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This paper presents a novel procedure based on first-order reliability method (FORM) for structural reliability analysis with hybrid
variables, that is, random and interval variables. This method can significantly improve the computational efficiency for the
abovementioned hybrid reliability analysis (HRA), while generally providing sufficient precision. In the proposed procedure, the
hybrid problem is reduced to standard reliability problem with the polar coordinates, where an n-dimensional limit-state
function is defined only in terms of two random variables. Firstly, the linear Taylor series is used to approximate the limit-state
function around the design point. Subsequently, with the approximation of the n-dimensional limit-state function, the new
bidimensional limit state is established by the polar coordinate transformation. And the probability density functions (PDFs) of
the two variables can be obtained by the PDFs of random variables and bounds of interval variables. Then, the interval of failure
probability is efficiently calculated by the integral method. At last, one simple problem with explicit expressions and one
engineering application of spacecraft docking lock are employed to demonstrate the effectiveness of the proposed methods.

1. Introduction

In recent years, reliability analysis has been a research hot-
spot of structural design and analysis. The influence of uncer-
tainty arising in loads, material properties, dimensions, and
geometry becomes more and more profound [1]. Probability
theory is one of the most universal tools to estimate structural
reliability and safety by calculating the probability of failure
P; and the reliability index 8 [2-4]. Hence, FORM is the
traditional and most commonly used method in the field of
structural reliability, and it has been widely employed in a
wide range of industrial fields [5-8].

In FORM for structural reliability analysis, by the first-
order Taylor series, the limit-state function is approximated
at the design point in the standard Gauss space of trans-
formed independent random variables [9, 10]. In this space,
reliability analysis is usually converted into an optimization
problem to solve the reliability index [8]. A review of FORM
can be found in Breitung [11]. Its application and accuracy in
most structure engineering are well recognized, for instance

by Rackwitz [12]. Derived from FORM, many probability
approximation methods have further developments and
more refined alternatives [11-15]. However, some problems
may arise in the application of these methods, such as accu-
racy, convergence, and computational cost [11-13]. Spe-
cially, there is a defect that both these methods require
precise probability distributions of the random variables
based on a great amount of experimental samples as in many
engineering applications and the samples are often limited. It
causes the distributions of some variables not being precisely
known. Generally, we can only obtain the variation ranges of
some parameters based on the limited data and descript the
stochastic characteristic of them with subjective assumptions
[16]. Tt is likely to bring about a serious error in structural
reliability analysis [17-20].

In real-world engineering, it is obvious that random and
interval variables coexist frequently [21, 22]. Quantifying
both types of the abovementioned uncertainty is called
hybrid reliability analysis (HRA) [1]. HRA has been an
important issue in the research field in structural reliability
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[22]. In recent years, many research studies have been car-
ried out on the HRA methods for structure [23-26]. The
following numerical methods have been proposed: the
function approximation technique [27], the probabilistic
transformation technique [28-30], the iterative rescaling
method [31], the probability bounds approach [32], the
mixed perturbation Monte Carlo (MC) method [33], the
optimization algorithm with single-layer nesting [34, 35],
two-layer nesting [36, 37], and the complex nesting [22],
among others [38-40]. Nevertheless, the HRA with FORM
is still in its infancy, as there are some calculating problems
in the practical applications. Algorithms with high efficiency
and robust convergence must be developed [21, 22].

Hence, a new procedure, based on first-order reliability
method (FORM), is proposed to deal with random and
interval hybrid variables. This procedure can significantly
improve the computational efficiency for the abovemen-
tioned HRA problem, preserving sufficient precision. In
the proposed method, we involve the distance coordinate
and the cosine of the angle coordinate in a polar space. In this
space, the hybrid problem is reduced to standard reliability
problem, where an n-dimensional limit-state function is
defined only in terms of the two random variables. And the
probability density functions (PDFs) of the two variables
can be obtained by the PDFs of random variables and
boundaries of interval variables. Finally, the interval of
failure probability is efficiently calculated with the integral
method, for the new bidimensional function.

The main contributions of this paper lie twofold in
the following:

(1) In the framework of the proposed method, the novel
procedure is more useful and efficient in analyzing
the hybrid reliability problem with randomness and
interval.

(2) The new PDFs of two nonlinear features have been
deduced, using the probability distribution of ran-
domness and the range of intervals. It is distinct from
the assumption of uniform density function model
for interval variables. The new PDFs of the two fea-
tures contribute to the evaluation of the lower and
upper probability of failure, respectively.

The remainder of this paper is organized as follows. A
brief summary of the classical structural reliability analysis
with FORM is presented in Section 2. The whole efficient
reliability analysis method has been proposed in Section 3.
In Section 3.1, the polar transformation with random and
interval uncertainty has been discussed, and the distribution
of two new variables in the polar space has been derived. The
new calculated models and algorithm procedures for the
range of failure probability have been proposed in Section
3.2. Finally, two numerical applications to demonstrate its
efficiency and practicability are presented. Firstly, the hybrid
reliability problem with one simple linear explicit expression
is used to prove that this method is effective and accurate, due
to low analytical complexity of the linear limit-state function.
Secondarily, the method is applied to deal with the hybrid
reliability problem in a real structural system, in this specific
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case a spacecraft docking lock, to demonstrate the effective-
ness of the proposed method.

2. Traditional Structural Reliability Analysis

In the reliability design and analysis of structures, the
limit-state function G(X) is always constructed according
to specified requirements. Here, the n-dimensional variable
vector X = (x;, %,, ..., x,,) " denotes the independent random
variables that affect the function, such as load, material
properties, geometry, dimensions, and environmental fac-
tors. G(X) can be used to determine if the structural system
works normally by checking whether G(X) >0 or not. The
probability of occurrence of failure event P; is obtained
as follows [2, 3]:

P; = Pr{G(X) <0}, (1)

where Pr{e} is the probabilistic measure. According to the
dual event G(X) >0, the probability of reliability P,

can be formulated as follows:

reliability

P 1-Pr(G(X)<0)=Pr(G(X)>0), (2)

reliability =

which can be computed by the following integral:

fx(X)dX, (3)

Pr(G(X) > 0) = JG(XN

where fy(X) denotes the joint PDF of the random vari-
ables X. Generally, the above integral cannot be solved
analytically because of its complex integration boundary
and the high dimensions of X. Therefore, some approxi-
mation techniques have been well established to compute
the integral efficiently, which include the well-known
first-order reliability method (FORM) [16]. In FORM, by
a following transformation from the original space of X to
an independent standard normal space of u, the limit-state
function becomes as follows:

G(X) =G(T(u)), (4)

where T is the transformation that converts u into X.
Additionally, this equation will in the sequel be represented
simply as

g(w) =G(X) = G(T(w)), (5)

with the understanding that there is an underlying transfor-
mation to the Gaussian space u from the given space X.
Thus, the integration in (3) can be rewritten as

fu(w)du. (6)

g(u)>0

Pr(g(u) >0)= J

fu(u) is the n-dimensional standard Gaussian density
function. By using the reliability index approach, the above
equation can be further changed to the following optimiza-
tion problem [23]:

min S =|u],
s.t. g(u)lo!| @)
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where ||e|| denotes the norm of a vector. The optimum u” is
called the design point where the joint PDF reaches a maxi-
mum value among all of the points on the limit-state func-
tion. B=|u*|| is a reliability index which geometrically
represents a minimum distance from the origin to the
limit-state surface in u space.

Despite that this problem and its solution are well known,
for the ensuing developments, it is necessary to recall its main
steps. The first-order Taylor expansion of the limit-state
function about a general point u* can be written as follows:

g(u) = g(u”) +Vg(u")(u-u"), (8)

where Vg(u®) stands for Vg(u) evaluated at u”. In FORM,
the design point is the solution of the optimization problem
(7). Tts value is as follows:

u’ = fa, (9)

where a=Vg(u*)/||[Vg(u*)|| is the design point unit vec-
tor, which is normal to the tangent hyper plane at the
design point.

Moreover, we can suggest that a source of difficulties for
solving the structural reliability problem by any method is
its dimensionality, determined by the number of random
variables # [41]. In essence, this is due to the fact that the esti-
mation of the normally very small probability failure requires
a large number of samples in high dimensional spaces, either
for establishing a surrogate of the limit-state function or for
MC solution. This also makes the visualization of the reliabil-
ity problem impossible, which is a desirable goal for the
design practice [29]. Therefore, some methods are proposed
for reducing the dimensionality of the problem to only two
dimensions, by means of a polar representation for random
samples used in MC simulation, based on the vector of the
center of mass of the failure probability and the design point
[23]. There are two nonlinear features: (a) their distance to
the origin and (b) the cosine of the angle they make with
the design point unit vector @. Moreover, these methods
are developed to estimate the reliability of a structure system
in which the input variables are modeled using any repre-
sentation provided by possibility distributions, intervals,
probability boxes, CDFs, or Dempster-Shafer structures
based on random set theory [29]. The two new variables
are given as follows:

vi=r=|ul,

(ma) _(wa)_(na)
v, =cos 0= = = ,
lulflled ful - w (10)
_ Vg(w')
Vg (us)

For the large number #, v, obeys a chi distribution [41]:

2
exp(—g), v, >0, (11)

and v, obeys the following distribution:

21—71/2V (n—l)
¢i(v3n) = l“n/12

n—2( n—2(

(sin""2(arccos v, ) + sin"~? (7 — arccos v,))

V1 =92 [ sin"*ada ’

-1l<v,<L,n>2.

¢, (v2) =

(12)

It was derived by Hurtado that the two new variables are
independent [23, 41]. In order to avoid the serious error of
the reliability analysis brought by subjective assumptions
on description of the uncertainty characteristics, such as the
uniform distribution or truncated Gaussian distribution rep-
resentation for interval uncertainty, the new polar transfor-
mation with random and interval uncertainty is presented
in next the section.

3. Efficient Reliability Analysis
Method with FORM

3.1. Polar Transformation with Random and Interval
Uncertainty. In structural reliability problem, let us assume
that the limit-state function is g(x,y) = g(x;, X5, -..» X, V1>
Yy oo V) Where X = (x, X5, ..., x,,) is a n-dimensional vec-
tor of random variables and y = (y,, ¥,, ..., ¥,,) is a m-dimen-
sional vector of interval variables. In terms of the standard
independent Gaussian vector w= (u;,u,,...,u,) and the
normalized independent interval vector 6= (8;,9,,...,96,,)
€ [-1, 1], the limit-state function becomes as follows:

g(xy)=g(T(u), T(8)), (13)

where T is the standard Gaussian transformation that con-
verts u into x and T is the normalized interval transformation
that converts & into y. In order to keep the notation unclut-
tered, this equation will in the sequel be represented simply as

9(x.y) = g(@). (14)

With ®=(u,8), the structural reliability problem is
defined in the n +m dimensional space w of n independent
standard Gaussian variables and m normalized interval vari-
ables. The main purpose of this method is to transform it to a
problem of only two dimensions. By (10),, and, we can use
the polar transformation from space @ to the polar space
by the two nonlinear features:

v, =cos 0= (@.8) (15)
’ ]| | ,
__ Vg(o)

[Vg(@®)[|’

where @* is the solution of the new optimization problem

min =],
s.t. g(w)=0, (16)
ée[-11].



Hence, in the polar space, the distribution of two new
variables can be derived as follows.

For Vn, m € N (N is the nonnegative integer domain),  is
the number of the random variables and m is the number of
the interval variables.

(1) Like v, in Section 2, ¥, obeys a distribution:

n+m—2( n+m—2(

(sin arccos y) + sin 7 - arccos y))
2 (X s -2 >
V1= y*[osin " ada

-1<y<1.

(17)

(2) Forv, = /Y u?+ Zj";l(?iz, € (0, +00), let A =
Y87 with V& e[-1,1] (i=1,2,...,m); it is
derived that 0 < zj”;léﬁ <m. Asu; (i=1,2,...
the independent standard Gaussian variable, #, =
vi2-A=Y" u? A€[0,m], obeys the x*(n) distri-
bution shown as follows:

¢, (y) =

,n) is

21—11/2 (n-1) 2
=2

ik %) >0, (8)

where n is the number of the random variables.
Hence, for VA € [0, m], 7, obeys the distribution writ-

ten as follows:
9l-n/2 (xz _ A)('H)/Z ( X2 — A>
exp( - ,

> A)=
NENLY Tn/2 2

x>VA A€ [0, m],
(19)
where m is the number of the interval variables. And

the cumulative distribution function (CDF) of ¥,
with A denotes F, (x, A). It can be obtained that F,

(x, A) is nonincreasing for the variable A.

Proof. Let T=x* - A, 7 €0, co|, the partial derivative of F,,
(x, A) for A can be written as follows:

dF, (x,A) 0F,(r) 0F,(r)dr
0A 0A or 0A
(20)
T(nfl)/z T 1
- ep(0) ———.
2M2Tn/2 2) T+ A

Considering YA, (7(""V2/2"2T'(n/2)) 2 0, exp(—(/2)) >
0, and (1/v/T+A)>0, thus it is obvious that (F, (x,A)/
0A) <0. Hence, F, (x, A) is nonincreasing for the variable A.

Moreover, because of the two new variables V,,7,
independent in the polar space, with the limit-state function
G(v,,7,), the probability of failure Py .. in the structure can
be written as follows:
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1 +00
Prature(A) = j j B, (71> 8) (7,)d7,d7,,
17V (21)

Q,={31G(3,,7,)<0}
A €10, m],

where ¢, obeys (19) and ¢, obeys (17).

Considering the nonincreasing of CDF of v, for A, the
interval of Py is [Py, P¢l; the lower boundary P (A=m)
and the upper boundary P; (A =0) can be calculated by

1 +00
By = H 6(71s D) (7,)dP,dD,  (A=0),
-1J0
Q,={V|G(v,,v,)<0}
1 +00
P = H 6, (71 M)y (7)d0, 7, (A =m),
-1JvA
Q,={71G(3,.7,)<0}
(22)

where ¢, obeys (20) and ¢, obeys (18).

3.2. The Efficient Method with FORM. Let us consider the
first-order approximation g(®) at the design point @* of
the limit-state function g(®) given by (8) with the last term
disregarded, where ®* = (u*,u*,,...,u*,, 8,58, ...,
8,,") obtained by the optimization problem (16). g(®) can
be written as follows:

a0 =gf0)+ L5ul -u)* D55

j=1

=) (9g108))
+Z @9/28)),.)°]

*
00

o0 (24)
n+m(ag/aw )|
2 \/Z ag/awk )
71/ 2 (0919u)] ) + Z Bg/ B)lo-)’
where
0 (090l Q90 ) e

o]

VI (2giwy),, )
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Equation (26) can be written as follows by taking (24):

n ag - m g .
=d*D+D*v1v2=G(v1,v2),
(26)

where

n a 2 m a 212

_ g 9

D= Z(E ) *Z(ﬁ )] :

i= o) j=1 T o*
L 9@ =300y~ 3, (39/98))],.85°

D
(27)

Distintly, D = (¥, ((9g/0u)|,)* + X}"1((89/08))] o))"
#0;in the polar space, the new safe domain becomes
d+v,v, >0, the failure domain becomes d —v,v, <0, and
the limit-state surface is d — v, v, = 0.

We can calculate the interval of the failure probability
[Pg, Py] in the structure with (29) and (31) as follows.

(1) The lower boundary of failure probability P:
m)dv,dv,.

n- | j;%(vzm v (28)

#(0) g(w*(O)) +Zf:1(ag/aui)|w* u ) 4

(2) The upper boundary of failure probability P;:

P = Jll Jooqﬁz(vz)gb (v1,0)dv,dv,,  (29)

- 0
Q={d-v,v,<0}

where ¢, obeys (19) and ¢, obeys (17).
The method proceeds as follows:

(1) For the random variables x,, x,, ..., x,, and interval
variables y,,v,, ...y, ;€ W5y i=1,2,...,m)
in the limit-state function g(x,y)of a structure,
convert X = (x},%,,...,%,) into the standard inde-
pendent Gaussian vector w= (u,u,,...,u,) and
y=WUY ...y, into the normalized indepen-
dent interval vector 6=(8,,9,,...,9,,) €[-1,1].
The limit-state function g(x,y) becomes g(®) with
®=(u,8).

(0)

*(0)
=(u) sy s,

)), obtained by the optimization

Let the 1n1t1al demgn point be ®*(©) =
w870 5%
problem (16).

()

(3) Calculate the gradient d0g/ow],
g(®) at the design point @*(©).

.0 of the function

(4) Transform the function g(w) into G (v,,v,)=

d® x DO + DO xy 1V, in the polar space and calcu-
late the parameters

D)

(5) In the polar space, use (32) and (33) to calculate the

initial interval of failure probability [P} Pl ] of the
structure written as follows:
0) 1 rt+oo
Py = J J ¢, (v2) 1 (v, m)dv,dv,, (31)
-1 \/ﬁ

Q:{dw)—vlszO}

1 pr+oo
(0
We |7 aenmoadn @)
-1Jo
Q‘,:{vld(o)—vlvzso}
(6) Calculate the new gradient wZ(D (k=1,2,....,n+m)

(I=1,2,...,) by the following:

(30)
m (0
2.11(09/93))],,.0,""
I (=0g/0wy) |-
wil = - r—— (=12
n+m
DRCTII
(33)
(7) Calculate the new design point @*") = [w;(l) , ) A ..,
wZErI,L] with ;@ (k=1,2,...,n+m) (I=1,2,...,) by
the following:
wa ="+ ‘ ooV = oV
+ ‘ (1)*(1_1) _(ag/awk”(uk*(ﬁl) . (34)

[ Hm((a)’ awk)|w (- 1>)2}



In the polar space, the parameters d) and D) by (35)
and (36), respectively, are written as follows:

a0 = g(@)+ ::n(ag/awk)|wk*<l>wk*(l)
- n+m 27172 (35)
[ k=1 ((ag/awk)|a)k*(l)> }
1/2
n+m ag 2
Dl = == : 36
1; <awk a,*(l)) ] (36)

And the new limit-state function is GU(v,, v,) = d"
DY — DV « ViVs.

(8) Calculate the interval of failure probability [B(fl), 139]
of the structure by the following:

1 pt+oo
JlJ\/m

QV:{v\d(” Vv, SO}

1 p+oo
o ]
-1J0o

QV:{vld(’)—vlvzso}

A
Py = 6, (Vi m)by (v,)dv,dv,,

(37)
¢1(v1>0)¢, (v,)dvydv,.

(9) For the robust convergence of this procedure, let the
iterative error of the calculation be e. If |}_’<fl) - I_’(fH) |/
(1- P(fl)) <e and |£<fl) —B<fl_l>\/(1 - B(fl)) <g, stop
calculating.

Otherwise, go to step 2. Set the new design point
o) = [wfm, w;(l), e wf,f;] to be the initial design

point.

4. Numerical Examples

4.1. Numerical Example with Linear Limit-State Function.
(1) In the structural reliability problems, let the limit-state
function of a structure be G(u,8) =1— (1/n+m)(X . u; +
2216;), with the random variable u; (i=1,2, ..., n) obeying
the standard normal distribution N(0,1) and the interval
variable 6j (j=1,2,...,m) in the range of [0,1]. They are
independent of each other.
With the polar transformation, let

VImem) (Y uw+ Y8))

v, = ,
(38)

v, =
And G(u,8) can be transformed to G(v)=1-

(2/(n+m))v,v, in polar space, where the PDF of the
random variable v, is (18), and the PDF of v, is (20).

We can see that n+m uncertain variables are trans-
formed to two uncertain variables in the polar space.
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TaBLe 1: Bounds of the failure probability estimated by two
methods.

Failure probability
Methods Upper Lower
bound bound
n=1m=1 0.0932 0.0785
n=5m=5 5.110e-04  3.498e—06
n=10,m=>5 3.512e-05 3.550e—06
MC 10° n=5m=10  3.376e-05 3.332¢-16
(confidence 95%) n=>5m=20 3.153¢—07 3.599e—20
n=10,m=15 3.201e-07 2.684e-22
n=15m=10 3.096e-07 2.910e-16
n=20,m=5  3.141e-07 2.469¢-06
n=1m=1 0.1012 0.0694
n=5m=>5 4.906e-04 3.699e-06
n=10,m=5 3.452e-05 3.538e-06
The proposed method n=5m=10  3.452¢-05 3.326e-16
n=>5m=20 3.100e—07  3.669e—20
n=10,m=15 3.100e-07 2.699e-22
n=15m=10 3.100e-07 2.90le-16
n=20,m=5 3.100e-07  2.368e—06

TaBLE 2: The relative error and iteration number of the proposed
method.

Relative error

Situation Upperbound Lower bound Iteration number
n=1,m=1 8.58% 11.6% 20
n=5m=>5 3.99% 5.73% 68
n=10,m=>5 1.73% 0.34% 111
n=>5m=10 2.25% 0.16% 124
n=5m=20 1.66% 1.96% 191
n=10,m=15 3.16% 0.54% 182
n=15m=10 0.13% 0.29% 163
n=20,m=>5 1.31% 4.07% 171

Subsequently, we will discuss the calculated interval of failure
probability with different # and m as shown in the following
tables. For comparison purposes, a full-interval MC simula-
tion involving the generation of 10,000 random realizations
of input parameters u and the computation of the failure
probability for each of them with 10,000 samples of vector
8 was performed.

The relevant information about the two methods applied
is summarized in Tables 1 and 2. Table 1 indicates that the
estimates calculated by the proposed method in the paper
are exactly in the interval Monte Carlo sense. Also, by
the relative errors of the bounds in Table 2, it can be seen
that the method succeeds in giving accurate reliability
analyses with the maximum value 11.6%. This example
shows the efliciency of the method, inasmuch as only 191
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Fixed constraint

The surface load

Fied [
constraint

FiGUure 1: FEA model of structural latch.

A A S A Y
/‘T?:// N~/ &/ N~ W

Engaging status Locking status Releasing status Unlocking status

F1GURE 2: The workflow of the structural latch.

(a) (®)

F1GURrk 3: The stress nephogram of the structural latch (a) and the
contrast strength test (b).

iterations (maximum value) were required in comparison to
the 100,000,000 sample evaluations required by interval MC
in the evaluation of P; and Py, achieving the same precision
of the latter (interval MC).

On the other hand, from the same total number of
uncertain variables with different n random variables and
m interval variables, it is suggested that the number of
interval variables influences the results stronger than ran-
domness. From the different total numbers of uncertain
variables, it is suggested that the number influences the
efficiency (iteration).

4.2. Structural Latch of Space Docking Mechanism. Consider
the structural latch of space docking mechanism shown in
Figure 1. It is an important part of the docking mechanism,
which is the key structure to realize the rigid connection
and separation between two space vehicles. The connection
force is generated by the interaction between the series of
latches in two different docking mechanisms.

The working procedure of the workflow of structural
latch is shown in Figure 2.

During the procedure of locking every structural latch,
the load F is an interval variable with the range of [30, 40]
kN. The modulus of elasticity of the material E is a nor-
mal variable with the mean 117,000 MPa and standard
deviation 1170 MPa, and the cross section depth d is a
normal variable with the mean 5 mm and standard deviation
0.05 mm. Also, there are two random variables Poisson ratio
#~N(0.3,0.03) and the material density p~ N(4.81g/c
m?,0.481 g/cm?). The reliability problem is defined by the
limit-state function

gzamax_a(F’E’M’p’d)’ (39>
where o, is the yield strength with the constant and o
(F,E, u, p,d) is the contact stress on the connected surface
of the two latches.

It is supposed that the four random variables are inde-
pendent. A simplified finite element analysis (FEA) model
is created to compute the contact stress o (Figure 3), with
25,642 elements.

The proposed algorithm in this paper was employed to
perform the new FORM analysis. After 127 iterations, the
lower and upper bound of the failure probability were calcu-
lated as [4.3580e—06, 4.3930e—05]. It coincides with the result
calculated using Monte Carlo simulation, inasmuch as all of
the failure samples of the simulation were correctly identi-
fied. However, the relative errors are 8.12% and 11.4%, which
indicate that this method employs the linear Taylor series to
preserve the efficiency, sacrificing the accuracy requirements.
The calculated result for the structural latch with comparison
is summarized in Table 3.

The difference between the results of MC and the pro-
posed method is caused by the nonlinearity of the limit-
state function. However, the error of the upper bound is only
8.12% and that of the lower bound is 11.4%, which indicates
that the nonlinearity of this problem is not too strong, but
still directly influences the result precision. Compared with
the relative error, the results of the presented method can
be accepted. On the other hand, the evaluation number of
FEA for the proposed method is only 223. Since each evalu-
ation of the FEA model takes almost 10 min, the increased
computational cost for MC would be more than 15 days.
Therefore, if we pay more attention to the computational cost
in this problem, then this proposed method in this paper is
preferred, although losing better accuracy.

5. Conclusion

In this paper, an efficient method for the hybrid reliability
analysis of structures for random and interval uncertainty is
presented. It has been shown that the design point concept
of probability-based reliability analysis can still be applied
in this article. Specifically, the unit vector of the point is the
direction of the rapid changes of the output variable implied
in the limit-state function. In order to avail of this property
and reduce the computation cost, a bidimensional mapping
of two nonlinear features is established in the polar space:
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TaBLE 3: The calculated result for the structural latch with comparison.
Failure probability Relative error .
Method Upper bound lower bound Upper bound lower bound lteration number
MC 10® (confidence 95%) 4.7801e-05 3.9120e-06 / / /
The proposed method 4.3930e-05 4.3580e—06 8.12% 11.4% 127

(a) the distance to the origin and (b) the cosine of the angle
with the design point unit vector. In this case, the hybrid
problem is reduced to standard reliability problem, where
n-dimensional limit-state function with the linear Taylor
series is approximated around the design point defined only
in terms of two random variables, obeying new PDFs with
the number of random and interval variables. They are dis-
tinct from the assumption of uniform density function model
for interval variables and contribute to the evaluation of the
lower and upper probability of failure, respectively. The
numerical experiments confirm the solid theoretical founda-
tion, the agreeable accuracy, and the low computational cost
of the proposed methodology.
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