation satellite, the error caused by different
estimation algorithm will cause totally different autonomous orbit determination accuracy. We apply the extended Kalman filter
and the fading-memory filter to determinate the orbits of Lagrangian navigation satellites. The autonomous orbit determination
errors are compared. The accuracy of autonomous orbit determination using fading-memory filter can improve 50% compared to
the autonomous orbit determination accuracy using extended Kalman filter. We proposed an integrated Kalman fading filter to
smooth the process of autonomous orbit determination and improve the accuracy of autonomous orbit determination. The square
root extended Kalman filter is introduced to deal with the case of inaccurate initial error variance matrix. The simulations proved

that the estimation method can affect the accuracy of autonomous orbit determination greatly.

1. Introduction

Deep space exploration has become a hot spot of aerospace.
Several deep space probes have been launched. The autono-
mous navigation is important for deep space probes to deal
with communication delay as well as reducing the depen-
dency on ground stations. As early as 1968, the sextant had
been used for autonomous navigation in “Apollo program”
[1]. In 1999, “Deep Space 1” achieved autonomous orbit deter-
mination by tracking small celestial bodies with an optical
sensor, which is the first successful on-orbit application of
the deep space autonomous navigation technology [2]. The
comet probe “Deep Impact” which was launched in 2005
also carried out its navigation and control automatically
based on an optical navigation system with a high resolution
imager [3]. In [4], Downs proposed to use X-ray pulsar
radiation signal to navigate spacecraft. The rotation period
of X-ray pulsar is extremely stable; therefore, time and
the location of spacecraft can be determined by tracking

several X-ray pulsars with given and fixed frequency [5]. The
satellite navigation constellation can also provide navigation
information for deep space probes. GPS can navigate the
deep space probes when they are running in low-Earth
orbits and medium Earth orbits. For deep space transfer
orbits and deep space target orbits, the GPS is not good
enough. Several researchers investigated weak GNSS signal
navigation for the deep space probes [6-8]. Witternigg et
al. introduced how GPS and Galileo could be used for orbit
determination in future missions to the Moon [8]. Far-
quhar introduced a concept of using Earth-Moon libration
point satellites for lunar navigation [9, 10]. In 2005, Hill
suggested placing navigation constellation on the periodic
orbits in the vicinity of libration points of the Earth-Moon
system to support deep space navigation [11]. Zhang and
Xu analyzed the architecture and navigation performance
of the Lagrangian point satellite navigation system [12-
14]. The Lagrangian navigation constellation is introduced
to navigate the deep space probes autonomously. Hence,



the navigation constellation itself should have the ability
of autonomous orbit determination (AOD). The methods
introduced in [1-5] can be considered as absolute navigation
(or absolute autonomous orbit determination) because the
estimated orbit refers to an inertial or quasi-inertial frame.
Methods introduced in [6-14] can be classified as relative
navigation. Relative navigation seeks optimal estimates for
the position and velocity of one satellite relative to the other
one.

Relative navigation usually is applied to satellites in a
formation or constellation involved using GPS which restricts
the spacecraft formation to near-Earth applications, such as
Deep Space Mission 3 [15] and Grace project [16]. Relative
navigation is primarily proposed for formation configuration
control and formation reconfiguration. However, Lagrangian
navigation constellation should provide absolute navigation
information to deep space probes to achieve absolute nav-
igation. Therefore, autonomous orbit determination of the
Lagrangian navigation constellation is actually using the
relative measurement to achieve absolute navigation. The
laser interferometer space antenna (LISA) mission is an
example which uses the relative range to assist the absolute
orbit determination. The LISA mission which consists of
three spacecraft separated by 5 million kilometers forming
an equilateral triangle is a huge Michelson interferometer in
space for gravitational wave detection [17]. The deep space-
network provides a raw estimation of the absolute positioning
for the three satellites. An accurate relative positioning will be
provided with a laser-based ranging measurement in order to
obtain an accuracy of positioning of tens of meters [18, 19].
Psiaki [20] and Markley [21] suggested using crosslink range,
attitude information, and an optical tracker to determine
the orbits autonomously. Yim et al. proposed using optical
tracking and attitude information to find the direction vector
between the two spacecraft and determine both orbits [22].
But these methods require extensive hardware development.
In order to reduce the operational cost, size, and weight of
spacecraft for formation missions, crosslink range can be
used as the only measurement for orbit determination of
a constellation. However, for the Earth navigation satellite
constellation, there is a rank deficiency problem when only
crosslink range is used to determine the orbit [23, 24]. Hill’s
study illustrated that the rank deficiency problem does not
exist for the Lagrangian navigation satellites because of the
special dynamics near the libration points [11]. Thus, the
Lagrangian navigation satellites can autonomously determine
their orbits using only crosslink range. In [11], Hill discussed
the unique distribution of Lagrangian orbit from the view of
dynamics, which theoretically proved the autonomy of the
Lagrangian navigation constellation. From the perspective of
identifiability of epoch state, Qian et al. verified the feasibility
of AOD for satellites in quasiperiodic orbits about the Earth-
Moon libration point [25]. Based on circular restricted three-
body problem (CR3BP), Du et al. researched the autonomous
orbit determination method of satellites in halo orbits, and
only crosslink range was used as observation [26]. In [23],
Gao et al. discussed the feasibility of autonomous orbit deter-
mination using only the crosslink range measurement for
a combined Lagrangian navigation constellation and GNSS.
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FIGURE 1: Diagram of the circular restricted three-body problem in
0-xyz frame.

The most widely used algorithm for Lagrangian navigation
satellite is extended Kalman filter (EKF) method. However,
EKF is based on linearization of the system dynamics and the
assumption of Gaussian process/measurement noise. These
can seriously affect the performance of the state estimation
and even lead to divergence. Unscented Kalman filter (UKF)
which is based on the unscented transform can achieve higher
accuracy than EKF while the added computational cost is
not significant. More importantly, UKF is robust with respect
to the initial conditions. Therefore, Sun et al. introduced
UKEF to relative navigation for multiple spacecraft formation
flying [27]. Giannitrapani et al. analyze the performance
of EKF and UKF for the localization of a spacecraft [28].
In order to improve the robustness and stability accuracy,
Wang and Gu applied fault tolerant UKF in autonomous
determination of relative orbit for satellite formation flying
[29]. Rigatos introduced the technical analysis and imple-
mentation cost assessment of sigma-point Kalman filtering
and particle filtering in autonomous navigation systems [30].
Reali and Palmerini provided a preliminary comparison of
different estimation techniques to be used in formation flying
navigation [31].

Since the CR3BP is sensitive to the state error and
calculation error, the AOD of Lagrangian navigation satellite
may refer to the accuracy of the estimation algorithms. One
factor which must be considered in the AOD of Lagrangian
navigation constellation is to prevent the divergence of AOD
error. Therefore, we introduce four estimation methods to
achieve the AOD of Lagrangian navigation constellation to
analyze the effect on AOD by estimation method.

2. Dynamical Model of Lagrangian
Navigation Satellite

For satellites in Lagrangian point orbits, the equation of
CR3BP should be an appropriate model to describe the
satellites’ dynamical characteristics. Consider two massive
bodies m, and m, moving under the action of just their
mutual gravitation, and let their orbit around each other be
a circle of radius r;,. As shown in Figure 1, a noninertial,
comoving frame of reference o-xyz is defined. The origin
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of frame o0-xyz lies at the center of mass of the two-body
system. The positive x direction goes from m, to m,. The
positive y-axis is parallel to the velocity vector. The z-axis
is perpendicular to the orbital plane. Now the third body of
mass m which is vanishingly small compared to the primary
masses 11, and m, is introduced. We assume that the mass m
is so small that it has no effect on the motion of the primary
bodies. This is called the restricted three-body problem.

The nondimensional equations of motion for the CR3BP
are shown as follows [32]:

. . xX+uy x+pu-1
x—2y=x—(1—;4) T — R
" &
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n 53

where m; and m, are the masses of the two primaries. r,
and r, are the distances of the spacecraft from the massive
and secondary primaries, respectively. r,, r,, and y are given

by

r o= \/(x+y)2+y2+z2,

r, = \/(x+pt—1)2+y2+zz, (2)
- _M
w= my+m,

The nondimensional scales are defined as
[M] =my +m,,

L] =1,
(L] =1y, 3)

ri‘z 1/2
G (my +m,) )

[T]=[

where 1, is the distance between the two primaries. G is the
Universal Constant of Gravitation.

Equations (1) have five equilibrium points which are
called Lagrange points (or libration point), as shown in
Figure 2.

Three Lagrange points on the x-axis are unstable, and
two Lagrange points which form an equilateral triangle with
the two primary bodies in the x-y plane are stable. Many
interesting periodic orbits exist in the vicinity of the Lagrange
points no matter whether they are stable. The Lagrange
navigation satellite constellation discussed in this paper is
distributed in these periodic orbits.

N/
~é

Ls

FIGURE 2: Schematic location of the five Lagrange points in the
CR3BP.

3. AOD of Lagrangian
Navigation Constellation with Different
Estimation Methods

EKF method is a commonly used method for AOD of satellite.
EKF is summarized as follows [33]:

Xie = Op g1 Xy + K (Pk - Hk(Dk,k—IXk—l)’

Ky = P.H R, W
Py = (I - KyHy) Py

T T
Pt = Cppem1 Py Prpy + Dot Quemt L1

where X, , is the estimated state at ¢, ;. ®(t;,t,_,) is the
transition matrix. P, is the covariance matrix. Hy is the
mapping matrix that relates the observation deviation vector
to the state deviation vector. K} is the Kalman gain matrix. In
this paper, only crosslink range between two satellites is used
as observation. The crosslink range is described as

Pij = \/("i - xj)z +(i- yj)z +(zi- Zj)z- ®)
So

9p (% k)
Hk = —F . (6)
axz X k-1

Two periodic orbits around L, and L,, respectively, are
chosen to achieve the simulation. The initial states of the two
orbits are shown in Table 1. The values are nondimensional.
10 m initial state errors and 10 m measurement noise are
added. In Figures 3 and 4, the orbits based on different initial
state is shown. As we can see, the trajectory will diverge
within a short time if the initial state error is 10 m. Therefore,
the initial state error and the measurement noise are chosen
based on the navigation requirement, not the ability of the
existing technology.



TaBLE 1: Initial states of the periodic orbits around Lagrange points
L,and L,.

Satellites L, L,
x(L) 0.8440212401521470 1.1726789595745000
y(L) 0.0000000000000000 0.0000000000000000
z(L) 0.0592695845762629 0.0834298981288340
x(L/T) 0.00000000000000000 0.0000000000000000
J(L/T) —-0.0053009560909076 —0.1864489128036080
Z(L/T) 0.0000000000000000 0.0000000000000000
0.06
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0.02 |
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FIGURE 3: The periodic orbit based on accurate initial state.

The initial covariance matrix is defined as
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where 0, , 0, , and o, are the initial position error in three
coordinate axes and oy, 0y, , and o are the initial velocity
error in three coordinate axes.

Figures 5 and 6 show the results of AOD of Lagrangian
navigation satellite using EKF. As we can see, the maximum
errors in three axes of L, are 541 m, 254 m and 168 m. The
maximum errors in three axes of L, are 555m, 195m, and
263 m. And the estimation process is divergent.

Since CR3BP is sensitive to calculation error, the state
estimation error covariance matrix of EKF may lose its
properties of positive definite when the computations are
carried out with finite digit arithmetic of the computer.
Nonpositive definite covariance matrix will cause the gain
matrix to lose its function gradually and lead to divergence of
AOD error. In order to suppress the divergence of estimation
process, the fading-memory filter (FMF) is introduced to
improve the AOD characteristics. The FMF is essentially the
old estimate plus a gain times a residual (difference between
current measurement and previous estimate). The difference
between the EKF and FMF is that the FMF is recursive

Error of Y-axis Error of X-axis

Error of Z-axis

Error of Y-axis Error of X-axis

Error of Z-axis
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FIGURE 4: The orbit based on the initial state with 10 m error.

0 20 40 60 80 100 120 140 160 180
Time (day)

7400 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180

Time (day)

0 20 40 60 80 100 120 140 160 180
Time (day)

FIGURE 5: The AOD position error of L, using EKE
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FIGURE 6: The AOD position error of L, using EKF.



International Journal of Aerospace Engineering

200

)
S

200}

—400 . . . . . . . .
0 20 40 60 80 100 120 140 160 180

Time (day)

Error of X-axis
m

Error of Y-axis
(m)

0 20 40 60 80 100 120 140 160 180
Time (day)

Error of Z-axis

0 20 40 60 80 100 120 140 160 180
Time (day)

FIGURE 7: The AOD position error of L, using FME.
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FIGURE 8: The AOD position error of L, using FME

and weights new measurements more heavily than older
measurements [34].
The basic equations of FMF are listed as follows [33]:

X = Oppe1 Xpy + Ky [Pk - Hk(Dk,k—IXk—l] ,
Ky = PH/ R,
(8)
P = (I = KiHy) Pkt
T (O T
P = Cop1 P Prpre ™ + D1 Qpeon e jes -

FME raises the role of new observation data and reduces the
influence of old observation to the filter in order to suppress
the filtering divergence. Figures 7 and 8 show the AOD

position errors of L, and L, using FME It can be seen that
the divergence of errors is suppressed by using FMF method.
The accuracy of the AOD is improved as well.

One disadvantage of FMF is that the oscillation amplitude
of filtering error at early stage is larger. Comparing Figure 5
with Figure 7, we can see that estimation process of EKF
is relatively ideal during the first 100s. Therefore, we can
use EKF to determine the orbit of Lagrangian navigation
satellite at the early stage of the AOD. When the AOD error
is bigger than a threshold value, the estimation method will
be switching to FME. We call this method integrated Kalman
fading filter (IKFF) which is illustrated as

X = Oppr Xpy + Ky [ pr = Hi@ppr X ) »
K, = BH'R,
P, = (I - KeHy) Pegey»
€)
Pije-1
ife>e,

T T
Dp 1P 1 Ppejemt + Te1 Qo1 Lo

T Ci_ T .
(Dk,k—lpk—lq)k,k—le k=1 4 Fk’k_le_lfk’k_l, lf e < es,

where e, is the threshold value of the AOD error. Since
the estimation error cannot be got in practical applications,
the residual can be used to approximate the threshold value
of estimation error. The linearized relationship between the
residual and the AOD error can be expressed as

y = Ce, (10)
where y is the residual and C is denoted as

Y=Y, 2z

% 99 0], (1)
p

[ 7 2] and [%, 7, Z,]" are the estimated position vari-
able of Lagrangian satellite 1 and Lagrangian satellite 2,
respectively. p is the crosslink range between these two
satellites.

The AOD results of IKFF are shown in Figures 9 and 10.
We list the maximum error of the above three methods in
Tables 2 and 3. As shown in Table 2, the maximum error of L,
satellite in three axes using IKFF reduced to 204 m, 104 m, and
62 m. Meanwhile, oscillation characteristic at the early stage
of AOD is improved in Figure 9. The similar improvement of
AOD can be seen about L, satellite. Therefore, as long as the
threshold value is selected appropriately, IKFF will produce
better AOD results than FMF or EKE.

To overcome the divergence of AOD error caused by the
state estimation error covariance matrix losing its properties
of positive definite symmetric, we also introduce the square
root extended Kalman filter (SR-EKF) to estimate the state of
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FIGURE 9: The AOD position error of L, using IKFE
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the Lagrangian satellite using only crosslink range. The SR-
EKEF is described as follows [33]:

Xy = O Xpoy + Ky [Pk - Hkq)k,k—lj\(k—l] ,
Xo=E [XO] >
Ky = @S pe—1 Fio
T T T -1
B =S He @ = [Fk Fy +Rk] >

Stck-1 = Ppejem1Sk-1>
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TABLE 2: The maximum AOD error of L, using different methods.

Maximum error Maximum error Maximum error

in x-axis/m in y-axis/m in z-axis/m
EKF 541 253 168
FMF 273 129 92
IKFF 204 104 62

TABLE 3: The maximum AOD error of L, using different methods.

Maximum error Maximum error Maximum error

in x-axis/m in y-axis/m in z-axis/m
EKF 554 195 262
FMF 296 226 163
IKFF 215 81 128

TABLE 4: The maximum AOD error of L, using SR-EKF with
different P,.

Maximum error Maximum error Maximum error

in x-axis/m in y-axis/m in z-axis/m
P, =107 17936 8507 4378
P, =10"" 853 393 184
Py =107" 404 186 88
Py=107" 377 178 104

TaBLE 5: The maximum AOD error of L, using SR-EKF with
different P,.

Maximum error Maximum error Maximum error

in x-axis/m in y-axis/m in z-axis/m
Py =107"° 17290 5216 6532
Py=10"" 790 283 301
By=107" 374 134 154
P =10" 365 107 134
T
Py = S,S¢,
1

Sk = Sk,k*l [I el akrkaF,?] N T’k = ﬁ
- kN k

(12)

The state estimation error covariance matrix P is replaced by
SST where S is the square root of P [35]. Here we define the
order of aio, 0}2,0, and (720 as Py. This method can guarantee
the P is symmetric nonnegative definite matrix at any time.
In Tables 4 and 5, we give the maximum error of AOD of L,
satellite and L, satellite with different initial state estimation
error covariance matrix. As we can see, with a small initial
value of error variance matrix, SR-EKF algorithm cannot
estimate the state very well. The estimation error using SR-
EKEF is bigger than the EKF results. However, the accuracy of
AOD is improved with the increase of initial error covariance
matrix. Thus, the effectiveness of SR-EKF method is affected
by the initial value of state estimation error covariance matrix
P. SR-EKEF is useful when the initial error variance matrix is
not accurate. However, the AOD error will increase when the



International Journal of Aerospace Engineering

400

Error of X-axis
m

0 20 40 60 80 100 120 140 160 180
Time (day)
100

= 100 +
-200

Error of Y-axis
m)

0 20 40 60 80 100 120 140 160 180

Time (day)
2 200
E
RI] . 100 +
SE o
8
t _100 1 1 1 1 1 1 1 1
M

0 20 40 60 80 100 120 140 160 180
Time (day)

FIGURE 11: The AOD position error of L, using SR-EKF with Py =
107"

Error of X-axis

0 20 40 60 80 100 120 140 160 180
Time (day)

Error of Y-axis

0 20 40 60 80 100 120 140 160 180
Time (day)

Error of Z-axis

7200 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180

Time (day)

FIGURE 12: The AOD position error of L, using SR-EKF with Py =
107"

initial error variance matrix is bigger than a boundary. In our
simulation, the best AOD result coincides with the Py =107"°.
Figures 11 and 12 exhibit the AOD error using SR-EKF under
the same initial condition as the above three methods with
P, =107'°. Even when the initial error variance matrix is not
accurate, the precision of AOD of two Lagrangian satellites is
better than EKE.

4. Conclusion

Since the special dynamical characteristics of CR3BP, the
AOD accuracy of the Lagrangian navigation constellation is
sensitive to all the errors introduced by the AOD process.

Different estimation methods will cause great different AOD
accuracy.

Four estimation methods are used to determinate the
orbit of Lagrangian navigation constellation. EKF is a com-
monly used method, but it is not the best choice for the AOD
of Lagrangian navigation constellation. The accuracy of AOD
using FMF can improve 50% more than using EKE. And the
divergence of the AOD error is suppressed.

We proposed a new method, IKFE to estimate the state of
Lagrangian navigation satellite. The accuracy of AOD using
IKFF can improve 20% more than using FME. Furthermore,
IKFF can smooth the process of the AOD.

For the case of not accurate initial error variance matrix,
SR-EKF can be chosen as the AOD estimation method. The
accuracy of SR-EKF is close to the FME

In order to improve the AOD accuracy, all the factors
which will cause errors should be analyzed. As the estimation
methods, we will find other advanced technologies to get a
much more accurate AOD of Lagrangian navigation satellite.
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