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This paper focuses on maximizing the percent coverage and minimizing the revisit time for a small satellite constellation with
limited coverage. A target area represented by a polygon defined by grid points is chosen instead of using a target point only.
The constellation consists of nonsymmetric and circular Low Earth Orbit (LEO) satellites. A global optimization method, Genetic
Algorithm (GA), is chosen due to its ability to locate a global optimum solution for nonlinear multiobjective problems. From six
orbital elements, five elements (semimajor axis, inclination, argument of perigee, longitude of ascending node, andmean anomaly)
are varied as optimization design variables. A multiobjective optimization study is conducted in this study with percent coverage
and revisit time as the two main parameters to analyze the performance of the constellation. Some efforts are made to improve the
objective function and to minimize the computational load. A semianalytical approach is implemented to speed up the guessing
of initial orbital elements. To determine the best parametric operator combinations, the fitness value and the computational time
from each study cases are compared.

1. Introduction

Compared to a single satellite, a constellation may provide
better coverage and higher reliability under failure of some
satellites, ensuring a higher rate of survival and mission
success. A constellation can offer unique capabilities that
are often difficult to achieve through different means, for
instance, enhanced temporal coverage [1]. A satellite orbit
constellation design usually relies on the Walker approach
[2] or streets of coverage method [3, 4]. Besides, a ground
track-based approach has been developed [5], and recently
the sliding ground track concept applied to constellations
composed of one or more orbital planes has been introduced
[6].

Related to the coverage mission, the idea of satellite con-
stellation designs for complex coverage was presented byUly-
byshev [7]. Indrikis and Cleave, in their work about SPACE
EGGS or the Satellite Coverage Model for LEO (Low Earth
Orbit) Constellations [8], also tried to access the effectiveness

of global, regional, and area coverage for proliferated small
satellite constellations in low altitude orbits, stressing the
capability of conventional analytical techniques. The idea of
staged deployments of satellite constellations in LEO was
also proposed by including the uncertainty feature of the
expected number of users and activity level [9]. In the process,
a satellite’s life cycle cost and its capacity is traded off to
satisfy the minimum per-channel performance requirement.
Another approach to optimize a satellite constellation design
by using tiers of satellites with variations in the orbit’s altitude
and inclination parameters was proposed Razoumny et al.
in [10]. This approach tries to reduce the redundancy in
the Walker approach by dividing the regional coverage into
several latitude regions that can be addressed by different
pairs of satellites’ altitude and inclination, allowing for a
better revisit time or a reduced number of satellites.

Besides the analytic methods, the genetic algorithm (GA)
is known for its robustness in obtaining a global optimum
solution for nonlinear multivariable problems through its
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stochastic and heuristic search algorithms. In their thesis,
Pegher and Parish [11] tried to compare the coverage opti-
mization and the revisit time of sparse military satellite
constellations using traditional approaches and GA. Another
method of hybrid satellite constellation design called Genetic
Satellite Constellation (GSC) was proposed in [12] by using
single GA optimization.This approach demonstrates the per-
formance of hybrid LEO/MEO, LEO/GEO, and MEO/GEO
constellations. A study on Simulated Annealing and GA
approaches to satellite constellation design for coverage of
a limited latitude region was conducted by Crossley and
Williams [13], where both methods outperformed the con-
ventional Walker approach at low Earth central angles.

Multiobjective genetic algorithm (MOGA) is a variation
of GA, which is known to be a robust technique to solve
multiobjective optimization, resulting in a Pareto optimal set
solution [14]. A class of fast and elite MOGA was introduced
by Deb et al. in 2002 [15]. This new MOGA called NSGA-
II stands for Nondominated Sorting GA, which uses a fast
nondominated sorting and a crowding distance assignment
in its algorithm. Several multiobjective optimization studies
have been performed. For example, Ely used two-branch
tournament GA for a constellation design with eccentric
orbits, aiming to minimize the maximum constellation’s
orbit altitude and the total number of satellites [16]. Sev-
eral works from Ferringer are also focused on multiobjec-
tive optimization of satellite constellation designs including
the trade-off analysis [17–20]. Related to MOGA, Mason
et al. introduced a type of MOGA approach, called the
Modified Illinois Nondominated Sorting Genetic Algorithm
(MINSGA), combined with Satellite Tool Kit (STK) software
to produce several constellation designs that provides a
continuous global coverage [21]. Another work was also done
by Confessore et al. to optimize a satellite constellation’s orbit
design with GA aiming to minimize the number of satellites
and maximize region coverage [22].

However, to the best of our knowledge, there is no specific
unified design approach for a local continuous coverage or
surveillance mission over a region. This paper addresses
coverage and revisit time problems using a sparse satellite
constellation design with limited coverage capability, as is
often encountered in low-cost satellite missions. Some low-
cost small satellites tend to use small cameras for image
acquisition [23, 24]. Several recent developmentsmade in this
area are the BRITE mission, which is an explorer targeting
bright stars, conducted by the Canadian Space Agency, part-
nering with the University of Vienna and Graz University of
Technology from Austria and the Copernicus Astronomical
Center from Poland [16], and the PRISM Earth-imaging
validation mission developed by the University of Tokyo
using a CMOS imager on a narrow-angle camera [25].

The contribution of this paper is twofold: the first is
a method to address a complex coverage area by using
sparse satellite constellation design with a limited coverage
capability and the second is an efficient approach to lower
the computational burden when performing the GA opti-
mization. In this paper, a case study is conducted on a sparse
satellite constellation using multiple circular LEO satellites
equipped with imaging sensors. A GA-based optimization is

chosen due to its ability to locate a global optimum solution
for a wide class of nonlinear problems that may be applicable
to the case of this study. Several constellations’ figures of
merits [26], such as the area percent coverage and revisit time,
are selected to evaluate the constellation performance using
a multiobjective optimization algorithm. As much as GA
seems to be a compatible optimizationmethod to solve such a
problem, it is often avoided due to its high computational load
[27]. To minimize the computational load, a semianalytical
approach is also proposed, which brings about a significant
savings in computational time. The proposed approach, a
combination of GA and an efficient semianalytical approach,
will be a viable option for optimum satellite constellation
designs.

2. Problem Statement

2.1. Mathematical Formulation of a Target Area. The area of
interest is defined by inputting latitude-longitude coordinates
of the main cities located in the country of interest. From
these points, a convex hull polygon is generated using a
computational geometry method, as depicted in Figure 1.
The convex hull of a set of points is the smallest convex set
that contains the points [28]. The area of interest is divided
into several effective grid points, which are then evaluated to
determine the target access time.

The grid points are defined in geodetic latitude Φ𝑡 and
longitude 𝜆𝑡, where 𝑡 = 1, . . . , 𝑁 and𝑁 is the total number of
grid points. Furthermore, zero ellipsoidal height of the target
points is assumed.

2.2. Orbit Design. Initial orbit design consists of six standard
orbital elements: semimajor axis 𝑎, eccentricity 𝑒, inclination
𝑖, longitude of ascending nodeΩ, argument of perigee 𝜔, and
mean anomaly𝑀.

The maximum Earth-centered half-angle 𝜃 and the max-
imum swath width of the satellite sensor occur when the
satellite is at apogee 𝑟𝑎 = 𝑎(1 + 𝑒). As shown in Figure 2,
a satellite footprint projection on the Earth’s surface with
elevation angle 𝜀 defines a coverage circle with a radius 𝜃
through the following equation [29]:

𝜃max = −𝛼 + asin(𝑎 (1 + 𝑒)𝑅𝑒 sin𝛼) . (1)

3. Semianalytical Initial Guess

Using a semianalytical initial guess, the time step for prop-
agation could be adjusted in order to reduce the overall
computational load. Comparison between this method and
the numerical propagation method in terms of the area
coverage difference is presented as well in this paper. This
method is based upon the correlation between nonsingular
orbital elements and the target Φ and Ψ. This approach is
especially useful for observation over a repeating ground
track orbit.

In comparison with numerical propagation, this
approach allows for information about the satellite position
at a specific time without having to propagate the satellite’s
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Figure 1: Example region (a) and the polygon made by convex hull mapping (b).
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Figure 2: Satellite footprint projection.

orbital elements or the satellite’s position and velocity vector
over a time step. The accuracy of numerical propagation
results depends on the size of the time step, which, on the
other hand, conflicts with the size of available computing
memory and computational load.

By the mean element theory [30], a satellite orbit is
described using its mean orbital elements. The time rate of
secular changes of meanΩ, 𝜔, and𝑀 is given by [31]

Ω̇ = − 𝐾
𝑎7/2 (1 − 𝑒2)2 cos 𝑖,

𝜔̇ = 𝐾
𝑎7/2 (1 − 𝑒2)2 (2 −

5
2 sin
2𝑖) ,

𝑀̇ = 𝑛 + 𝐾
𝑎7/2 (1 − 𝑒2)3/2 (1 −

3
2 sin
2𝑖) ,

(2)

where𝐾 = (3/2)𝐽2𝑅2𝑒√𝜇 and the mean motion 𝑛 is given by

𝑛 = √ 𝜇
𝑎3 . (3)

Drag perturbation is described using the following equations
[32]:

̇𝑎𝑑 = −𝜌𝐴𝐶𝑑√𝜇𝑎𝑚 (1 − (𝜔𝑒𝑛 ) cos 𝑖)
2 . (4)

3.1. Latitude Access. The correlation between the satellite
mean orbital elements and the access to a target region’s
latitude is defined in the following form [32]:

𝜙 − 𝜋2 + cos−1 sin 𝑖 cos𝜙𝑠 = 0, (5)

𝜙𝑠 = 3𝜋2 + 𝜔0 + ]̇Δ𝑡, (6)

where 𝜙𝑠 represents the angular distance along the ground
track measured from the ascending node at time = 0. The
equation is only applied to an orbit with small eccentricity.
On the assumption that the satellite in this study is equipped
with a conical sensor, (6) becomes

𝜙 ∓ 𝜃max − 𝜋2 + cos−1 (sin 𝑖 cos𝜙𝑠) = 0. (7)
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For a noncircular orbit, the maximum swath width 𝜃max
achieved on the perigee point is given by

𝜃max = −𝛼half + sin−1 (𝑎 (1 + 𝑒)𝑅𝐸 sin𝛼half) . (8)

It is recommended to use the time derivative of 𝜃 for a
noncircular orbit with drag and 𝐽2 perturbation included.

̇𝜃 = (sin𝛼half/𝑅𝑒) ((𝑟/𝑎) ̇𝑎 + (𝑟
2/𝑝) 𝑒 sin (𝑓) ̇𝑓)

√1 − 𝑟 (sin𝛼half/𝑅𝑒)
. (9)

The latitude access time repeats for every period of mean
argument of latitude or every 2𝜋/(𝜔̇ + 𝑀̇). 𝑇lat𝑖 is defined as
a set of latitude access times such that

𝑇lat𝑖 = [𝑝in𝑖, 𝑝out𝑖] , 𝑖 = 1, . . . , 𝑚. (10)

3.2. Longitude Access. The correlation between satellite orbit-
al elements and the area longitude is defined as

Ψ − (Ω0 + 𝜔0 − GMST0 ∓ 𝜃max) − (Ω̇ + 𝜔̇ − 𝜔𝐸) 𝑙̇𝑙
= atan2 (cos 𝑖 sin 𝑙, cos 𝑙) ,

(11)

where 𝑙 is themean argument of latitude and∓𝜃max represents
the entrance and exit of the access. A similar approach using a
straightforward expansion to solve this equation is explained
in [29] with a difference in the usage of atan2 instead of the
usual atan, since the mean argument of latitude lies between
–𝜋 and 𝜋. The analytical solution approach is described
briefly by first defining several variables. Let 𝐴1, 𝐴2, and 𝐴3
be defined as follows:

𝐴1 = Ψ − (Ω0 + 𝜔0 − GMST0 ∓ 𝜃max) , (12)

𝐴2 = (Ω̇ + 𝜔̇ − 𝜔𝐸)̇𝑙 , (13)

𝐴3 = cos 𝑖. (14)

Substituting (13)–(15) into (12) results in the following equa-
tion:

𝐴1 − 𝐴2𝑙 − atan2 (𝐴3 sin 𝑙, cos 𝑙) = 0. (15)

Equation (16) can be solved by using a solver in MAT-
LAB�. 𝛼 = atan2(𝑦, 𝑥) is a quadrant-sensitive inverse of
tan𝛼 = 𝑦/𝑥, which returns a value in the range −𝜋 ≤ 𝛼 ≤
𝜋. Using Taylor series expansion, atan(𝐴3 sin 𝑙, cos 𝑙) can be
defined as

atan (𝑥) = 𝑥 − 𝑥33 + 𝑥55 − 𝑥77 + ⋅ ⋅ ⋅ , (−1 ≤ 𝑥 ≤ 1) , (16)

𝑥 = 𝐴3 sin 𝑙, cos 𝑙. (17)

Let us put a value of 𝑙 into the equivalent Kepler equation in
terms of the mean element and derive Δ𝑡:

𝑙 = (𝜔0 +𝑀0) + (𝜔̇ + 𝑀̇) Δ𝑡. (18)

𝑇lon𝑗 is defined as a set of latitude access time for which

𝑇lon𝑗 = [𝑞in𝑗, 𝑞out𝑗] , 𝑗 = 1, . . . , 𝑛. (19)

The time for intersection of a target point can be found
from the time window intersection of each latitude and
longitude access. The intersection time 𝑇access consists of 𝑠
access times, where

𝑇access =
𝑚⋃
𝑖=1

[𝑇lat𝑖, 𝑇lon𝑖] = [𝑇in𝑘, 𝑇out𝑘] ,

𝑘 = 1, . . . , 𝑠.
(20)

The flowcharts of the algorithm are depicted in Figures 3 and
4.

4. Multiobjective Optimization

4.1. Pareto Approach. Multiobjective optimizations are usu-
ally expressed by introducing different objectives in a cost
function, for which each objective importance is represented
by a weight 𝑤𝑖 parameter for the 𝑖-th objective, as in [33].

𝐽 = min
𝑥

𝑛∑
𝑖=1

𝑤𝑖𝑓𝑖 (𝑥) , 𝑥 ∈ 𝐶, (21)

𝐽 = min
𝑥
(1 − 𝛼) 𝑓1 (𝑥) + 𝛼𝑓2 (𝑥) , 𝑥 ∈ 𝐶, (22)

where

𝛼 = sin 𝜃
cos 𝜃 + sin 𝜃 . (23)

Using such a weighted sum approach, the objective
functions should always be normalized or scaled so that
their objective values are in similar magnitudes. However,
according to [34], there is a certain drawback of minimizing
the weighted sums of objectives for Pareto set generation in
multicriteria optimization problems. The reason is that an
evenly distributed set of weighting vectors cannot guarantee
an evenly distributed representation of the Pareto optimal
solutions.

4.2. Nondominated Sorting Genetic Algorithms Optimization
(NSGA-II). As described in Figure 5, NSGA-II, which stands
for Nondominated Sorting GA, uses a fast nondominated
sorting and a crowding distance assignment [8]. GA opti-
mization itself is a heuristic, stochastic global search based
on the Darwinian concepts of evolution and natural selection
and was first introduced by John Holland in mid-1960s
[33]. An elitist GA favors individuals with a better fitness
measure (rank). A controlled elitist GA, which is used in this
algorithm, facilitates the optimization process to converge
into a set of diverse solutions, even if the solution might
consist of several lower performing individuals. NSGA-II
is selected for this research because it has been shown to
exhibit a better spread and convergence, relatively close to the
true Pareto optimal front compared to PAES and SPEA [34].
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SPEA stands for Strength Pareto Evolutionary Algorithm,
and PAES is Pareto Archived Evolution Strategy algorithm.
PAES is a multiobjective optimizer approach, which uses an
archive of previously found solutions in order to identify the
dominance ranking of the current and candidate solution
vectors. SPEA provides a form of elitism by using an archive

of the nondominated set, which is maintained separately
from the population of candidate solutions.

In the first generation, parent population 𝑃𝑡 of 𝐼 individ-
uals creates an offspring population 𝑄𝑡 also in 𝐼 individuals
through the common tournament Selection, Crossover, and
Mutation operators. Next, population 𝑅𝑡 with a size of 2𝐼
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individuals goes through a nondominated sorting. After the
first generation, crowded tournament selection is used to
select the top 𝐼 individuals from 𝑅𝑡 to form the next
generation 𝑃𝑡+1. A solution that wins a tournament has either
the highest rank or a better crowding distance parameter.The
crowding distance parameter itself is defined as the largest
cuboid surrounding a solution, for which no other solution
is present [35].

Two parameters used in this algorithm to control the
elitism are the Pareto fraction, which is the nondominated
sorting using the Pareto set, and the distance function, which
uses a crowding distance assignment. The Pareto fraction
limits the number of individuals that can be put into the
Pareto front (elite members). The distance function itself
favors individuals who are located relatively far from the front
since it can create a diverse, noncrowded set of solutions.

In this paper, the parametric operator is varied for the
number of generations and population.The number of gener-
ations is usually set at the beginning of the optimization and

is usually used as a stopping criterion for the optimization.
Another useful parameter is the stall generation, where the
optimization stops if the best fitness function value does not
stop after hitting several generations until the stall generation
is met. Population, which has a constant value during the
optimization, is the number of individual sets for every
generation.

5. Simulations

A target region for the case South Korea, with its 37 cities’
latitude and longitude positions, is used as an input for
simulation. The area of interest itself is represented as a
polygon of boundary points that includes all of the 37 cities.
This area of the polygon is then divided into a number of grid
points. 𝑁 denotes the number of fast nondominated target
points which is the number of grid points located inside the
polygon, for which 10 × 10 grids dividing the example area
result in a total of 50 grid points.The basic design criteria and
constraints are as follows. A maximum satellite constellation
of three satellites with a 10-degree half-angle of a conical
sensor is used. This conical sensor is set as well so that only
one satellite cannot cover the whole area of interest. Although
from (1) it was mentioned that the maximum swath width
occurs at the apogee, due to the circular orbit used in this
simulation, this parameter is a matter of the satellite altitude
only, assuming that the pointing error is neglected.

The constellation is placed into a circular orbit at an epoch
date on August 1, 2020. Up to six hours of the satellite’s
lifetime is studied. In comparison with the simulation done
in [29], the satellite’s orbiting time period is much smaller;
therefore, the argument of perigee and mean anomaly are
included as optimization variables to compensate for the
shorter observation time.

The 6-hour slot of the satellite lifetime was studied as an
example of applying the proposed optimization algorithm to
satellite constellation orbit design.Thepart of the satellite life-
time was selected to compare performance of the proposed
semianalytical algorithm to that of typical genetic algorithms
in a perspective of computational time. To get optimized
results for whole time period of repeating ground track
seemed unnecessary since the satellites in the constellation
are on the same configuration every about 30 days and
therefore much more time for simulation is needed.

Imaging sensors is assumed for this study. The illuminat-
ing conditions will change at every pass because the orbit is
not Sun-synchronous. However, we believe it is feasible to
use imaging sensors in such constellation as existing systems
equipped with CMOS or thermal infrared camera.

The constraints for initial orbit elements used as opti-
mization variables are defined in Table 1.

A comparison between the 4th order Runge-Kutta (4RK)
numerical integration and the semianalytical approach is
performed as well. The results match within an error of
0.15% to 4.33% over a 1.5- to approximately a 13-day orbit
propagation time. In a single application, the semianalytical
approach can save up to four times computational time
compared to the numerical integration approach, using a
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Table 1: Parameters variation for constellation visibility GA simu-
lation.

Variation parameter Value
Inclination 0–90 degrees

Semimajor axis 6538 to 6978 km, orbit height 160
to 600 km (LEO)

Longitude of ascending
node 0–360 degrees

Argument of latitude 0–360 degrees

computer with an Intel � Core�2 Duo CPU E7500 2.93GHz
processor and only 2.0GB RAM. This test was performed
using a random target site at 37∘ latitude and 14∘E longitude.
A satellite located in orbit with 0.005 eccentricity, 𝑎 =
6812.2 km, 𝑖 = 37∘, and 30∘ Ω is propagated over five orbital
periods. Figure 6 shows the error growth between the 4RK
coverage results and the semianalytical approach, which can
reach 4 minutes and 42 seconds during the longest 13-day
propagation time. From the data, it is predicted that the
difference will grow as the propagation time increases.

In overall application, the optimization’s computational
load can be reduced up to nine times using the semianalytical
algorithm. If the satellite does not cover any target latitude,
the algorithm automatically assigns a high value to the cost
function and skips the access computation for longitude
sections. Such bad performing individuals are automatically
marked by the NSGA-II in the overall computation to
exclude this individual in the next generation evaluation.
This approach can speed up the entire computational time by
skipping at least half of the calculation.

The fitness function of each individual is evaluated for
every generation, and while the evaluation does not hit the
stopping criteria, the selected parents continue to mate and
reproduce new generations via Crossover and Mutation. The
stopping criteria of theNSGA-II optimization algorithmused
in this paper use MATLAB� default numbers, except for the
TolFun or tolerance function being set at 10−3 (driven by the
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Table 2: Drag parameters for a sample satellite (330 km LEO alt., e
= 0, i = 79∘).

Satellite parameter Value
Mass (kg) 2.0
Area (m2) 0.01
C𝐷 2.0

total number of grids and the definition of the fitness function
formula). Optimum constellation design then covers asmany
grid points as possible and has a minimum average revisit
time (ART), also with the lowest maximum revisit time.

Five out of six orbital elements, semimajor axis 𝑎, incli-
nation 𝑖, longitude of ascending nodeΩ, argument of perigee
𝜔, and mean anomaly 𝑀, are used as optimization design
variables, while eccentricity 𝑒 is kept as a constant. As a note,
𝜔 and 𝑀 are included as design variables, despite the cir-
cular orbit assumption, to maximize the range of individual
diversity. Using (4) and (5), the drag perturbation effects can
be modeled and show increasing 𝜃 over propagation time
because drag tends to lower the semimajor axis of a satellite.
The data for drag is obtained from [35] in Table 2.

The effect of drag is presented in Figure 7.
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Figure 7: Effect of drag perturbation on the 𝜃 angle.
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Figure 8: Schema for GA-based optimization algorithm.

There are four optimization objectives in this study, which
is divided into two main case studies as follows: the coverage
factor and the revisit time factor. The percent coverage for
any point on the grid is described as the number of points
covered, which is divided by the total number of points
in the grid. The percent of coverage directly shows the
effectiveness of satellite coverage. However, it cannot provide
any information about the distribution of the gaps [32]. The
coverage gap is defined here as the length of time where a
point is not covered by any of the satellites in the constellation.

In the following, those two figures of merit of satellite
constellations are represented in four objectives. Regarding
the previous discussion about the convexity of the Pareto
solution, the cost function in this study is represented in
several objectives instead of using a weighted cost function.
The area coverage is different from the time coverage since
the time coverage is a summation of total satellite access
time divided by the number of grids and the total simulation
time. The following algorithm for GA-based optimization is
depicted in Figure 8:

(1) Maximum area percent coverage

𝑓1 = 1 − ∑
𝑁
𝑖=1 coverage 𝑖𝑑𝑥

𝑁 + reward. (24)

(2) Maximum average area time coverage

𝑓2 = 1 − ∑𝑁𝑖=1 coverage time
𝑁 ⋅ simulation period

. (25)

(3) Minimization of maximum coverage gap time

𝑓3 = ∑
𝑁
𝑖=1max revisit
𝑁 ⋅ 60 . (26)

(4) Average coverage gap time

𝑓4 = ∑
𝑁
𝑖=1 revisit
𝑁 ⋅ 60 . (27)

The reward is defined as a negative value that is added to
the cost function if 100% area coverage can be achieved by less
than the maximum initial three satellites. Several case studies
that were conducted are presented in Figure 9.

Using the semianalytical technique, the time of access
accuracy is independent of the time step since it does not
use numerical integration such as the Runge-Kutta orbit
propagation. In this simulation, test cases are analyzed by
varying two types of parameters: the optimization algorithm
parameters (or the NSGA-II parameters in this case) and the
constellation orbit design parameters. The NSGA-II param-
eters that can be varied include the population, generation,
and the stall criteria. Other adjustments that could be made
for Selection, Crossover, and Mutation parameters for the
population mating and generation are kept at their default
values this time since the effect of changing those parameters
has been discussed previously [33, 36].

In Case 2, a different number of populations and gen-
erations are tried. By increasing the number of populations
and generations, there is a greater probability to achieve a
global optimum for any nonlinear optimization problem as
the number of search points increases. The analogy for this
can be seen in Figure 10, where the increment in the number
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Case
number Optimized parameter # of 

sat

NSGA-II parametric operators

Population Generation
a i

1 3 500 30
2 3 750 100
3 6 500 30
4 3 500 30
5 3 500 30
6 3 750 100
7 2 planes 3 500 30
8 Fuel penalty 3 500 30
9 3 500 100

10 3 750 30
11 3 500 30
12 2 planes 3 500 30

]Ω �휔

Figure 9: Parameters variations for percent coverage and ART by NSGA-II simulation.
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Figure 10: Mesh figure for nonlinear problem.

of populations looks like a mesh figure with an increasing
number of mesh points. This results in a bigger search space
throughout the overall optimization framework. In our case,
it indicates that the Pareto front generated will have a better
value, as can be seen in Case 2. However, Case 2 suffers from
longest computational time due to the increased number of
cost function counting.

Case 3 iterates the constellation orbit design parameters
by increasing the number of satellites in the constellation
from 3 to 6. The increment in the number of satellites can
increase the area percent coverage and coverage time as well
while also reducing both ART and maximum revisit time.
However, the increment achieved is still lower than the results
achieved in Case 2, even though the computational load is
about two times lower. The role of the inclination angle in
this satellite constellation design is to maximize the launch
vehicle capability by choosing the inclination that is closest
to the target latitude.

Cases 5, 6, and 7 all employ 𝑖 andΩonly as optimized vari-
ables. In comparison with Case 5, the number of populations
and generations is increased in Case 6, and only two orbital
planes are used in Case 7. It can be seen from Figures 14–16
that the largest percent coverage from all four cases (a com-
parison with Case 1 included) is achieved by Case 6 on 88%

coverage. Both the lowest ART and maximum revisit time
are achieved by Case 5 at 1.614 and 0.896 hours, respectively.
Case 6 achieves the best overall performance in all four cases,
although the CPU computational load significantly increases
up to 4.5 times the averageCPUcomputational load for all the
three cases. To strengthen the results, Case 6 is comparedwith
Case 2, both with 750 population and 100 generations. From
these two cases, the results are almost identical in terms of
the area percent coverage with only 2% difference. In terms
of the time percent coverage, Case 6 exhibits slightly better
coverage with 5 minutes difference, while in terms of ART,
Case 2 achieves 16.8 minutes shorter time compared to Case
6. Figures 11–16 show the results for various cases.

Case 7 is conducted to seek an optimum design for a
constellation of the same three satellites in two orbital planes
in order to reduce the launch cost by using a combination
of 𝑖, Ω, and 𝜔. Seven variables are used in total for three
satellites and two orbits, two slots for 𝑖, two for Ω, and
three for 𝜔 variation. However, the separation between two
satellites in the same plane is considered too small with
only 13∘ difference in argument of latitude. Therefore, an
additional case is attempted using five optimized variables
in total, which are 𝑎, 𝑖, Ω, 𝜔, and ] in Case 12. In Case 12,
a constellation of three satellites distributed in two orbital
planes is used. In comparison with Case 7, although the area
coverage performance is similar, the time coverage achieved
in Case 7 is about 15 minutes longer. Also, it can be seen
that Case 7 has a greater number of solutions in the Pareto
front with near optimum values. From the previous trends,
regarding optimization results with respect to the number
of optimized variables, one can see that the optimization
using NSGA-II leads to a better set of solutions using a lower
number of optimized variables (only 𝑖 and Ω, compared to
variations of 𝑎, 𝑖, Ω, 𝜔, and ]) within a considerably lower
number of populations and generations. Figures 17–19 show
the results for Cases 7 and 12.

Cases 9 and 10 were conducted to see the results if
the number of populations and generations is increased
separately. In comparison with Cases 9 and 10, Case 2 yields
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Figure 11: NSGA-II result for 𝑓1 and 𝑓2 objectives (Cases 1, 2, 3,
and 8).
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Figure 12: NSGA-II result for 𝑓1 and 𝑓3 objectives (Cases 1, 2, 3,
and 8).

the best performance in all of the four optimized objectives,
while the second-best performance is by Case 9. The results
of the simulation are given in Table 3. From Table 4, similar
or better performance with Case 9 is achieved by Cases
5, 7, and 12 with approximately 15% less computational
load. By increasing the number of populations, the NSGA-
II optimization approach allows a greater chance of finding
the global optimum prior to converging at a cost of increased
computational load. This argument explains why the results
from Case 10 are similar to Case 9 despite only half of the
function evaluations inCase 9. Figures 20–22 show the results
for Cases 1, 2, 9, and 10.

Figures 23–25 present a comparison between Cases 1, 4,
5, and 11 results with a different number of orbital elements
used for optimization variables. The comparison indicates
that Case 5 yields the best results in terms of overall objectives
(percent coverage and revisit time) followed by Case 11 with
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Figure 13: NSGA-II result for 𝑓1 and 𝑓4 objectives (Cases 1, 2, 3,
and 8).
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Figure 14: NSGA-II result for 𝑓1 and 𝑓2 objectives (Cases 1, 5, 6,
and 7).

the best area coverage at 56% and then Case 4 at 44%.
However, in terms of both the maximum revisit time and
ART, the second rank is held by Case 4, while Case 11 offers
a longer maximum revisit time at 3.089 hours compared to
1.683 hours in Case 11. The least performing constellation
is Case 1 with a variation of 𝑎, 𝑖, Ω, and 𝜔 as optimized
variables, while the best performing constellation is Case 5
with only 𝑖 andΩ as optimized variables. Figures 26–29 show
satellites’ full ground tracks for various conditions and Tables
5–8 summarize orbit elements for the solutions.

In comparisonwith the best area coverage result inCase 7,
it can be seen that, by introducing ] as an optimized variable
in Case 12, the satellites’ ascending node in the same orbit
plane (satellite 1 and 2) is separated up to 264∘. Nonetheless,
this separation does not create significant changes in terms of
percent coverage nor the revisit time performance compared
to the results of Case 7.
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Figure 15: NSGA-II result for 𝑓1 and 𝑓3 objectives (Cases 1, 5, 6,
and 7).
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Figure 16: NSGA-II result for 𝑓1 and 𝑓4 objectives (Cases 1, 5, 6,
and 7).
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Figure 17: NSGA-II result for 𝑓1 and 𝑓2 objectives (Cases 7 and
12).
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Figure 18: NSGA-II result for𝑓1 and𝑓3 objectives (Cases 7 and 12).
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Figure 19: NSGA-II result for 𝑓1 and 𝑓4 objectives (Cases 7 and
12).
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Figure 20: NSGA-II result for 𝑓1 and 𝑓2 objectives (Cases 1, 2, 9,
and 10).
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Table 3: Results for the NSGA-II simulation.

Case number Σ points in Pareto front Computation time (hr)
1 105 4.104
2 199 16.134
3 125 8.308
4 175 4.279
5 16 4.116
6 263 18.864
7 175 4.098
8 175 3.716
9 175 12.584
10 263 5.386
11 175 3.913
12 175 3.942

Table 4: Best result for all objective functions (𝑓1, 𝑓2, 𝑓3, 𝑓4).
Case number 𝑓1 (%) 𝑓2 (min) 𝑓3 (hour) 𝑓4 (hour)
1 42 12.40 3.070 2.938
2 86 48.25 1.727 0.899
3 42 10.01 1.951 1.346
4 44 13.05 1.683 1.148
5 64 26.25 1.614 0.896
6 88 53.37 1.715 1.179
7 76 47.54 3.398 1.193
8 58 22.39 3.039 1.359
9 62 21.48 1.682 1.179
10 54 19.29 2.945 1.235
11 56 22.69 3.089 1.240
12 74 32.99 2.493 1.078

Table 5: Orbit elements for a solution in Case 7 (72% area coverage
and 1 hour and 19 minutes of ART).

Orbit element Sat #1 Sat #2 Sat #3
𝑎 (km) 6978 6978 6978
𝑒 0 0 0
𝑖 (deg) 42 42 44
Ω (deg) 90 90 131
𝜔 (deg) 324 326 284
] (deg) 0 0 0

In summary, the overall objective function can be
improved using severalmethods that are described in Table 9.
This table was made by taking the average of performances
from the cases that have either the same orbital elements as
optimized variables or cases represented by the same number
of populations and/or generations.

The maximum coverage time is around 53 minutes on
average per satellite orbit, whichwas achieved in Case 6. Also,
88%maximumarea coveragewas achieved inCase 6. In terms
of the revisit time, the minimum ART is 54 minutes in Case
5, while the lowest maximum gap time is around 1 hour and
37 minutes for Case 5.

0.4 0.6 0.8

1

1.5

2

2.5

3

Av
er

ag
e r

ev
isi

t t
im

e (
hr

)

Case 2
Case 1

Case 10
Case 9

1 − area percent coverage

Figure 21: NSGA-II result for 𝑓1 and 𝑓3 objectives (Cases 1, 2, 9,
and 10).
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Figure 22: NSGA-II result for 𝑓1 and 𝑓4 objectives (Cases 1, 2, 9,
and 10).
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Figure 23: NSGA-II result for 𝑓1 and 𝑓2 objectives (Cases 1, 4, 5,
and 11).
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Figure 24: NSGA-II result for 𝑓1 and 𝑓3 objectives (Cases 1, 4, 5,
and 11).
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Figure 25: NSGA-II result for 𝑓1 and 𝑓4 objectives (Cases 1, 4, 5,
and 11).

6. Conclusion and Future Work

By implementing a semianalytical approach, this study
showed that computational load was reduced by over nine
times within 0.5% error without having to numerically
integrate satellite position or orbital elements over time to
get the area coverage. Several figures of merits were chosen
to analyze the performance of the optimized constellation
orbit design, including maximum coverage, average coverage
time, ART, and maximum revisit time over a target area.
Circular LEO satellite constellation was used as a case study
with a combination of 𝑎, 𝑖, Ω, and 𝜔 as optimization
design variables. The satellites in this constellation design
case were assumed to have a small conical sensor angle,
which means that the satellites were subjected to a limited
coverage. Therefore, the study cases were defined as well
to achieve maximum coverage efficiency from the available
number of satellites. Several cases were analyzed to see how

Table 6: Orbit elements for a solution in Case 7with best maximum
revisit time at 3 hours and 24 minutes and 32% area coverage.

Orbit element Sat #1 Sat #2 Sat #3
𝑎 (km) 6978 6978 6978
𝑒 0 0 0
𝑖 (deg) 42 42 53
Ω (deg) 154 154 136
𝜔 (deg) 261 274 76
] (deg) 0 0 0

Table 7: Orbit elements for a solution in Case 12 (best 74% area
coverage and 9 hours of ART).

Orbit element Sat #1 Sat #2 Sat #3
𝑎 (km) 6936 6936 6884
𝑒 0 0 0
𝑖 (deg) 38 38 75
Ω (deg) 199 199 9
𝜔 (deg) 251 159 158
] (deg) 335 163 202

Table 8: Orbit elements for a solution in Case 12 with best max-
imum revisit time at 2 hours and 30minutes and 44% area coverage.

Orbit element Sat #1 Sat #2 Sat #3
𝑎 (km) 6938 6938 6871
𝑒 0 0 0
𝑖 (deg) 39 39 78
Ω (deg) 198 198 118
𝜔 (deg) 251 245 291
] (deg) 333 342 23

the NSGA-II parameter or the orbital parameter changes
might impact the optimizations results. To determine the
best parametric operator combination, NSGA-II employed
the Pareto concept to give a set of points that are able to satisfy
all objectives.

From the conducted study cases, it was shown that results
could be improved by increasing the number of populations
and generations in NSGA-II or by increasing the number of
satellites in the constellation.The latter optionwas considered
inefficient since the results of those two cases were not much
different, and the option of adding more satellite in the
constellationmay costmore. Also, byminimizing the number
of optimization variables, better results were obtained since
the complexity of the problem was decreased with the
decreased number of variables. The percent of coverage was
also improved by introducing a fuel penalty. Future work,
including analysis of sensor pinpointing accuracy, may yield
more meaningful results and make this problem closer to a
real case.
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Figure 26: Satellites’ full ground track (a) and close-up (b) for a solution in Case 7with 72% area coverage and 1 hour and 19 minutes of ART.
Red line: ground track of sat #1, pink line: ground track of sat #2, and blue line: ground track of sat #3. Green triangle: area covered by sat #1,
pink triangle: area covered by sat #2, and blue star: area covered by sat #3.
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Figure 27: Satellites’ full ground track (a) and close-up (b) for a solution in Case 7with best maximum revisit time at 3 hours and 24 minutes
and 32% area coverage. Red line: ground track of sat #1, pink line: ground track of sat #2, and blue line: ground track of sat #3. Red star: area
covered by sat #1 and blue triangle: area covered by sat #3. In this case, area covered by satellites #1 and #2 is similar, so the paths are stacked
on top of each other.

Nomenclature

𝐴: Reference cross-sectional area of the
satellite, m2

𝑎: Orbit semimajor axis, km
𝐶𝑑: Drag coefficient of the satellite
𝑒: Eccentricity
𝑓𝑥: 𝑥-th cost function
ℎ: Orbit altitude, km
ℎmax: Maximum number of satellites in the

constellation
𝑖: Orbit inclination, deg
𝐽2: Earth oblateness gravity harmonic

coefficient, 1.0826 × 10−3

𝑙: Mean argument of latitude, deg
𝑀: Mean anomaly, deg
𝑚: Mass of the satellite, kg
𝑁: Total number of target points
𝑛: Orbit mean motion, deg/s
𝑛𝑔: Number of grids
𝑛𝑖: Number of individuals
naked(ℎ∗): Number of uncovered grids by satellite

denoted with ℎ∗ in percent ratio of all total
available grids

𝑅𝑒: Spherical radius of the Earth, 6378.1363 km
𝑟𝑎: Satellite’s apogee height, km
𝑡: Time, s
𝛼: Sensor half-angle of conical center, deg



International Journal of Aerospace Engineering 15

Satellite ground track

0

50

−50

0 50 100 150−50−100−150

Longitude (∘)

La
tit

ud
e(

∘ )

(a)

Satellite ground track

124 126 128 130 132
33

34

35

36

37

38

Longitude (∘)

La
tit

ud
e(

∘ )

(b)

Figure 28: Satellites’ full ground track (a) and close-up (b) for a solution in Case 12 (best 74% area coverage and 9 hours of ART). Red line:
ground track of sat #1, pink line: ground track of sat #2, and blue line: ground track of sat #3. Pink triangle: area covered by sat #1 and red
star: area covered by sat #2.

Satellite ground track

0

50

−50

La
tit

ud
e(

∘ )

0 50 100 150−50−100−150

Longitude (∘)

(a)

Satellite ground track

122 124 126 128 132 134

33

34

35

36

37

38

39

130

La
tit

ud
e(

∘ )

Longitude (∘)

(b)

Figure 29: Satellites’ full ground track (a) and close-up (b) for a solution in Case 12with best maximum revisit time at 2 hours and 30minutes
and 44% area coverage. Purple line: ground track of sat #1 and blue line: ground track of sat #2. Red star: area covered by sat #1.

Table 9: Summary of parameter variation optimization results.

Variation Percent coverage Average revisit time Computational load Pareto front
Increasing number of
populations Better up to 29% Better up to 54% Worse up to 31% Increasing number of

solutions in Pareto front
Increasing number of
generations Better up to 48% Better up to 60% Worse up to 206% N/A

Increasing number of
populations & generations Better up to 71% Better up to 69% Worse up to 293% Increasing number of

solutions in Pareto front
Using a variation of 𝑎, 𝑖,Ω,
𝜔, and ] Better up to 33% Better up to 82% N/A N/A

Using a variation of 𝑎, 𝑖,
and Ω Better up to 5% Better up to 61% N/A N/A

Using a variation of 𝑖 and Ω Better up to 29% Better up to 70% N/A N/A
Fuel penalty used Better up to 38% Better up to 54% N/A N/A
Semisparse constellation
(Cases 7& 12) Better up to 25% Better up to 61% N/A N/A

Increasing number of
satellites in constellation Same value Better up to 54% Worse up to 102% N/A
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𝜀: Elevation angle, deg
𝜆𝑖: Target location longitude, deg, where 𝑖 =

1, . . . , 𝑛𝑔𝜇: Gravitational parameter of the Earth,
398,600.4415 km3/s2

Ω: Longitude of ascending node, deg
𝜌: Atmospheric density, kg/m3
Φ𝑖: Target location latitude, deg, where 𝑖 =

1, . . . , 𝑛𝑔𝜃: Earth-centered half-angle, deg
𝜔: Argument of perigee, deg
𝜔𝐸: TheEarth’s rotation rate, 7.2921×10−5 rad/s
𝜐: True anomaly, deg.
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