
Research Article
Bifurcation Analysis with Aerodynamic-Structure Uncertainties
by the Nonintrusive PCE Method

Linpeng Wang, Yuting Dai, and Chao Yang

School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China

Correspondence should be addressed to Yuting Dai; yutingdai@buaa.edu.cn

Received 18 October 2016; Revised 14 December 2016; Accepted 19 December 2016; Published 16 February 2017

Academic Editor: Enrico Cestino

Copyright © 2017 Linpeng Wang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

An aeroelastic model for airfoil with a third-order stiffness in both pitch and plunge degree of freedom (DOF) and the modified
Leishman–Beddoes (LB) model were built and validated. The nonintrusive polynomial chaos expansion (PCE) based on tensor
product is applied to quantify the uncertainty of aerodynamic and structure parameters on the aerodynamic force and aeroelastic
behavior. The uncertain limit cycle oscillation (LCO) and bifurcation are simulated in the time domain with the stochastic
PCE method. Bifurcation diagrams with uncertainties were quantified. The Monte Carlo simulation (MCS) is also applied for
comparison. From the current work, it can be concluded that the nonintrusive polynomial chaos expansion can give an acceptable
accuracy and have a much higher calculation efficiency than MCS. For aerodynamic model, uncertainties of aerodynamic
parameters affect the aerodynamic force significantly at the stage from separation to stall at upstroke and at the stage from stall
to reattach at return. For aeroelastic model, both uncertainties of aerodynamic parameters and structure parameters impact
bifurcation position. Structure uncertainty of parameters is more sensitive for bifurcation. When the nonlinear stall flutter and
bifurcation are concerned, more attention should be paid to the separation process of aerodynamics and parameters about pitch
DOF in structure.

1. Introduction

Hopf bifurcations can occur in aeroelastic models that are
nonlinear just in the structural stiffness operator (e.g., panel
LCO), but, nonlinear aerodynamics is, in most cases, the
critical component of computational aeroelasticity that must
be enhanced to enable dependable predictions of aeroelastic
response and variability. Dynamic stall which is due to
nonlinear phenomenon for aerodynamics is one of the most
important reasons that leads the change in bifurcation. Cal-
culating nonlinear dynamics correctly is the key to the inves-
tigation of LCO and bifurcation. For nonlinear dynamics,
CFD method is a direct way to calculate which have a good
accuracy. However, when the problem is complex and many
conditions need to be calculated, usingCFDmethodmay cost
much time [1].There are othermethods to calculate nonlinear
aerodynamics such as Leishman–Beddoes (LB) [2]. This
method can improve the calculation efficiency greatly. It is a
semiempirical model and many of the model parameters are
selected subjectively; there may be some variations of these

parameters. These parameter uncertainties in the aerody-
namic model may lead to conservative or optimistic predic-
tion of stall flutter [3, 4].

Since uncertainty always exists in both aerodynamics
part and structure part when a theoretical method is applied
to the aeroelastic stability analysis, aeroelastic uncertainty
quantification (AUQ) is somewhat unavoidable in the the-
oretical analysis [5]. Dai and Yang Reviewed the methods
applied to aeroelastic uncertainty quantification [6], which is
focused on investigating the effect of parameter uncertainty
on the aeroelastic stability property [7, 8].Themethods can be
divided into robust one [9] and probabilistic one [10]. When
the uncertainty is a probabilistic variable, the stochastic aero-
elastic analysis should be conducted to obtain both the stabil-
ity boundary and its distribution [8, 11, 12]. The nonintrusive
polynomial chaos expansions are to determine the evolution
of uncertainty in a dynamic system, when a probabilistic
uncertainty is embedded in the aeroelastic system [13, 14].
Beran et al. introduced this method to the nonlinear aeroe-
lastic analysis, which has been proven to be a success [15].
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Some related work has been carried out, including uncer-
tainty quantification in aerodynamics and stochastic basis
construction, Badcock et al. [16–18]. In AUQ, the parameter
uncertainty exists both in the structural dynamics model and
the aerodynamics [19, 20]. Most of these works are focused
on the structural uncertainty in structure [21, 22]. Little work
is concerned with aerodynamic uncertainty and structure
uncertainty interactions in aeroelasticity [23, 24].

This current work is focused on the aerodynamic uncer-
tainty quantification of aeroelastic stability containing limit
cycle oscillation analysis and flutter analysis, subject to
stochastic LB aerodynamic parameters at low Mach number.
The modified unsteady aerodynamic model at low Mach
number will be established, and uncertainty of parameters for
aerodynamic model will be taken into consideration. Then
the stochastic polynomial chaos expansion method for stall
flutter will be investigated.

2. Uncertain LCO Analysis by the Nonintrusive
PCE Method

2.1. Deterministic Aerodynamic Model. The Leishman–
Beddoes (LB) dynamic stall model is a popular model that
has been used to investigate dynamic stall of aerodynamics.
The standard LB model is applicable above the Mach
number of 0.3. But, it is not suitable in the incompressible
flow. However, a huge effort has been undertaken for the
aeroelastic characterization of next-generation aircraft;
particularly, the low Mach number is important for high
altitude very-long endurance solar power HALE UAVs
[25, 26]. What is more, in most of stall flutter application
cases, such as wind tunnel state, the Mach number is lower
than 0.3. Hence, in this paper, a modified dynamic stall
model for low Mach numbers model was built based on the
work of Leishman and Beddoes and Sheng et al. [2, 27].

Under the conditions of lowMach number, an additional
time lag is required for the disturbed flow, during which
the disturbed flow can develop into vortex that is strong
enough to cause the dynamic stall. Taking this effect into
consideration, the additional lagged value 𝐶󸀠󸀠𝑁, which is the
substitute value of 𝐶󸀠𝑁, is introduced.
𝐶󸀠󸀠𝑁 = 𝐶󸀠𝑁 − 𝐷𝑏𝑛
𝐷𝑏𝑛 = 𝐷𝑏𝑛−1 exp(−Δ𝑆𝑇𝑏 ) + (𝐶󸀠𝑁𝑛 − 𝐶󸀠𝑁𝑛−1) exp(−Δ𝑆2𝑇𝑏 ) , (1)

where 𝐷𝑏𝑛 is an intermediate variable, 𝑇𝑏 is the time lag con-
stant, and 𝑆 is the distance traveled by airfoil in semichords.

2.1.1. Modification of Normal Force and Pitching Moment
Coefficients at Upstroke. Vortex forms and detaches near the
airfoil leading edge, and the flow of the separated shear layer
still attaches to the upper surface at lowMach number.Hence,
it results in additional overshoot in normal force at lowMach
numbers. The overshoot for normal force coefficient Δ𝐶V

𝑁 is
given as follows:

Δ𝐶V
𝑁 = 𝐵1 (𝑓󸀠󸀠 − 𝑓)𝑉𝑥, (2)

where 𝐵1 is a coefficient related to airfoils; 𝑓 is separation
location in terms of chord; 𝑓󸀠󸀠 is delayed separation location
of 𝑓 in the original LB model; 𝑉𝑥 represents the shape
function of normal force due to vortex, which is given by

𝑉𝑥 =
{{{{{{{
sin3/2 ( 𝜋𝜏2𝑇V) 0 < 𝜏 < 𝑇V
cos2 (𝜋 (𝜏 − 𝑇V)𝑇V𝑙 ) 𝜏 > 𝑇V, (3)

where 𝜏 is nondimensional time;𝑇V is time constant of vortex
traveling over chord; 𝑇V𝑙 is vortex passage time constant.

The additional pitching moment coefficient Δ𝐶V
𝑚 is also

the effect of vortex convection over the airfoil. It is as follows:

Δ𝐶V
𝑚 = 𝐵2 (1 − cos

𝜋𝜏V𝑇V𝑙 )Δ𝐶V
𝑁, (4)

where 𝐵2 is the coefficient dependent on airfoil. 𝜏V is nondi-
mensional time during vortex passage.

2.1.2. Modification of Normal Force and Pitching Moment
Coefficients during Return. During return, there is also an
overshoot for normal force coefficient. A value of 𝛼min 0 was
given. It is assumed that it is the start of the convection
process of overshoot. A value of 𝛼min was given to define the
end of the convection process of overshoot.Their relationship
is as follows:

𝛼min = 𝛼min 0 + 𝑇𝑟𝑞, (5)

where 𝑇𝑟 is delay constant for reattachment process and 𝑞 is
reduced pitch rate.

The overshoot for normal force coefficient at return
process is given as follows:

Δ𝐶V
𝑛𝑟 = 𝐵1 (𝑓󸀠󸀠 − 𝑓)𝑉𝑥𝑟, (6)

where 𝑉𝑥𝑟 represents the shape function of normal force due
to vortex at return process, which is given by

𝑉𝑥𝑟 =
{{{{{{{
sin3/2 (𝜋𝜏𝑟2𝑇𝑟) 0 < 𝜏𝑟 < 𝑇𝑟
cos2 (𝜋 (𝜏𝑟 − 𝑇𝑟)2𝑇𝑟 ) 𝜏𝑟 > 𝑇𝑟, (7)

where 𝜏𝑟 is a nondimensional time variable at return process.

2.2. Deterministic LCO Analysis in the Time Domain. The
aeroelastic system considered here is a wing section with
pitch and plunge motions, which is shown in Figure 1.
Considering the unsteady aerodynamic force, the motion
equation of the wing section is written as

[𝑄ℎ𝑄𝜃] = [𝑚 𝑆𝜃𝑆𝜃 𝐼𝜃][
ℎ̈
̈𝜃 ] + [𝐶ℎ 0

0 𝐶𝜃][
ℎ̇
̇𝜃]

+ [𝐾ℎ 0
0 𝐾𝜃][

ℎ
𝜃] ,

(8)
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Figure 1: Sketch of airfoil aeroelastic system.

where 𝜃 is the airfoil pitch angle. ℎ is the vertical displace-
ment. 𝑚 is the mass per unit length. 𝐾ℎ and 𝐾𝜃 are spring
stiffness in bending and torsion. 𝐶ℎ and 𝐶𝜃 are damping in
bending and torsion. 𝑆𝜃 is static mass moment. 𝐼𝜃 is the polar
moment of inertia about 1/4 chord. 𝑄ℎ and 𝑄𝜃 are external
aerodynamic force and moment, respectively, which will be
calculated by the above modified LB model at low Mach
number. There expressions can be given as follows:

[𝑄ℎ𝑄𝜃] = [[
[

−12𝜌𝑉2𝐶𝐿𝑐𝑙12𝜌𝑉2𝐶𝑀𝑐2𝑙 + 12𝜌𝑉2𝐶𝐿𝑐𝑙𝑥ℎ
]]
]
, (9)

where 𝐶𝐿 and 𝐶𝑀 are lift coefficient and moment coefficient,
respectively, 𝑐 is the chord length, 𝑙 is the span length, 𝑥ℎ is the
distance between 1/4 chord and elastic axis, 𝜌 is air density,
and 𝑉 is the free stream velocity.

The angle of attack 𝛼 and pitch ratio 𝑞 which are used in
LB model can be given as follows:

[𝛼𝑞] = [[[
[
𝜃 + ℎ̇𝑉̇𝜃𝑐𝑉

]]]
]
. (10)

For a nonlinear aeroelastic system, simulation in the
time domain is a common and good approach to investigate
its time response, such as the limit cycle oscillation phe-
nomenon. In the current study, a fixed step 4th-order Runge–
Kutta algorithm is applied, both for the deterministic solution
and in the uncertain cases.

2.3. Nonintrusive Polynomial Chaos Method for Nonlinear
Aeroelastic System. The LB model has many aerodynamic
parameters; these aerodynamic parameters are different at
different Mach numbers and airfoils. All the parameters are
gotten from experiments, which are the ensemble average of
some 50 pitch cycles [28]. Hence, stochastic uncertainties
widely exist in parameters, which are gotten from experi-
ments. In modified LB model, the number of parameters is
more than original model. The uncertainty of these parame-
ters brings uncertainty to the unsteady aerodynamics which

will add uncertainty to airfoil aeroelastic system. Specifying
uncertainty of aerodynamics in airfoil aeroelastic system, 16
parameters in modified low Mach numbers LB model were
investigated. They were the 14 parameters in original LB
model: 𝐶𝑁𝛼 , 𝛼1, 𝑆1, 𝑆2, 𝑘0, 𝑘1, 𝑘2, 𝐶𝑀0 , 𝜂, 𝐶𝑁1 , 𝑇𝑝, 𝑇𝑓, 𝑇V𝑙, and𝑇V and the two parameters in modified low Mach number
LB model: 𝑇𝑏 and 𝑇𝑟. All the uncertainties are noted as 𝜉 =[𝜉1, 𝜉2, . . . , 𝜉𝑛]; here 𝑛 = 16. Then responses in the time
history are written as x(𝑡, 𝜉), which will be also a stochastic
vector.

PCE estimates its coefficients using the approaches ran-
dom sampling or tensor-product quadrature [29]. To build
the uncertainty model, a tensor product of one-dimensional
rules was used. Since different distribution of parameter error
may affect the result of calculation, here it is assumed that the
distribution of parameter error was normal or uniformwhich
was calculated separately.

To construct the stochastic orthogonal basis of outputs,
the expansion of the aeroelastic response can be expressed:

x (𝑡, 𝜉) = 𝑃∑
𝑗=1

x̂𝑗 (𝑡) 𝜓𝑗 (𝜉) , (11)

where 𝜓𝑗(𝜉) are multidimensional orthogonal polynomial
basis which are stochastic part. The expansion is truncated
to 𝑃 term which is determined by the number of variables 𝑛
and the order 𝑑 of polynomial 𝜓𝑗(𝜉).

𝑃 = 1 + 𝑑∑
𝑠=1

1𝑠!
𝑠−1∏
𝑟=0

(𝑛 + 𝑟) = (𝑛 + 𝑑)!𝑛!𝑑! . (12)

This is referred to as total-order expansion. In order to
compute the stochastic output equation, it is required to solve
a problem with 𝑃 unknowns and 𝑃 equations. Therefore, it is
required to run the model for 𝑃 times in order to evaluate the
deterministic functions which are used to evaluate the mean𝜇 and variance 𝜎2. The statistics of the random solution are
given by

𝜇 = 𝐸 [𝑥 (𝑡, 𝜉)] = ∫𝑏
𝑎
𝑥 (𝑡, 𝜉) 𝑤 (𝜉) 𝑑𝜉 = 𝑥0 (𝑡)

𝜎2 = Var [𝑥 (𝑡, 𝜉)] = ∫𝑏
𝑎
(𝑥 (𝑡, 𝜉) − 𝑥0 (𝑡))2 𝑤 (𝜉) 𝑑𝜉

= 𝑃−1∑
𝑖=1

(𝑥2𝑖 ⟨𝜓2𝑖 ⟩) .
(13)

With ⟨ ⟩ denoting the inner product
⟨𝜓𝑖𝜓𝑗⟩ ≡ ∫𝑤 (𝜉) 𝜓𝑖 (𝜉) 𝜓𝑗 (𝜉) 𝑑𝜉. (14)

It is possible to evaluate the deterministic functions x̂𝑗(𝑡)
(𝑗 = 0, 1, . . . , 𝑃 − 1) by using the orthogonality of 𝜓𝑗(𝜉).

x̂𝑗 (𝑡) = ⟨x (𝑡, 𝜉) 𝜓𝑗 (𝜉)⟩
⟨𝜓𝑗2 (𝜉)⟩ = ∫𝑏

𝑎
x (𝑡, 𝜉) 𝜓𝑗 (𝜉) 𝑝 (𝜉) 𝑑𝜉

⟨𝜓𝑗2 (𝜉)⟩ , (15)
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where each inner product involves a multidimensional inte-
gral over the support range of the weighting function. Full
tensor product is to employ a tensor product of one-dimen-
sional quadrature rules and was used to estimate coefficient.
In the tensor-product case, Gaussian abscissas were chosen,
the zeros of polynomials that are orthogonal with respect
to a density function weighting. For uniform and normal
distribution, Gauss–Legendre and Gauss–Hermite were used
separately.

One-dimensional quadrature rules are as follows:

∫𝑓 (𝜉𝑘) 𝜌 (𝜉𝑘) 𝑑𝜉𝑘 ≈ 𝑄𝑖𝑘1 (𝑓) ≜
𝑛
𝑖𝑘

1∑
𝑗𝑘=1

𝑓(𝜉𝑖𝑘
𝑘,𝑗𝑘

)𝑤𝑖𝑘
𝑘,𝑗𝑘

, (16)

where 𝑛𝑖𝑘1 is the number of quadrature point 𝜉𝑖𝑘
𝑘,𝑗𝑘

for one-
dimensional quadrature rules. 𝑤𝑖𝑘

𝑘,𝑗𝑘
is the weight of quadra-

ture point. Then, for multidimensional quadrature rules, the
equation changes as follows:

𝐼𝑑 (𝑓) ≜ ∫𝑓 (𝜉) 𝜌 (𝜉) 𝑑𝜉 ≈ (𝑄𝑖11 ⊗ ⋅ ⋅ ⋅ ⊗ 𝑄𝑖𝑑1 ) (𝑓)

≜ 𝑛
𝑖1

1∑
𝑗1=1

⋅ ⋅ ⋅ 𝑛
𝑖𝑑

1∑
𝑗𝑑=1

𝑓 (𝜉𝑖11,𝑗1 , . . . , 𝜉𝑗𝑑1,𝑗𝑑) (𝑤𝑖11,𝑗1 × ⋅ ⋅ ⋅ × 𝑤𝑖𝑑
𝑑,𝑗𝑑

) .
(17)

For calculating uniform distribution, the Legendre poly-
nomials are applied. In this polynomial series, the range of
random variables is located in [−1, 1].The probability density
function of each variable is 1/2 in the range of [−1, 1].

The Legendre polynomial bases are written as

Le0 = 1,
Le1 = 𝜉,

Le𝑚+1 = 2𝑚 + 1𝑚 + 1 𝜉Le𝑚 − 𝑚𝑚 + 1Le𝑚−1.
(18)

x̂𝑗(𝑡) are deterministic functions to be evaluated and
Le𝑗(𝜉) are stochastic part tabulated for uniform distribution.
Then, (15) can be written as

x̂𝑗 (𝑡) = ⟨x (𝑡, 𝜉) Le𝑗 (𝜉)⟩
⟨Le𝑗2⟩

= ∫ ⋅ ⋅ ⋅ ∫ 𝑓 (x (𝜉1, . . . , 𝜉𝑑)) Le𝑗 (𝜉1, . . . , 𝜉𝑑) 𝑑𝜉1 ⋅ ⋅ ⋅ 𝑑𝜉𝑑
⟨Le𝑗2⟩ .

(19)

Then, (17) can be used to calculate the coefficient. The
information of quadrature point and its weight for Gauss–
Legendre used in this paper is shown in Table 1. 𝐾 is the
number of quadrature points, which can be gotten by using𝐾 = 𝑑 + 1.

Then, the aeroelastic response of the stochastic process
can be calculated directly according to (11). The numerical
sampling of random variables is still needed in the above
nonintrusive polynomial chaos method. It is advantageous
compared with the standard Monte Carlo simulation.

Table 1: Legendre polynomials quadrature point.

𝐾 Quadrature points 𝑤𝑖
1 0 1
2 ±0.5773502692 0.5

3 ±0.7745966692 0.2777777778
0 0.4444444444

Considering the stochastic variation for the aerodynamic
parameters, they are represented by the Wiener expansion

𝐶𝑁𝛼 = 𝐶𝑁𝛼0 + 𝜎1𝜉1
𝛼1 = 𝛼10 + 𝜎2𝜉2

...
𝑇𝑟 = 𝑇𝑟0 + 𝜎𝑛𝜉𝑛,

(20)

where 𝜉1, 𝜉2, . . . , 𝜉𝑛 are the random variables satisfying a uni-
form distribution and 𝜎1, 𝜎2, . . . , 𝜎𝑛 are their corresponding
uncertainty bounds, respectively. Consequently, the response
x in (11) can be rewritten as

x = 𝑃∑
𝑖=0

𝑥𝑖𝜓 (𝜉1, 𝜉2, . . . , 𝜉𝑛) . (21)

In (21), 𝑥0 represents the mean value of the response
and 𝑥𝑖 is the corresponding fluctuation of the random
components. Using the first-order representation of Legendre
polynomials, the response can be written as

x = 𝑥0 + 𝜉1𝑥1 + 𝜉2𝑥2 + ⋅ ⋅ ⋅ + 𝜉16𝑥16. (22)

In the current work, normal aerodynamics coefficient𝐶𝑁
and moment coefficient 𝐶𝑀 for modified low Mach number
LB model and response of aeroelastic system are pitch angle
of airfoil 𝜃 and its first-order derivative ̇𝜃.They can be written
as follows:

𝐶𝑁 = 𝑥0,1 + 𝜉1𝑥1,1 + 𝜉2𝑥2,1 + ⋅ ⋅ ⋅ + 𝜉16𝑥16,1
𝐶𝑀 = 𝑥0,2 + 𝜉1𝑥1,2 + 𝜉2𝑥2,2 + ⋅ ⋅ ⋅ + 𝜉16𝑥16,2
𝜃 = 𝑥0,3 + 𝜉1𝑥1,3 + 𝜉2𝑥2,3 + ⋅ ⋅ ⋅ + 𝜉16𝑥16,3
̇𝜃 = 𝑥0,4 + 𝜉1𝑥1,4 + 𝜉2𝑥2,4 + ⋅ ⋅ ⋅ + 𝜉16𝑥16,4.

(23)

For calculating normal distribution, the Hermit polyno-
mials are applied. In this polynomial series, the range of
random variables is located in [−∞, +∞]. The probability
density function of each variable is (1/√2𝜋)𝑒−𝑥2/2 in the range
of [−∞, +∞].

The Legendre polynomial basis is written as

He0 = 1,
He1 = 𝜉𝑖,

𝐻𝑒2 (𝜉𝑖1 , 𝜉𝑖2) = {{{
𝜉𝑖12 − 1 𝑖1 = 𝑖2
𝜉𝑖1𝜉𝑖2 𝑖1 ̸= 𝑖2.

(24)
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Table 2: Hermit polynomials quadrature point.

𝐾 Quadrature points 𝑤𝑖
1 0 1
2 ±0.7071067812 0.5

3 ±1.2247448714 0.1666666666667
0 0.6666666666667

Then (15) becomes as follows:

x̂𝑗 (𝑡) = ⟨x (𝑡, 𝜉)He𝑗 (𝜉)⟩
⟨He𝑗2⟩

= ∫ ⋅ ⋅ ⋅ ∫ 𝑓 (x (𝜉1, . . . , 𝜉𝑑))He𝑗 (𝜉1, . . . , 𝜉𝑑) 𝑑𝜉1 ⋅ ⋅ ⋅ 𝑑𝜉𝑑
⟨He𝑗2⟩ .

(25)

The information of quadrature point and its weight for
Gauss–Hermite which is used for normal distribution is
shown in Table 2.

3. Deterministic Model Validation

To make sure the model has a good accuracy, which can be
used to investigate the uncertainty of airfoil aeroelastic sys-
tem, validation is conducted for modified low Mach number
model and airfoil aeroelastic system, respectively, in this
section.

3.1. LB Model Validation at Low Mach Numbers. To validate
the modified LB model at low Mach number, the aero-
dynamic coefficients of NACA0012 were investigated. The
results of this paper are compared with results of experiment,
Sheng, and original model [27]. The freestream velocity is
0.1 Mach. The results at the condition of deep dynamic stall
(angle of attack is 𝛼 = 15∘ + 10∘ sin𝜔𝑡) are compared. The
compared results are shown in Figures 2 and 3.

From Figures 2 and 3, it can be seen that the modified
low Mach number LB model in the current work can match
results of experimentmostly.Themodified lowMach number
LBmodel can calculate overshoot at upstroke and return cor-
rectly. As a deterministic aerodynamic calculationmodel, the
modified low Mach number LB model has a good accuracy,
but there still are some test data which are not covered by the
deterministic aerodynamic model. To improve the accuracy
of calculation, the uncertainty of aerodynamics needs to be
taken into consideration.

3.2. Validation for LCOAnalysis. Reference [30] presents a set
of experiments conducted on NACA0012 airfoil undergoing
the stall oscillations at low Mach number, and they are
chosen as the numerical example to verify and to investigate
the deterministic airfoil aeroelastic system model mentioned
previously. The important experiment parameters are shown
in Table 3.

To validate the deterministic model of aeroelastic system,
the pitch bifurcation diagram and the LCO trajectories
were calculated, since the aeroelastic system studied here is
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Table 3: Important experimental parameters.

Parameter value
𝐶 0.3m𝑚 16.69 kg/m𝐼𝜃 0.31 kgm2𝑘𝜃 13.1 Nm/rad𝑙 0.9m𝜌 1.225 kg/m3𝑘ℎ 30.5N/mm
Pitch axis 0.115m

a nonlinear incarnation of the standard symmetric airfoil
with pitch and plunge. The original deterministic aeroelastic
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Figure 4: Pitch bifurcation diagram.

model is an expression of linear stiffness. A third-order stiff-
ness was added in both pitch and plunge degree of freedom
(DOF). For present modified model, the restoring moment
associated with the torsional spring was expressed as

𝐾𝜃 (𝜃 + 𝑘𝜃3𝜃3) , (26)

where 𝑘𝜃3 is the dimensionless parameter governing the
third-order term. In DOF of plunge, similar expression of
force can be given as

𝐾ℎ (ℎ + 𝑘ℎ3ℎ3) . (27)

The result of present work was compared with the result
of experiment and the result of Song [31], which are shown in
Figures 4 and 5.

From Figures 4 and 5, it can be seen that the determin-
istic results for modified model in the present work are
well coincided with the experiment results which fits better
than original model in amplitude. The results of phase plane
between 𝜃 and ̇𝜃 for both modifiedmodel and original model
fit much better to the experiment than the result of Song.
However, there are still some test data which are not covered
by the result data of deterministic model. Hence, for improv-
ing the accuracy, the uncertainty in airfoil aeroelastic system
should be investigated.This work can be carried out by using
the same deterministic LCO model in the current work. It is
therefore called the nonintrusive method.

4. Numerical Examples for
Uncertainty Quantification

In current work the uncertainty of unsteady aerodynamics
was investigated first. The impact of uniform and normal
distribution for parameters on the calculation result were
investigated separately and compared together. Then both
unsteady aerodynamic and structure uncertainty were taken
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Figure 5: Phase plane between 𝜃 and ̇𝜃.

into consideration to investigate the dynamic stall flutter at
low Mach number.

4.1. Uncertainty Quantification of Unsteady Aerodynamic
Force. In this section, for uniformdistribution of parameters,
the first-order Legendre polynomial basis was used to build
nonintrusive PCE model for unsteady aerodynamics. For
normal distribution of parameters, the first-order Hermit
polynomial basis was used. For normal distribution, it is
assumed that the distribution is 𝑁(0, (0.0333)2) and 𝑁(0,(0.0666)2), the mean 𝜇 = 0, and standard deviation is 𝜎 =0.0333 and 𝜎 = 0.0666. The corresponding uncertainty
bounds of aerodynamic parameters for uniform distribution
are set as 𝜎1 = 0.1 and 𝜎1 = 0.2, and they are calculated,
respectively. The plots for two kinds of distribution are
compared and shown in Figure 6.

The result for Monte Carlo method was used as a refer-
ence method to compare with the result of nonintrusive PCE
method for two kinds of distribution in the investigation of
uncertainty for unsteady aerodynamics. Figures 7 and 8 show
the mean of normal force coefficient and moment coefficient
for two kinds of distribution. For uniform distribution,
corresponding uncertainty bounds for Monte Carlo and
nonintrusive PCE method are 0.2. For normal distribution,
the standard deviation is 0.0666 for Monte Carlo and nonin-
trusive PCE method. Figure 9 shows the variance of normal
force coefficient𝐷(𝜉) at upstroke and at return for two kinds
of distribution. FromFigures 7 and 8, it can be seen that when
the uncertainty was added in the model, the mean results of
Monte Carlo method with 30000 times simulation and non-
intrusive PCE simulation will be changed. The results under
two kinds of distribution are different. Under two kinds of
distribution, the results of nonintrusive PCE method match
the results of Monte Carlo method well, which can illustrate
that nonintrusive PCE method in current work is correct.
From Figures 7 and 8, it also can be seen that two kinds of



International Journal of Aerospace Engineering 7

99.7%

68.3%

95.5%

Uniform

0.0

0.1

0.2

0.3

0.4

0.5

0.6

PD
F

𝜇 + 4𝜎𝜇 + 3𝜎𝜇 + 2𝜎𝜇 + 1𝜎𝜇 + 0𝜇 − 1𝜎𝜇 − 2𝜎𝜇 − 3𝜎𝜇 − 4𝜎

Normal
N (0, (0.0333)2)
𝜇 = 0; 𝜎 = 0.0333

𝜎1 = 0.1

(a) 𝜇 = 0, 𝜎 = 0.0333 (normal), and 𝜎1 = 0.1 (uniform)

99.7%

68.3%

95.5%
0.0

0.1

0.2

0.3

0.4

0.5

0.6

PD
F

𝜇 + 4𝜎𝜇 + 3𝜎𝜇 + 2𝜎𝜇 + 1𝜎𝜇 + 0𝜇 − 1𝜎𝜇 − 2𝜎𝜇 − 3𝜎𝜇 − 4𝜎

Uniform

Normal
N (0, (0.0666)2)
𝜇 = 0; 𝜎 = 0.0666

𝜎1 = 0.2

(b) 𝜇 = 0, 𝜎 = 0.0666 (normal), and 𝜎1 = 0.2 (uniform)

Figure 6: Plot for different parameter distribution.

12 14 16
0.0

0.4

0.6

0.8

22 24 26
1.8

2.2

2.4

2.6

Upstroke

Return

C
N

C
N

C
N

𝛼 (∘)

𝛼 (∘)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

5 10 15 20 25 30 350
𝛼 (∘)

Deterministic
Uniform (PCE mean) 𝜎1 = 0.2
Uniform (MCS mean) 𝜎1 = 0.2

Normal (MCS mean) 𝜎1 = 0.0666

Normal (PCE mean)
𝜎1 = 0.0666

0.2

2.0
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ing uncertainty bounds for two kinds of distribution.

distribution have almost unanimous uncertainty bond which
can be seen from Figure 6(b); since normal distribution has
a smaller deviation (𝜎 = 0.0666) than uniform distribution,
the mean of normal distribution is closer to deterministic
than uniform distribution. It can be seen that the uncertainty
impacts the stage of after separation and the stage of reattach
obviously. The mean of Monte Carlo method and nonintru-
sive PCEmethod fit each other well even at overshoot during
upstroke and return for two kinds of distribution. However,
it can be seen from Figure 9 that the variance of normal force

coefficient for two kinds of distribution especially at over-
shoot during upstroke is different.The number of variables in
the calculation of uncertainty for aerodynamics is 16 which
leads the method of PCE to not have a higher calculating
efficiency than method of MCS.

Figure 10 shows the normal force coefficient bound by
30000 times ofMCS and nonintrusive PCE times for uniform
distribution with corresponding uncertainty bound 0.1 and
normal distributionwith standard deviation 0.0333. From the
figure, it can be observed that the uncertainty for parameters
can affect the part of stall mostly.The normal force coefficient
bound near stall during upstroke and reattach during return
will expand obviously. However, the bound at stage of attach
changes slightly.This is mainly becausemost parameters with
uncertainty are related to the stage of stall.

The bound of the normal force coefficient due to normal
distribution is smaller than uniform distribution at the stage
of stall and reattach. The test data can be covered mostly by
the bound when the distribution is uniform distribution.

By using the nonintrusive PCEmethod, surrogate expres-
sion of normal force coefficient 𝐶𝑁 and moment coefficient𝐶𝑀 for two kinds of distribution in (23) was gotten. Parame-
ters were nondimensionalized by 𝐶𝑁 and 𝐶𝑀 separately. Fig-
ures 11 and 12 show uncertainty parameters in normal force
coefficient 𝐶𝑁 for two kinds of distribution and Figure 13
shows uncertainty parameters in moment coefficient 𝐶𝑀 for
uniform distribution. In the three figures mentioned above,
parameters with obvious sensitivity were labeled with wide
lines. It can be observed from Figures 11 and 12 that the sensi-
tivity of parameters is different during different stage; for two
kinds of distribution they have similar tendency for different
stage but the amplitude is different which can be translated by
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(19) and (25). 𝐶𝑁𝛼 and 𝛼1 are sensitive for both upstroke and
return, especially at the return stage. It also can be seen that
parameters with larger sensitivity values will affect stage of
stall at upstroke. 𝑇𝑝, 𝑇V𝑙, and 𝑇Vare more sensitive parameters
for 𝐶𝑁 during upstroke than others, while, during return,𝑇𝑓 and 𝑇𝑟 become more sensitive than other parameters.
From Figure 13, it can be observed that parameters which are
sensitive for𝐶𝑁 are also sensitive for𝐶𝑀. However, the num-
ber of parameters which are sensitive for 𝐶𝑀 is more than
those for𝐶𝑁, such as 𝑘0, 𝑘1, and 𝑘2.This is consistent with LB
model. Since stall flutter is largely affected by dynamic stall
and these parameters are related to dynamic stall, it is very

important to get the relationship between these parameters
and the force and moment.

From the parameters shown above, it can be seen that the
parameters which are sensitive to𝐶𝑁 also can effect𝐶𝑀 obvi-
ously. For decreasing the calculating load, four parameters
which have obvious effect on𝐶𝑁were filtered to use for inves-
tigating the stochastic uncertainty of LCO. The four param-
eters are 𝐶𝑁𝛼 and 𝛼1, 𝑇𝑓, and 𝑇𝑟 which will contribute most
to normal for coefficient𝐶𝑁 andmoment coefficient𝐶𝑀. For
two kinds of distribution, the boundary result of normal dis-
tribution ismore conservative than uniformdistribution.The
tendency for sensitive parameters in two kinds of distribution
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is similar. Based on the reasons above, when investigating
uncertainty of LCO and bifurcation, uniform distribution of
parameters was used in calculation.

4.2. Uncertainty Quantification of LCO and Bifurcation. In
order to investigate the effect of uncertainty for bifurcation
due to aerodynamics, the LCO needs to be calculated first.
To have an exact judgment for LCO, enough calculation
cycles are needed. In the current work, when calculating the
response of the pitch angle, the time step is 0.001 and the step
number is 60000. Since uncertainty variables in calculating
LCO are just 4, the calculation efficiency of method of PCE is
higher than MCS method. For PCE method in current work,
it just uses 16 times of simulation to calculate bifurcation
diagram which cost 7053 s; however, for MCS method, an
acceptable result needs 5000 times of simulation which cost
2204062 s which is not acceptable. Since stall flutter is a typi-
cal nonlinear aeroelastic phenomenon, not only aerodynamic
parameters but also structure parameters have effect on it.
Only taking uncertainty of aerodynamic parameters into
consideration is insufficient. So the model with four aero-
dynamic parameters mentioned above was marked as model
“Aerodynamic.” Another model with four structure uncer-
tainty parameters wasmarked asmodel “Structure.” Inmodel
“Structure,” four uncertainty parameters are torsional spring
stiffness 𝐾𝜃 and damping 𝐶𝜃 and spring stiffness 𝐾ℎ and
damping 𝐶ℎ.

Figures 14, 15, and 16 show the response for the ampli-
tude of the pitch angle at three different velocities which
were calculated by the deterministic aeroelastic model. In
Figure 14(a), the response of pitch angle converges with time.
Figure 15(a) shows a standard LCOwhich occurs at the speed
of 12.5m/s when time passes 35 s. When the flow velocity
continues to increase, the amplitude of LCO will reach a new
value. Here it can be seen from Figure 16(a) that the LCO

amplitude at 𝑉 = 16m/s is larger than the one at 𝑉 =12.5m/s.
Using the judgment rule defined above, bifurcation dia-

gram with stochastic uncertainty was gotten. Figure 17(a)
shows the mean value for stochastic uncertainty bifurcation
diagram of pitch angle amplitude for 𝜎1 = 0.1 and 𝜎1 = 0.2
in model “Aerodynamic” which are compared with the deter-
ministic value and Figure 17(b) shows sensitivity of param-
eters for 𝜎1 = 0.2 and probability density function (PDF)
of bifurcation. In order to explain the problem clearly, the
parameters were nondimensionalized by divided peak 𝜃 in
the bifurcation diagram. It can be seen from the figure that
stochastic uncertainty of aerodynamics will change the mean
value of bifurcation velocity. The mean bifurcation velocity
for 𝜎1 = 0.2 is 𝑉 = 10.8m/s which is smaller than the mean
value of 11.5m/s with the corresponding uncertainty bound𝜎 = 0.1. The stochastic uncertainty of aerodynamics mainly
affects the bifurcation point. In the four parameters chosen
form aerodynamic model, only three of them are sensitive
parameters for bifurcation. For parameters, themost sensitive
stage is PDF from 0 to 1. The three sensitive parameters for
bifurcation in model “Aerodynamic” are chosen as parts of
parameters to build final model which contains uncertainty
of both aerodynamic and structure.

Figure 18(a) shows the mean value for stochastic uncer-
tainty bifurcation diagram of pitch angle amplitude for 𝜎1 =0.1 and 𝜎1 = 0.2 in model “Structure” which are compared
with the deterministic value and Figure 18(b) shows sensitiv-
ities of parameters for 𝜎1 = 0.2 and PDF of bifurcation. The
parameters in Figure 18(b) were also nondimensionalized.
From Figure 18(a), uncertainties of structure parameters also
can change the bifurcation position. The mean bifurcation
velocity for 𝜎1 = 0.2 is𝑉 = 10.8m/s which is smaller than the
mean value of 11.3m/s with the corresponding uncertainty
bound 𝜎 = 0.1. In Figure 18(b), it can be seen that, in the four
uncertainties of parameters, two parameters about pitch are
sensitive for bifurcation and pitch amplitude. Then these two
parameters 𝐾𝜃 and 𝐶𝜃 were chosen as uncertainties parame-
ters of structure to take part in buildingmodel “Aerodynamic
+ Structure” which contains both aerodynamic uncertainty
and structure uncertainty.

Using the three uncertainties parameters chosen from
model “Aerodynamic” and two parameters chosen form
model “Structure”, a model contains both aerodynamic
uncertainty and structure uncertainty was built which was
marked as “Aerodynamic + Structure” to investigate compre-
hensive impact for both aerodynamic and structure. Figure 19
shows the bifurcation diagram of pitch angle amplitude in
“Aerodynamic + Structure”; it can be seen that due to the
collective effect of aerodynamic uncertainty and structure
uncertainty, the bifurcation velocity is smaller than model
with single aerodynamic uncertainty or structure uncertainty
whether the uncertainty bound is 0.1 or 0.2.

Statistics information of bifurcation velocity for three
models was shown in Table 4. From the table it can be seen
that for bifurcation position both aerodynamic uncertainty
and structure uncertainty are very important. In “Structure”
model, PDF from 0 to 1, the velocity covers a lager range
than “Aerodynamic” model. Because of the collective effect
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Figure 14: Response of pitch angle at 𝑉 = 11m/s.

for aerodynamic uncertainty and structure uncertainty, bifur-
cation occurs in advance. For models “Aerodynamic” and
“Structure,” it can be seen that bifurcation bound variation
has a smaller range than the uncertainty bound: when 𝜎1 =0.1, the uncertainty bound of parameters is 0.2, and the
bound variation is 0.05 in “Aerodynamic” model and 0.083 in
“Structure” model; when 𝜎1 = 0.2, the uncertainty bound of
parameters is 0.4, and the bound variation is 0.108 in “Aero-
dynamic” model and 0.158 in “Structure” model. However in

“Aerodynamic + Structure” model, when 𝜎1 = 0.1, the bound
variation is 0.108; when 𝜎1 = 0.2, the bound variation is 0.241.

Figure 20 is the sensitivities of parameters in “Aerody-
namic + Structure”; it can be seen that structure uncertainty
parameter𝐾𝜃 is the most sensitive parameter for bifurcation;
then aerodynamic uncertainty parameter 𝑇𝑓 which is delay
constant for the flow separation point due to unsteady effect
is also a big sensitive parameter second only to𝐾𝜃. The delay
constant of the separation point in unsteady aerodynamics
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Figure 16: Response of pitch angle at 𝑉 = 16m/s.

makes a great effect on the bifurcation point and it also affects
the amplitude of the pitch angle.

Figure 21 is the uncertainty boundary of stochastic bifur-
cation diagram under two uncertainties bounds 𝜎 = 0.1 and𝜎 = 0.2 for “Aerodynamic” model and “Structure” model.
The figure shows that different parameters impact different
position of bifurcation diagram; this is mainly because the
uncertainty of parameters performs different sensitivities
under different velocity.

Figure 22 shows uncertainty boundary under two uncer-
tainties bounds 𝜎1 = 0.1 and 𝜎1 = 0.2 for “Aerodynamic +
Structure” model. Due to the superposition effect for aerody-
namic uncertainty and structure uncertainty, the boundary

can cover most of test data under 0.1 uncertainty bound; the
boundary can cover all test data under 0.2 uncertainty. For
getting an accuracy error boundary, some more error bound
combinations were calculated; the result of one combination
is shown in Figure 23. In this combination, uncertainty bound
of aerodynamic parameters was set as 𝜎1 = 0.15, and uncer-
tainty bound of structure parameters was set as 𝜎1 = 0.1.
From the figure, it can be seen that the resulting boundary of
this combination can totally cover the test data, which means
that empirical aerodynamic parameters in the LB model are
not so accurate; it may have 15% variation of its nominal
value; structure model may have 10% variation of its nominal
value.
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Figure 17: Bifurcation diagram of pitch angle amplitude and sensitivity of parameters in “Aerodynamic.”

V (m/s)

Structure

Deterministic

PCE (mean 𝜎1 = 0.1)
PCE (mean 𝜎1 = 0.2)

Pe
ak

𝜃
(∘
)

Pe
ak

𝜃
(∘
)

−60

−40

−20

0

20

40

60

80

100

120

5 10 15 20 25 300
V (m/s)

11 12

8

6

4

2

0

−2

−4

−6

−8

(a) Stochastic bifurcation diagram

 

10 15 20 25 30
V (m/s)

Structure

PDF
K𝜃 (𝜎1 = 0.2)

C𝜃 (𝜎1 = 0.2)

Kh (𝜎1 = 0.2)

Ch (𝜎1 = 0.2)

𝜉 i
/(

pe
ak

𝜃
)

−2

−1

0

1

0.0

0.2

0.4

0.6

0.8

1.0

PD
F

(b) Sensitivity of parameters

Figure 18: Bifurcation diagram of pitch angle amplitude and sensitivity of parameters in “Structure.”

5. Conclusions

Adeterministic aerodynamicmodel withmodified LBmodel
which is more accurate to low Mach number situation was
built and verified by using test data. With the deterministic
aerodynamic model, an aeroelastic model for airfoil with
a third-order stiffness in both pitch and plunge DOF was
built. Considering the stochastic parameters uncertainty for

both aerodynamics and structure, the nonintrusive polyno-
mial chaos expansion model to unsteady aerodynamics was
utilized for the uncertain nonlinear aeroelastic analysis. From
current work, the following can still be seen:

(1) The modified LB model is more suitable for aerody-
namics calculation at low Mach numbers. The non-
intrusive polynomial chaos method can be applied to
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aeroelastic limit cycle oscillations and dynamic stall
flutter analysis with uncertainty. When the number
of uncertainty parameters is small (less than 10), the
PCE method has a higher calculation efficiency than
MCS method. When a large number of uncertainty
parameters is needed to be investigated, they can be
put into groups separately.

(2) The uncertainty parameters have significant impact
on normal force coefficient and moment coefficient
in the aerodynamics model. The result boundary of
normal distribution is tighter than the result bound-
ary of uniform distribution. The four parameters𝐶𝑁𝛼 and 𝛼1, 𝑇𝑓, and 𝑇𝑟 affect aerodynamic property

most and were chosen to calculate the uncertainty of
bifurcation.

(3) Aerodynamic uncertainty and structure uncertainty
will impact different position of bifurcation diagram
which is due to the fact that uncertainty parameters
have different sensitivities under different velocity.
Bifurcation is related to flow separation of aerody-
namics, because the uncertainty of 𝑇𝑓 affects the
bifurcation velocitymost obviously in “Aerodynamic”
model. Structure uncertainty also can impact the
bifurcation position. Under same uncertainty bound,
boundary variation for “Structure” model is larger
than “Aerodynamic” model.
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Figure 22: Uncertainty boundary in stochastic bifurcation diagram in “Aerodynamic + Structure.”

Table 4: Statistics information of bifurcation velocity for three models.

Bifurcation PDF
(0, 1) (𝜎1 = 0.1) Bound variation

(𝜎1 = 0.1) Bifurcation PDF
(0, 1) (𝜎1 = 0.2)

Bound
variation
(𝜎1 = 0.2)

Bifurcation velocity
(deterministic)

Aerodynamic (11.5m/s, 12.1m/s) (−0.042, 0.008) (10.8m/s, 12.1m/s) (−0.100, 0.008)
12m/sStructure (11.3m/s, 12.3m/s) (−0.058, 0.025) (10.8m/s, 12.7m/s) (−0.100, 0.058)

Aerodynamic + Structure (11m/s, 12.3m/s) (−0.083, 0.025) (9.8m/s, 12.7m/s) (−0.183, 0.058)
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Figure 23: Uncertainty boundary for aerodynamic uncertainty bound 0.15 and structure uncertainty bound 0.1.

(4) Taking both aerodynamic and structure uncertainty
into consideration, when the uncertainty bound of
aerodynamic parameters is 15% of its nominal value,
at the same time, uncertainty bound of structure
parameters is 10%; the range of uncertain LCO ampli-
tude at all velocities can cover the experimental one. It
indicates that the empirical aerodynamic parameters
in the LB model are not so accurate; it may have 15%
variation of its nominal value; structure model may
have 10% variation of its nominal value.
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