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The implementation of advanced guidance laws with bearings-only measurements requires estimation of the range information.
To improve estimation accuracy and satisfy the impact angle constraint, this paper proposes a two-phase optimal guidance law
consisting of an observing phase and an attacking phase. In the observing phase, the determinant of Fisher information matrix is
maximized to achieve the optimal observability and a suboptimal solution expressed by leading angle is derived analytically. Then,
a terminal sliding-mode guidance law is designed to track the desired leading angle. In the followed attacking phase, an optimal
guidance law is integrated with a switching term to satisfy both the impact angle constraint and the field-of-view constraint. Finally,
comparison studies of the proposed guidance law and a traditional optimal guidance law are conducted on stationary targets and
maneuvering targets cases. Simulation results demonstrate that the proposed guidance law is able to improve the range observability
and achieve better terminal performances including impact angle accuracy and miss distance.

1. Introduction

Research on impact angle constrained guidance laws can be
divided into two categories, that is, augmented proportional
navigation (APN) guidance laws and advanced guidance
laws.APNguidance laws can achieve the desired impact angle
with only information of line-of-sight (LOS) angle or LOS
angular rate by adjusting the proportional navigation coef-
ficient [1] or adding a bias term [2, 3]. However, it is always
assumed in APN approaches that the target is stationary or
the target’s maneuvering path is known. Advanced guidance
laws are designed based on modern control theories such as
optimal control [4, 5], sliding-mode control (SMC) [6, 7],
and robust control [8]. Compared with APN guidance laws,
advanced guidance laws are more flexible to satisfy various
requirements.

Nevertheless, the implementation of advanced guidance
laws requires the information of range or time to go, which
cannot be measured directly by bearings-only sensors. To
address the problem, target motion analysis (TMA) is gener-
ally employed to estimate range and time to go from noise-
corrupted bearings measurements. To enhance estimation
accuracy, different filters including extended Kalman filter

(EKF) [9], particle filter (PF) [10, 11], maximum likelihood
estimation (MLE), [12] and pseudo-linear estimation [13]
were successfully applied in bearings-only TMA. On the
other hand, estimation accuracy also relies on state observ-
ability which is related to the missile-target relative geometry
relation [14–16], so it can be improved via missile trajectory
optimization. To improve range observability in a pursuit-
evasion game problem, the eigenvalue of the error covari-
ance matrix was selected as the optimal criterion and the
optimal control command was acquired using enumeration
method in [17]. The variances of target-location estimation
computed with each missile’s measurements were used as the
optimal criterion and a suboptimal feedback guidance law
was designed using direct-shooting method to enhance the
ability of cooperative estimation in [18]. The determinant of
Fisher information matrix (FIM) was used as the optimal
criterion and the real-time guidance commandwas generated
with vector field theory in [19].

As demonstrated in the aforementioned studies, enhanc-
ing system observability can improve estimation accuracy
and therefore improve guidance performances. However, it
is not trivial to integrate an optimal observability guidance
law with an impact angle constrained guidance law, because

Hindawi
International Journal of Aerospace Engineering
Volume 2017, Article ID 1380531, 12 pages
https://doi.org/10.1155/2017/1380531

https://doi.org/10.1155/2017/1380531


2 International Journal of Aerospace Engineering

y

xO

M

T

r

aM

VM

M

M


aT VT

Figure 1: Planar missile-target geometry.

the control commands derived by the two guidance laws
are generally inconsistent. The LOS angular rate should
be maximized to optimize the observability, while zeroing
the LOS angular rate is always required in impact angle
constrained guidance law. To trade off the requirements
of observability enhancement and impact angle constraint,
this paper proposes a two-phase optimal guidance law
(denoted as TPOGL). The guidance process is divided into
an observing phase and an attacking phase. In the observing
phase, missile has limited a priori information about the
target and the relative distance between missile and target
is large, so the missile is guided to maneuver for better
observability to decrease estimation errors rapidly. To reduce
computation load, the determinant of FIM based on two
measurements is chosen as the optimal criterion of the phase.
A suboptimal solution expressed by leading angle is derived
and tracked by a terminal SMC guidance law. In the attacking
phase, the estimation accuracies of states have been largely
improved and the relative distance is small, so the missile
is guided to maneuver for better striking performances. An
optimal guidance law combined with a switching term is
employed to satisfy the terminal constraint and the field-
of-view (FOV) constraint. Numerical simulations show that
TPOGL can improve the range estimation accuracy and
the terminal performances including impact angle accu-
racy and miss distance. Moreover, the proposed TPOGL
has a simple structure and can be implemented in real
time.

2. Problem Statement

2.1. EngagementDescription. Theplanarmissile-target geom-
etry for air-to-ground engagement is depicted in Figure 1,
where 𝑟 is the relative distance between missile and tar-
get; 𝛽 is LOS angle; 𝑉𝑀 and 𝑉𝑇 are missile and target
velocities, respectively; 𝑎𝑀 and 𝑎𝑇 are missile and target
acceleration, respectively; and 𝜃𝑀 and 𝜂𝑀 are missile flight
path angle and leading angle, respectively. Leading angle,
LOS angle, and flight path angle satisfy the following
relationship:

𝜂𝑀 = 𝛽 − 𝜃𝑀. (1)

Denote the missile position as X𝑀 = [𝑥𝑀, 𝑦𝑀] and the target
position asX𝑇 = [𝑥𝑇, 𝑦𝑇].Then, LOS angle andmissile-target

distance can be expressed as

𝛽 = arctan
𝑦𝑇 − 𝑦𝑀𝑥𝑇 − 𝑥𝑀

𝑟 = √(𝑥𝑇 − 𝑥𝑀)2 + (𝑦𝑇 − 𝑦𝑀)2.
(2)

It is assumed that missile speed is constant and the target is
moving along 𝑥-axis. Thus, we can get 𝑎𝑀 = 𝑉𝑀 ̇𝜃𝑀, ̇𝜃𝑇 = 0,
and 𝑎𝑇 = �̇�𝑇. Then the planar engagement is described by the
following differential equations:

̇𝑟 = −𝑉𝑀 cos (𝛽 − 𝜃𝑀) + 𝑉𝑇 cos (𝛽 − 𝜃𝑇)
̇𝛽 = 1𝑟 (𝑉𝑀 sin (𝛽 − 𝜃𝑀) − 𝑉𝑇 sin (𝛽 − 𝜃𝑇))

̇𝜃𝑀 = 𝑎𝑀𝑉𝑀
�̇�𝑇 = 𝑎𝑇.

(3)

To maintain the target within seeker’s FOV, missile leading
angle cannot exceed seeker’s FOV 𝜓, which is expressed as

𝜂𝑀 ≤ 𝜓. (4)

2.2. Estimation Model. In modified polar (MP) coordinates
[9], the dynamic equations of the bearings-only localization
problem are formulated as

[[[[[[[[
[

̇𝛽
̇𝑟𝑟𝛽
1𝑟

]]]]]]]]
]



=
[[[[[[[[[[
[

−2 ̇𝛽 ̇𝑟𝑟 − cos (𝛽 − 𝜃𝑀)𝑟 𝑎𝑀
̇𝛽2 − ( ̇𝑟𝑟)

2 − sin (𝛽 − 𝜃𝑀)𝑟 𝑎𝑀̇𝛽
− ̇𝑟𝑟2

]]]]]]]]]]
]

+ 1𝑟
[[[[[
[

− sin (𝛽 − 𝜃𝑇)
cos (𝛽 − 𝜃𝑇)0

0

]]]]]
]
𝑎𝑇.

(5)

During the guidance process, missile state 𝜃𝑀 is assumed to
be accurately measured by onboard devices, while missile-
target relative states including 𝛽 and 𝑟 need to be estimated
fromnoise-corruptedmeasurements.Missile acceleration 𝑎𝑀
is the control variable of the system and generated by the
guidance system. Target acceleration 𝑎𝑇 is treated as noise to
the system.

Then the state equations for the state estimation problem
are

ẋ = [[[[[
[

−2𝑥1𝑥2 − 𝑥4cos (𝑥3 − 𝜃𝑀) 𝑢
𝑥12 − 𝑥22 − 𝑥4sin (𝑥3 − 𝜃𝑀) 𝑢𝑥1−𝑥2𝑥4

]]]]]
]
+ 𝜔, (6)
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where x = [𝑥1, 𝑥2, 𝑥3, 𝑥4]T = [ ̇𝛽, ̇𝑟/𝑟, 𝛽, 1/𝑟]T is the state
vector, 𝑢 is the control variable (i.e., missile acceleration), and
𝜔 is the process noise related to target maneuvering.

The measurement equation for the state estimation prob-
lem is

𝑧 = 𝑥3 + V, (7)

where 𝑧 is the measurement of LOS angle and V is assumed to
be a zero-mean white Gaussian noise with variance of 𝜎2.
3. Two-Phase Optimal Guidance Law Design

In this section, we propose a two-phase optimal guidance
law to make tradeoff between impact angle constrained
guidance law and optimal observability guidance law. And
FOV constraint is considered in both phases to obtain a
practical guidance law.

3.1. Optimal Observability Guidance Law Design for the
Observing Phase. Tomaximize the range observability for the
missile-target engagement, the determinant of FIM is chosen
as the optimal criterion [20] and the suboptimal leading angle
is derived analytically. And a guidance law based on terminal
SMC theory is designed to keep the missile flying with the
desired leading angle.

3.1.1. Optimal Criterion. FIM describes the amount of infor-
mation that the state vector carries about the measurement.
And FIM can be expressed as [20]

FIM = −𝐸[ 𝜕2𝜕𝜒 ln𝑝 (Θ | 𝜒)] , (8)

where 𝑝(Θ | 𝜒) denotes the probability density function
of the measurement Θ given the states 𝜒. For the bearings-
only localization problem, the missile-target relative positionΔX = X𝑇−X𝑀 = [𝑥𝑇−𝑥𝑀, 𝑦𝑇−𝑦𝑀] and the LOS angle 𝛽 are
taken as states and measurement, respectively. As described
in (7), the measurement noise is assumed to be a zero-mean
Gaussian white noise with constant variance 𝜎2; then the
probability density function 𝑝(𝛽 | ΔX) in this work is

𝑝 (𝛽 | ΔX)
= 1√2𝜋𝜎 exp[− (𝛽 − ℎ (ΔX)) (𝛽 − ℎ (ΔX))T2𝜎2 ] , (9)

where ℎ(ΔX) = arctan[(𝑦𝑇 − 𝑦𝑀)/(𝑥𝑇 − 𝑥𝑀)].
Substituting (2) and (9) into (8), FIM for the bearings-

only localization problem can be simplified as [21]

FIM = 1𝜎2 ∫
𝑇

0
(𝜕ℎ (ΔX)𝜕ΔX )(𝜕ℎ (ΔX)𝜕ΔX )T 𝑑𝜏

= 1𝜎2
[[[
[

∫𝑇
0

sin2𝛽𝑟2 𝑑𝜏 −12 ∫
𝑇

0

sin 2𝛽𝑟2 𝑑𝜏
−12 ∫
𝑇

0

sin 2𝛽𝑟2 𝑑𝜏 ∫𝑇
0

cos2𝛽𝑟2 𝑑𝜏
]]]
]
,

(10)

where 𝑇 is the total time of the guidance process.

From (10), computation of FIM is complex due to the
integral process. To reduce computing load, limited number
of measurements can be used to obtain a suboptimal solution
of FIM [19, 22] and this paper uses two-step measurements.

Assume the step length ℎ between two measurements is
small; then missile leading angle and target position could be
considered as constant during a single step [21]. Integrating
(3) during time ℎ, we can get

𝑟2 = 𝑟1 − 𝑉𝑀 cos 𝜂𝑀ℎ
𝛽2 = 𝛽1 + tan 𝜂𝑀 ln( 𝑟1𝑟1 − 𝑉𝑀 cos 𝜂𝑀ℎ) ,

(11)

where 𝑟1 and 𝛽1 are the range and LOS angle at 𝑡𝑘 and 𝑟2 and𝛽2 are the range and LOS angle at 𝑡𝑘+1.
Then, each termof FIM in (7) can be integrated as follows:

∫ℎ
0

sin2𝛽𝑟2 𝑑𝑡 = − 12𝑉𝑀 cos 𝜂𝑀 (
1𝑟2 −

1𝑟1)
− 1𝑉𝑀 (4 sin2𝜂𝑀 + cos2𝜂𝑀) [sin 𝜂𝑀
⋅ ( sin 2𝛽2𝑟2 − sin 2𝛽1𝑟1 )+
⋅ cos 𝜂𝑀2 (cos 2𝛽2𝑟2 − cos 2𝛽1𝑟1 )]

∫ℎ
0

cos2𝛽𝑟2 𝑑𝑡 = − 12𝑉𝑀 cos 𝜂𝑀 (
1𝑟2 −

1𝑟1)
+ 1𝑉𝑀 (4 sin2𝜂𝑀 + cos2𝜂𝑀) [sin 𝜂𝑀
⋅ ( sin 2𝛽2𝑟2 − sin 2𝛽1𝑟1 )
+ cos 𝜂𝑀2 (cos 2𝛽2𝑟2 − cos 2𝛽1𝑟1 )]

∫ℎ
0

sin 2𝛽𝑟2 𝑑𝑡 = 1𝑉𝑀 (4 sin2𝜂𝑀 + cos2𝜂𝑀) [−2 sin 𝜂𝑀
⋅ (cos 2𝛽2𝑟2 − cos 2𝛽1𝑟1 ) + cos 𝜂𝑀
⋅ ( sin 2𝛽2𝑟2 − sin 2𝛽1𝑟1 )] .

(12)

Then, the determinant of FIM can be expressed as

|FIM|
= 4𝜎2𝑉𝑀2𝑟12 (3 sin2𝜂𝑀 + 1) cos2𝜂𝑀 [(

𝑟1 − 𝑟2𝑟2 )2

⋅ sin2𝜂𝑀 + 𝑟1𝑟2 cos2𝜂𝑀sin2 (ln(
𝑟1𝑟2) tan 𝜂𝑀)] .

(13)
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Figure 2: Normalized determinant of FIM with respect to leading
angle.

According to (11) and (13), when states at 𝑡𝑘 are fixed,
determinant of FIM is only related to leading angle and step
length, and it is an even function of leading angle. To illustrate
the relationship between determinant of FIM and leading
angle, define the normalized determinant of FIM as

FIM (𝜂𝑀)∗ =
FIM (𝜂𝑀)

max (|FIM| (𝜂𝑀)) . (14)

Figure 2 shows the normalized determinant of FIM varying
with leading angle when 𝑟1 = 2000m and 𝑉𝑀 = 200m/s.
From Figure 2, for a specified step length, there is an
optimal leading angle within (0∘, 90∘) which maximizes
the normalized determinant of FIM. Using the line search
method, the optimal leading angle with respect to the step
length can be obtained, as shown in Figure 3.

From Figure 3, the optimal leading angle approaches 90∘
when the step length approaches zero. For a bearings-only
seeker of amissile, the update time (i.e., step length) is usually
less than 0.01 s, so the optimal leading angle is near 90∘.
The optimal leading angle is also limited by seeker’s FOV
which is far less than 90∘. Thus, the optimal leading angle
should coincide with seeker’s FOV tomaximize the trajectory
observability. Furthermore, considering the estimation errors
and target maneuvering, there should be a margin between
the optimal leading angle and seeker’s FOV to ensure the
missile lock-on. The margin is determined according to
seeker performances and target maneuvering.

3.1.2. Guidance Law Design Using Terminal SMC. To drive
leading angle to its desired value, a guidance law with finite
time convergence is designed based on terminal SMC theory.
The switching surface is chosen as the tracking error of
leading angle

𝑠 = 𝜂𝑀, (15)

where 𝜂𝑀 = 𝜂𝑀 − 𝜂∗𝑀 and 𝜂∗𝑀 is the optimal leading angle.
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Figure 3: Optimal leading angle with respect to step length.

The reaching law is selected as

̇𝑠 = −𝑘 sgn (𝑠) |𝑠|𝛼 , 𝑘 > 0, 0 < 𝛼 < 1. (16)

Substituting (1) and (3) into (16) yields

𝑎𝑀 = 𝑉𝑀 ( ̇𝛽 + 𝑘 sgn (𝑠) |𝑠|𝛼) . (17)

Replacing the target-related states with the estimated states,
the actual guidance command in the observing phase is

𝑢observe = 𝑉𝑀 (𝑥1 + 𝑘 sgn (𝑠) |𝑠|𝛼) , (18)

where 𝑠 = 𝑥3 − 𝜃𝑀 − 𝜂∗𝑀.
To prove the finite time convergence of the proposed

guidance law, consider a Lyapunov function as

𝑉 = 𝑠22 . (19)

Differentiating (19), the result is

�̇� = 𝑠 ̇𝑠 = 𝑠 ( ̇𝛽 − ̇𝜃𝑀) , (20)

where ̇𝛽 is the accurate LOS angular rate.
Considering estimation errors of the states and substitut-

ing (3) into (20), the result is

�̇� = 𝑠 (𝑥1 + 𝑒𝑥1 − 𝑢observe𝑉𝑀 ) , (21)

where 𝑥1 and 𝑒𝑥1 denote the estimated LOS angular rate and
the estimation error of LOS angular rate, respectively.

Substituting (18) into (21), the result is

�̇� = 𝑠 (𝑒𝑥1 − 𝑘 sgn (𝑠) |𝑠|𝛼) . (22)
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(A) If 𝑒𝑥1 is zero, (22) can be expressed in the following form:

�̇� = −𝑘 sgn (𝑠) |𝑠|𝛼 𝑠. (23)

Substituting (19) into (23), the result is

�̇� = −2(𝛼+1)/2𝑘𝑉(𝛼+1)/2. (24)

From (16), we can get 0.5 < (𝛼 + 1)/2 < 1 and −2(𝛼+1)/2𝑘 < 0.
According to finite time convergence theory, the system can
converge to its equilibrium point in a finite time and the
convergence time is

𝑇c = 𝑉(1−𝛼)/22(𝛼−1)/2𝑘 . (25)

(B) If 𝑒𝑥1 is not zero, (22) can be expressed in the following
form:

�̇� = 𝑠 (( 𝑒𝑥1
sgn (𝑠) |𝑠|𝛼 − 𝑘) sgn (𝑠) |𝑠|𝛼) . (26)

If the parameters of guidance law are designed to satisfy𝑒𝑥1/sgn(𝑠)|𝑠|𝛼 < 𝑘, (26) has a similar structure to (24). Then
the system can converge to the neighborhood of the switching
surface which is

|𝑠| ≤ (𝑒𝑥1𝑘 )
1/𝛼 . (27)

To sum up, if the estimation error of LOS angular rate is
zero, the leading angle tracking error will converge to zero
in finite time; if the estimation error of LOS angular rate is
not zero and the parameters are well designed, the leading
angle tracking error can converge to the neighborhoodof zero
within finite time.

According to (18), computation of the guidance com-
mand in the observing phase only needs the estimated states𝑥1 and 𝑥3, which are LOS-angle-related states, and it is
independent of 𝑥2 and 𝑥4, which are range-related states.
Because of the linearity between LOS-angle-related states and
measurement of bearings-only seekers, estimation errors of
the LOS-angle-related states could converge rapidly while
the estimation errors of range-related states cannot. In the
observing phase, using only the LOS-angle-related states as
inputs of the guidance command makes the guidance law
insensitive to the initial guesses and improves the robustness
of the guidance law.

3.2. Optimal Guidance Law Design for the Attacking Phase.
In the attacking phase, the missile is guided to maneuver
to attack the target with desired performances. The optimal
guidance law in [4] is used to satisfy the impact angle
constraint and it is expressed as

𝑎𝑀 = 𝑉𝑀𝑡go (−𝑁1𝛽 + 𝑁2𝜃𝑀 + 𝑁3𝜃𝑀𝑓) , (28)

where 𝑡go is time to go, 𝜃𝑀𝑓 is the desired impact angle, and

𝑁1 = (𝑁 + 2) (𝑁 + 3)
𝑁2 = 2 (𝑁 + 2)
𝑁3 = (𝑁 + 1) (𝑁 + 2) ,

𝑁 > 0.
(29)

Simply replacing 𝑡go with 𝑟/ ̇𝑟, the guidance law is rewritten as

𝑎𝑀 = 𝑉𝑀 ̇𝑟𝑟 (−𝑁1𝛽 + 𝑁2𝜃𝑀 + 𝑁3𝜃𝑀𝑓) . (30)

Replacing the target-related states with the estimated states
denoted in (5), the actual guidance command in the attacking
phase is

𝑢attack = 𝑉𝑀𝑥2 (−𝑁1𝑥3 + 𝑁2𝜃𝑀 + 𝑁3𝜃𝑀𝑓) . (31)

Because FOV constraint is not considered in the above
optimal guidance law, a switching term is added to prevent
the leading angle from exceeding seeker’s FOV.The switching
term works when the leading angle approaches seeker’s FOV
and it is designed as

𝑎𝑀 = 𝑉𝑀 ( ̇𝛽 + sgn (𝜂𝑀) 𝑐1) , 𝑐1 > 0. (32)

Replacing the target-related states with the estimated states,
the actual guidance command for switching term is

𝑢switch = 𝑉𝑀 (𝑥1 + sgn (𝑥3 − 𝜃𝑀) 𝑐1) . (33)

To prove the effectiveness of the switching term, consider a
Lyapunov function as

𝑉 = 𝜂𝑀22 . (34)

Differentiating (34) yields

�̇� = 𝜂𝑀 ̇𝜂𝑀 = (𝛽 − 𝜃𝑀) ( ̇𝛽 − ̇𝜃𝑀) . (35)

Considering the estimation errors of the states and substitut-
ing (1), (3), and (33) into (35), the result is

�̇� = (𝑥3 + 𝑒𝑥3 − 𝜃𝑀) (𝑥1 + 𝑒𝑥1 − 𝑢switch𝑉𝑀 )
= (𝑥3 − 𝜃𝑀 + 𝑒𝑥3) (𝑒𝑥1 − sgn (𝑥3 − 𝜃𝑀) 𝑐1)
= (𝜂𝑀 + 𝑒𝑥3) (𝑒𝑥1 − sgn (𝜂𝑀) 𝑐1) ,

(36)

where 𝜂𝑀 is the estimated leading angle and 𝑒𝑥3 and 𝑒𝑥1
are the estimation errors of LOS angle and LOS angular
rate, respectively. Since the switching term only works when
the leading angle is close to seeker’s FOV, 𝑒𝑥3 is negligible
compared to 𝜂𝑀. Thus, (36) can be rewritten as

�̇� = 𝜂𝑀 (𝑒𝑥1 − sgn (𝜂𝑀) 𝑐1) . (37)
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According to (37), when 𝑐1 > |𝑒𝑥1|, we can get �̇� < 0, so the
value of the leading angle will decrease.Thus, if leading angle
gets very close to seeker’s FOV, the leading angle will decrease
and cannot exceed seeker’s FOV by activating the switching
term. Besides, because leading angle will gradually decrease
to zero under the impact angle constrained guidance law, the
switching termwill not work when the range is small and will
not affect the terminal performances.

To sum up, the employed guidance command in the
attacking phase is expressed as

𝑢 = {{{{{
𝑢attack, 𝜂𝑀 − 𝜓 ≤ 𝑐2
𝑢switch, 𝜂𝑀 − 𝜓 > 𝑐2.

(38)

For convenience, a unified form of the attacking guidance law
is given as

𝑢 = 𝜀 (Δ𝜂) 𝑢attack + 𝜀 (−Δ𝜂) 𝑢switch, (39)

where 𝜀(⋅) is the step function and Δ𝜂 is the indicator of
whether the switching guidance law should be used in the
attacking phase, and it is expressed as

Δ𝜂 = 𝜂𝑀 − 𝜓 − 𝑐2, 𝑐2 > 0. (40)

3.3. Summary. Now, the guidance laws for the observing
phase and the attacking phase are designed, respectively. The
handover condition of the two phases is related to missile-
target relative states, impact angle, dynamic constraint, and
FOV constraint. In this work, the missile-target relative
distance is used as the handover condition for simplicity.
Then, TPOGL is summarized as follows:

𝑎𝑀 = {{{{{
𝑉𝑀 ( ̇𝛽 + 𝑘 sgn (𝜂𝑀) 𝜂𝑀𝛼) , 𝑟 > 𝑟ℎ
𝑉𝑀 (𝜀 (Δ𝜂) ̇𝑟𝑟 (−𝑁1𝛽 + 𝑁2𝜃𝑀 + 𝑁3𝜃𝑀𝑓) + 𝜀 (−Δ𝜂) ( ̇𝛽 + sgn (𝜂𝑀) 𝑐1)) , 𝑟 ≤ 𝑟ℎ, (41)

where 𝑟ℎ is the threshold of the missile-target distance for
guidance laws handover and it is determined via trial and
error.

The actual guidance command using estimated informa-
tion is

𝑢 =
{{{{{{{{{

𝑉𝑀 (𝑥1 + 𝑘 sgn (𝑥3 − 𝜃𝑀 − 𝜂∗𝑀) 𝑥3 − 𝜃𝑀 − 𝜂∗𝑀𝛼) , 𝑥4 < 1𝑟ℎ
𝑉𝑀 (𝜀 (Δ𝜂) 𝑥2 (−𝑁1𝑥3 + 𝑁2𝜃𝑀 + 𝑁3𝜃𝑀𝑓) + 𝜀 (−Δ𝜂) (𝑥1 + sgn (𝑥3 − 𝜃𝑀) 𝑐1)) , 𝑥4 ≥ 1𝑟ℎ .

(42)

4. Simulation

In this section, the simulation results are provided to demon-
strate the effectiveness of TPOGL. To show the appealing per-
formances of TPOGL, it is tested under different impact angle
constraints and then comparedwith the optimal guidance law
(OGL) described in (39).

4.1. Engagement Scenarios. In all the scenarios, the engage-
ments start with the missile at (0, 1000m) and the target at
(3000m, 0). The missile’s initial path angle is 0∘ and it flies
at a constant speed of 200m/s with a maximum acceleration
of 70m/s2. The seeker’s FOV is 30∘, and the optimal leading
angle is set as 29∘ considering the disturbances in the
guidance.

For each simulation of both guidance laws, the states in
(6) are estimated using EKF and initialized as (43) without
knowledge of the target since TPOGL is not sensitive to initial
guesses.

x̂0|0 = [0, 𝑉𝑀𝑟max
, 𝛽 (0) , 1𝑟max

]T , (43)

where 𝑟max is seeker’s maximum detection range and 𝛽(0) is
the initial measurement of LOS angle. Guidance parameters
used in the guidance laws are given in Table 1.

4.2. Simulations under Different Impact Angle Constraints. In
this subsection, simulations are conducted to test the perfor-
mances of TPOGL under different impact angle constraints,
that is, −30∘, −60∘, and −90∘. The handover distances for
different impact angle constraints are given in Table 2.

The simulation results of the trajectories, states, and
guidance commands are shown in Figure 4. From Figure 4,
in the observing phase, the states and guidance commands
of different cases are basically the same. That is because the
guidance command of the observing phase is only related
to the leading angle and LOS angle, and it is independent
of desired impact angle. When the estimated missile-target
relative distance reached the predefined handover distance,
the missile turns to the attacking phase and then maneuvers
to attack the target with desired impact angle.The simulation
results show that TPOGL is able to strike the target with
desired impact angles under dynamics and FOV constraints.
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Figure 4: Simulation results comparisons under different impact angle constraints.

Table 1: Guidance parameters.

Parameter Value Parameter Value
𝑘 2 𝛼 0.6𝑐1 0.01 𝑐2 0.2∘𝑁 5 𝜎 1∘𝑟max 4000m

Monte Carlo samples are carried out to demonstrate the
statistical characteristics of TPOGL under different impact
angle constraints. Figure 5 shows the distributions of miss
distances and impact angle errors from 100 Monte Carlo
samples and each sample differs from the others with random
measurement noises.

From Figure 5, the median values of miss distances of
the three cases are 0.12m, 0.11m, and 0.15m, respectively.
The median values of impact angle errors of the three cases
are 0.41∘, 0.37∘, and 0.52∘, respectively. The distributions
of the miss distances are mostly within (0, 0.5m) and the

Table 2: Impact angles and handover distances.

Case Impact angle Handover distance
1 −30∘ 2000m
2 −60∘ 1200m
3 −90∘ 700m

distributions of impact angle errors are mostly within (0, 1∘).
The results of different impact angle cases show that TPOGL
can strike the target with desired impact angle accurately.

4.3. Performance Comparisons of TPOGL and OGL. In this
subsection, TPOGL is comparedwithOGL against stationary
targets and maneuvering targets, respectively. The desired
impact angle is set as −30∘ and the handover distance for
TPOGL is set as 2000m.

4.3.1. Stationary Targets Interception Case. The states and
actual guidance commands of different guidance laws are
demonstrated in Figure 6. The estimation errors of range 𝑟,
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Figure 7: Estimation errors comparisons against stationary targets.

relative range rate ̇𝑟/𝑟, and guidance command errors are
shown in Figure 7.

From Figure 6, compared with OGL, trajectory of
TPOGLneeds a largermaneuver due to observability require-
ment. Missile with TPOGL turns from observing phase to
attacking phase when the distance decreases to 2000m at
7.6 s as the dash line shows in the figure. In the observing
phase, the LOS angle obtained by TPOGL varies rapidly as
the leading angle reaches its bound and keeps close to it.
In the attacking phase, the leading angle gradually varies to
zero and the LOS angle is driven to its desired value. At the
end of the guidance, the LOS angle obtained by TPOGL is
very close to the desired impact angle, while that obtained
by OGL departures from −30∘ because of the large guidance
command error.

From Figure 7, the range error obtained by TPOGL
decreases rapidly to zero, while the range error obtained by
OGL does not converge and keeps high. The relative range
rate error obtained by TPOGL is small most of the time, but it
diverges at the end of the guidance because the accurate value
of the relative range rate approaches infinity. The relative
range rate error obtained by OGL cannot converge and
diverges to infinity much earlier than TPOGL. The guidance
command error shows the difference between the actual
guidance command which is computed using estimated
values of states and the ideal guidance command which is
computed using accurate value of states. And the guidance
command error obtained by TPOGL is small at the very
beginning of the guidance because of the rapid convergence
of the LOS-angle-related states. The actual guidance com-
mand obtained by TPOGL keeps close to the ideal guidance
command, guiding the missile to hit target with desired
performances.

Monte Carlo samples are carried out to demonstrate the
statistical characteristics of the guidance laws. Comparisons
aremade on a set of 100MonteCarlo samples and each sample
differs from the otherswith randommeasurement noises.The
boxplots of miss distances and impact angle errors against
stationary targets are depicted in Figure 8.

From Figure 8, the median value of miss distances
obtained by TPOGL is 0.12m while that obtained by OGL
is 0.21m, and TPOGL improves the accuracy by 45%. The
median value of impact angle errors obtained by TPOGL
is 0.34∘ while that obtained by OGL is 1.31∘, and TPOGL
improves the accuracy by 75%.The distributions of the errors
obtained by TPOGL are more concentrated compared to
those obtained by OGL, indicating that TPOGL has better
robustness.

4.3.2. Maneuvering Targets Interception Case. In this case,
the target has an initial velocity of 10m/s along 𝑥-axis and
its acceleration is a process noise belonging to a uniform
distribution within [−10, 10].

The simulation results of TPOGL and OGL against
maneuvering targets are shown in Figure 9. Estimation errors
and guidance command errors are given in Figure 10.

From Figure 9, TPOGL also can obtain the desired per-
formances for maneuvering targets interception.The value of
leading angle never exceeds 30∘, indicating that the target is
kept in seeker’s FOV. Leading angle converges to zero and
LOS angle converges to −30∘, which means the impact angle
constraint is fulfilled. But for OGL, leading angle and LOS
angle both have distinct errors with their desired values.

From Figure 10, the errors obtained by TPOGL are close
to those in the stationary case, which means that states can
be estimated accurately with random target maneuvering.
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Figure 8: Distributions of errors against stationary targets.
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Figure 11: Distributions of errors against maneuvering targets.

On the contrary, without considering observability, the errors
obtained by OGL in the maneuvering target interception
case are much larger than those in the stationary targets
interception case.

Similarly, simulations are carried out with a set of 100
Monte Carlo samples with the guidance laws. Each sample
differs from the others by measurement noises and target
acceleration.The boxplots of miss distances and impact angle
errors against maneuvering targets are shown in Figure 11.

From Figure 11, the median value of miss distances
obtained by TPOGL is 0.16m while that obtained by OGL
is 0.75m, and TPOGL improves the accuracy by 79%. The

median value of impact angle errors obtained by TPOGL
is 0.91∘ while that obtained by OGL is 3.81∘, and TPOGL
improves the accuracy by 76%. Besides, comparing the results
of this case with those of the stationary targets interception
case, the target maneuvering has less effect on TPOGL than
OGL.

5. Conclusion

In this paper, a two-phase optimal guidance law is pro-
posed to improve the estimation accuracy and terminal
performances for impact angle constraint engagement. In
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the observing phase, the missile maneuvers to optimize
observability by tracking the optimal leading angle using
terminal SMC guidance law. In the attacking phase, the
missile maneuvers to strike the target with the desired impact
angle using optimal guidance law with FOV constraint.
Simulation results show that TPOGL can provide better
performances includingmiss distance and impact angle accu-
racy than the conventional optimal guidance law can. The
proposedmethod has a simple structure and does not require
high computational load. Further, the optimal guidance law
used in the second phase can be replaced by other impact
angle constrained guidance laws as well, which expands the
adaptability of the two-phase guidance strategy.
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