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The global navigation satellite system (GNSS) is widely used to estimate user positions. For precise positioning, users should correct
for GNSS error components such as satellite orbit and clock errors as well as ionospheric delay. The international GNSS service (IGS)
real-time service (RTS) can be used to correct orbit and clock errors in real-time. Since the IGS RTS provides real-time corrections
via the Internet, intermittent data loss can occur due to software or hardware failures. We propose applying a genetic algorithm
autoregressive moving average (GA-ARMA) model to predict the IGS RTS corrections during data loss periods. The RTS orbit
and clock corrections are predicted up to 900 s via the GA-ARMA model, and the prediction accuracies are compared with the
results from a generic ARMA model. The orbit prediction performance of the GA-ARMA is nearly equivalent to that of ARMA,
but GA-ARMA's clock prediction performance is clearly better than that of ARMA, achieving a 32% error reduction. Predicted RTS
corrections are applied to the broadcast ephemeris, and precise point positioning accuracies are compared. GA-ARMA shows a

significant accuracy improvement over ARMA, particularly in terms of vertical positioning.

1. Introduction

The global navigation satellite system (GNSS) is now widely
used for user positioning. GNSS error components such
as satellite orbit/clock errors and ionospheric delay directly
affect positioning accuracy. In order to correct the GNSS
orbit and clock errors in real-time, the international GNSS
service (IGS) provides real-time service (RTS) corrections
via the Internet. IGS RTS has been provided since April
2013, and it contains orbit and clock corrections that can be
applied to the broadcast ephemeris [1]. These corrections are
transmitted to users via a networked transport of RTCM via
Internet protocol (NTRIP), and users can download them
via the NTRIP client. Since the IGS RTS provides real-
time corrections via the Internet, intermittent data loss can
occur from unintentional interruptions in the RTS correction
transfer caused by software or hardware failures. In this case,
predicted corrections can serve as an alternative solution for
continuous positioning.

Autoregressive moving average (ARMA) models have
been widely used to predict time series data [2, 3]. ARMA
coefficients are generally computed by solving nonlinear
least square equations with the Levenberg-Marquardt (LM)

method. Recently, genetic algorithms (GAs), a global opti-
mization tool, have been applied to determine ARMA model
coeflicients. Beligiannis et al. estimated random noise in a
moving average (MA) model by using a GA [4]. Cortez et al.
applied a GA to optimize ARMA orders to develop a time
series forecasting model [5]. Peng and Chen computed the
AMRA order and coefficients simultaneously by using GA-
ARMA [6]. Gnanlet and Rajendran searched for the best
ARMA order via GA-ARMA with a best neighborhood local
search (BNLS) algorithm [7]. Abo-Hammour et al. used GA-
ARMA as a method of optimizing the ARMA coeflicients and
orders recursively [8].

A limited number of studies have been performed on
predicting RTS correction time series because IGS RTS was
only recently launched. Hadas and Bosy applied a polynomial
model to predict RTS corrections for short time periods [9].
M. Kim and J. Kim applied an ARMA neural network model
to predict the IGS02 orbit and clock corrections for 1800 s
[2].

In this paper, we propose applying GA-ARMA to predict
RTS corrections. A GA is used to search for the best
ARMA coeflicients. GA-ARMA’s prediction performance is
compared with that of the generic ARMA. Precise point
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positioning (PPP) accuracy is evaluated by applying the
predicted RTS corrections to the GPS broadcast ephemeris.

2. IGS RTS Corrections

The IGS combines solutions from several analysis centers
(ACs) to produce a final RTS correction. The official products
currently include IGCO01, IGSO01, IGS02, and IGS03. While
IGCO01 and IGSO01 provide single-epoch corrections, IGS02
and IGS03 provide Kalman filtered corrections. IGS03 con-
tains GLONASS corrections as well as GPS. Eight ACs are
participating in RTS generation and provide intermediate
solutions such as CLK10 by BKG and CLK20 by DLR.

IGS RTS corrections are transmitted in state space repre-
sentation (SSR) format, and users can download corrections
via NTRIP client software [10]. The IGS02 stream contains
satellite orbit and clock corrections as well as code biases.
These corrections are provided in message types (MT) 1057,
1058, and 1059. Transmission intervals differ depending on
correction type, 5~60 seconds for orbit corrections and 5~10
seconds for clock corrections.

Each stream adopts different reference points. IGCO01 uses
satellite center of mass (CoM), but IGS02 and IGS03 use
antenna phase center (APC). Before applying CoM correc-
tions to the GPS broadcast ephemeris, which refers to APC,
a phase center offset (PCO) should be applied. Each RTS
correction is generated with the issue of data (IOD) informa-
tion, which indicates a broadcast ephemeris matching with
the correction. An RTS correction should not be used if its
IOD does not match the IOD ephemeris (IODE) of the GPS
ephemeris.

Orbit corrections consist of six components, three cor-
rection values and three correction rates. These corrections
are provided in radial, along-track, cross-track (RAC) orbit
directions. 8O(t), an RTS orbit correction in the RAC
coordinate system at time ¢, can be computed by combining
the correction values and the rate values.

66 = [(Soradial 6Oalong 8Ocross]T

. m

+ [6Oradial (SOalong 6Ocross] (t - tO) ’

where 8O is the rate of correction, t is the current time, and
t, is the time of applicability. Before applying the RT'S correc-
tions to the GPS broadcast ephemeris, a coordinate transform
from RAC to the Earth-centered Earth-fixed (ECEF) system
is required as follows.

(SX (t) = [éradiﬂ éalong gcross] 86 (t) > (2)

where €,4ia1> €long> and €..oq, represent the R, A, and C

unit vectors, respectively. 8O(t) is the orbit correction in the
RAC coordinates, and 8X(t) is the correction in the ECEF
coordinates. More details on computing the RAC unit vectors
can be found in [11]. A broadcast ephemeris orbit, X gpp,c, can
be corrected using the RTS corrections as per [11]

Xorit = Xprpc — 60X, (3)
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where X ., is the satellite position vector corrected by the
RTS orbit corrections.

Clock corrections consist of three polynomial coeffi-
cients, as follows.

8C=Cy+C,y(t—t,)+C,(t—1,), (4)

where C,,, C;, and C, are polynomial coefficients of the RTS
clock corrections. The IGS02 stream only provides the offset
value, C,,.

3. Methodology

The GA is combined with ARMA to compute ARMA coefti-
cients. After a brief description of the generic ARMA model,
the GA-ARMA model algorithm is described with a compu-
tational method of determining the ARMA coefficients.

3.1. Autoregressive Moving Average (ARMA) Model. The
ARMA model is a combination of autoregressive (AR) and
moving average (MA) models [2]. The AR model uses past
values, and the MA model uses past errors values. The generic
ARMA can be modeled as follows.

P q
y(t)=Y Ay (t-kT)+ ) Be(t—kT)+e(t), (5)
k=1 k=1

where p represents the AR time-lag and g represents the
MA time-lag. These AR and MA model lags define the
ARMA model orders. A and B, are the AR and MA model
coeficients. T is the sampling time, ¢ is the current time, y
is the output of the ARMA model, and e is the residual. A,
and By, are generally calculated in such a way to minimize the
error, which is represented as e(t). The following nonlinear
function can be used to minimize e(t):

min [e2 (t)]

P q 2 (6)
= (y(t)—ZAky(t—kT)—ZBke(t—kT)) )

k=1 k=1

Eq. (6) can be minimized using various methods, including
the steepest descent gradient, LM, and Gauss-Newton [12]
methods. This paper selects the LM method because it can
determine a solution faster than the steepest descent gradient,
and it yields a better optimum value than the Gauss-Newton
method.

3.2. GA-ARMA Model. GAs were proposed by Holland in
1975 as a machine learning technique. A GA is a metaheuristic
optimization algorithm inspired by natural selection and
evolution. It provides a powerful optimization algorithm, so it
is suitable for search and optimization problems. GAs consist
of three operators, selections, crossovers, and mutations.
The selection operator selects better chromosomes before
being passed to the crossover operator. Generally, the fitness
of the population is ranked from highest to lowest, and
the best is selected. There are various selection operators,
for example, roulette-wheel selection, tournament selection,
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FIGURE I: Flow chart of genetic algorithm.

truncation selection, and stochastic universal sampling. This
paper adopts 50% truncation selection, which chooses the
highest 50% of the chromosomes.

The crossover operator divides the selected chromosomes
into father and mother chromosomes, and a number of points
are subsequently chosen at random. Father and mother chro-
mosomes are crossed over to produce two children chromo-
somes. Three methods are used for the crossover operation,
the uniform crossover, one-point crossover, and two-point
crossover. This paper adopts the two-point crossover.

The mutation operator provides random searches to keep
the GA from converging to a local minimum. After passing
the crossover operation, the chromosome is mutated by any
values with a small mutation probability between 0 and 1.
Since the mutation operator changes a number of chro-
mosomes randomly, it mostly degrades the performance of
the solutions. Low quality solutions generated by mutations
vanish over some generations, but high quality solutions
remain. The groups that are passed by the GA operators are
finally replaced with the initial populations. GA operation
procedures are illustrated in Figure 1.

The GA optimization process is applied to compute
the ARMA coefficients. Figure 2 represents the computation
process of the ARMA coeflicients using a GA. The GA-ARMA
model first defines certain process parameters like the ARMA
order, initial population size, mutation rate, and so on.
Next, the outputs (y) and residuals (e) of the ARMA model
are extracted before computing the best ARMA coeflicients
via the GA. The initial populations, which represent the
coeflicients of the ARMA model, are generated randomly in
arange from —3 to 3 with a predefined initial population size.
The fitness of the initial populations is computed and then
compared with the tolerance. The GA process is iterated until
the best fitness value is larger than the tolerance.

Defining GA-ARMA model

Extracting output and residual of ARMA

Computing ARMA coefficients by GA

Setting the prediction input

Prediction using ARMA model with best
coefficients and prediction input

FI1GURE 2: Flow chart of the GA-ARMA model.

4. Prediction Results

RTS corrections during data loss periods are predicted
using GA-ARMA models. The prediction accuracy from GA-
ARMA is compared with the prediction accuracy from the
generic ARMA. Prediction performance of one-day and five-
day data sets is analyzed. The effects on user positioning
accuracy are analyzed by applying the predicted corrections
to the GPS broadcast ephemeris.

4.1. Data Processing. Five days of IGS02 GPS streams, from
January 16 to 20, 2016, are used for the analysis. The evaluation
is performed during a common IOD period because, when
the IOD changes, a new prediction process should start.
When a new IOD is issued for a satellite, a one-hour
training period starts to compute the ARMA or GA-ARMA
coefficients. The prediction interval is set at 15 minutes after
the training period. A total of 60 orbit corrections and 180
clock corrections are processed for the one-hour training
period. In order to avoid the effects of GPS orbit repeatability,
different prediction starting times are selected for each day.
RTS prediction experiments are conducted after deter-
mining the optimal order of ARMA and GA-ARMA models.
The best orders are determined with the ARMA (p, p — 1)
models by varying the range of p from 2 to 16. The data
on January 18 is used for the determination process because
the 1-step prediction error on this day is higher than on
any other days. In the case of the ARMA model, ARMA
(9, 8) is selected for the orbit prediction, and ARMA (8, 7)
is selected for the clock prediction. For GA-ARMA, ARMA
(8, 7) and ARMA (6, 5) are selected for the orbit and clock
predictions, respectively. The mean squared error (MSE) is
used as the fitness function in the GA for the best coefficient
determination. The model errors are not a I-step ahead
prediction, which is generally used when applying the MSE,
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TABLE 1: Prediction RMS errors for three prediction intervals (all satellites, January 18, 2016).

e Radial (m) Along-track (m) Cross-track (m) Clock (m) 3D (m) SISRE (m)
Prediction interval (s)
ARMA GA ARMA GA ARMA GA ARMA GA ARMA GA ARMA GA
1-300 0.004 0.002 0.010 0.010 0.016 0.012 0.064 0.054 0.018 0.014 0.060 0.052
301-600 0.010 0.006 0.014 0.016 0.022 0.014 0.092 0.072 0.026  0.022 0.082 0.066
601-900 0.012  0.010 0.018 0.016 0.030 0.018 0.108 0.084 0.034 0.030 0.096 0.078
0.00 - T T T - 0.30 7 T T T T
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FIGURE 3: RTS orbit correction and prediction results in along-track
direction (PRN 12, January 18, 2016).

but an N-step ahead prediction. N represents the number of
prediction data.

4.2. Single-Day Prediction. Prediction accuracies for single
satellites and all satellites are analyzed on January 18, 2016.
The training period is set at one hour, from 36000 s to 39600 s,
and the prediction period (data loss period) is set at 15 min.,
from 39600 s to 40500 s.

Figure 3 represents the along-track orbit corrections of
PRN 12 on January 18. The true value represents the raw
RTS correction without the data loss. The ARMA and
GA-ARMA values represent the prediction values starting
at 39600s. Without IOD changes, the correction shows a
smooth parabolic variation. This variation behavior is easy
to predict in general. For this reason, the prediction error
difference between ARMA and GA-ARMA is not significant.
The RMS errors of ARMA and GA-ARMA predictions are
0.011 m and 0.007 m, respectively. Both error levels are well
below general RTS accuracies, approximately 0.05m [1].

Figure 4 represents the clock corrections of PRN 8 on
January 18. Unlike the orbit correction, the clock correction
varies irregularly and is difficult to predict. The ARMA
prediction follows the mean trend of the prior data, while
the GA-ARMA prediction resembles the random variation.
Prediction RMS errors are 0.051m for ARMA and 0.036 m
for GA-ARMA.

The prediction process is performed for all GPS satellites
on January 18, 2016, and the prediction RMS errors are

FiGURE 4: RTS clock correction and prediction result (PRN 08,
January 18, 2016).

presented in Tablel. In order to analyze the prediction
accuracy variation with the prediction interval, the results
are categorized for three prediction intervals: 1s-300s, 301 s—
600, and 6015-900 s. In addition to the RAC orbit and clock
prediction errors, the three-dimensional (3D) orbit error
and signal-in-space range error (SISRE) are also presented.
SISRE represents a range error due to the GNSS space
segment, and it is computed from orbit and clock errors
with the emphasis on the radial direction orbit and clock
errors. A detailed description of SISRE can be found in
[13]. GA-ARMA outperforms ARMA in both orbit and clock
accuracies. For the 601-900 s interval, GA-ARMA's 3D orbit
error is 0.030 m, which is 12% lower than that of ARMA. The
improvement by GA-ARMA becomes more significant for
clock accuracy, with a 22% error reduction for the 601-900 s
interval. This GA-ARMA error reduction yields a 19% SISRE
reduction for the 601-900 s interval. The error increases from
the first (~300s) to the third (~900s) intervals are virtually
the same for both models. In the SISRE case, ARMA yields a
60% increase (0.036 m), and GA-ARMA yields a 50% increase
(0.026 m).

Figure 5 shows the 3D orbit prediction error for each
satellite on January 18, 2016. PRN 03 and 04 are excluded from
the results because the RTS corrections are not available on
this day. Among the 30 satellites, 19 show smaller prediction
errors via GA-ARMA than via ARMA. The large PRN 12 error
is caused by a different variation pattern in the cross-track
direction during the training and prediction intervals. The
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TABLE 2: Error statistics of orbit and clock predictions (January 16-20, 2016).
Da R (m) A (m) C (m) Clock (m) 3D (m) SISRE (m)

f ARMA GA ARMA GA ARMA ARMA GA ARMA GA ARMA GA
Jan. 16 0.008 0.002 0.012 0.008 0.012 0.012 0.092 0.058 0.016 0.016 0.096 0.061
Jan. 17 0.005 0.001 0.008 0.003 0.007 0.006 0.041 0.029 0.011 0.007 0.043 0.033
Jan. 18 0.009 0.002 0.011 0.006 0.015 0.095 0.060 0.016 0.018 0.095 0.066
Jan. 19 0.004 0.002 0.006 0.005 0.006 0.004 0.025 0.023 0.010 0.007 0.037 0.028
Jan. 20 0.007 0.005 0.013 0.015 0.011 0.088 0.062 0.019 0.016 0.099 0.066

3D orbit prediction error (m)

1 5 7 9 11 13 15 17 19 21 23 25 27 29 31
PRN

H ARMA
B GA-ARMA

FIGURE 5: 3D orbit prediction error for each satellite (January 18,
2016).

Jan. 18,2016

Clock prediction error (m

1 5 7 9 11 13 15 17 19 21 23 25 27 29 31
PRN

H ARMA
B GA-ARMA

FIGURE 6: Clock prediction error for each satellite (January 18, 2016).

means of the RMS errors are 0.021 m for ARMA and 0.018 m
for GA-ARMA.

Figure 6 shows the clock prediction error for each satellite
on January 18, 2016. GA-ARMA yields a smaller prediction
error than ARMA for 21 GPS satellites. The overall RMS
errors are 0.054 m for ARMA and 0.042m for GA-ARMA.
This difference represents 13% of the RTS clock accuracy level
(0.05m). A large error reduction by GA-ARMA is clear for

PRN 6 and 28. With these satellites, ARMA follows the mean
trend of the training data, but GA-ARMA follows the short-
period variability.

4.3. Multiday Prediction. The five-day RTS data, from Jan-
uary 16 to January 20, is processed. In order to avoid the
effects of GPS orbit repeatability, different prediction starting
points are selected for each day: 10800s, 25200, 39600s,
54000 s, and 18000 s.

The prediction RMS error for each day is presented
in Table 2. ARMA 3D orbit error has a peak on January
20 (0.019 m) while GA-ARMA has a peak on January 16
(0.018 m). The mean RMS errors for ARMA and GA-ARMA
are 0.014 m and 0.013 m, respectively. For the clock predic-
tion, a significant difference exists between the two models;
the five-day mean RMS errors are 0.068 m for ARMA and
0.046m for GA-ARMA. The ARMA clock error reaches
0.092m (Jan. 16) and 0.095m (Jan. 18), which is close to
the RTS clock accuracy itself. However, GA-ARMA has the
largest error of 0.062m (Jan. 20), well below the RTS clock
accuracy.

4.4. User Positioning. The RTS corrections predicted by
ARMA and GA-ARMA are applied to the broadcast ephem-
eris, and then a user position is estimated by using the
static-PPP process. IGS network data from NIST Station in
Maryland is used for the positioning. The GPS data interval is
30s,and L1/L2 carrier phases are used to form an ionosphere-
free combination.

3D position error time series on January 16, 2016 are pre-
sented in Figure 7. For comparison, the results using the GPS
broadcast ephemeris (BRDC) and raw RTS corrections (with-
out data loss) are also presented. The GA-ARMA positioning
error level is close to the raw RTS positioning error level, with
a difference of less than 0.4 m. The GA-ARMA positioning
RMS error is 0.298 m, only 0.007 m larger than the raw
RTS. Due to the low clock prediction accuracy, the ARMA
positioning RMS error is 0.461 m, significantly greater than
that of GA-ARMA. The ARMA positioning error increases to
0.870 m at 11670 s, which is 59% of the error level of the BRDC
positioning error.

The receiver clock bias is also estimated and presented
in Figure 8. The biases are presented in meters. The mean-
biases during the prediction interval are 33.750 m for the IGS
final data and 38.286 m for the raw RT'S corrections. As with
the positioning error, GA-ARMA shows a similar output to
the raw RTS. The difference between ARMA and GA-ARMA
increases with time, and the error level reaches 40.423 m after
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TABLE 3: Estimated RMS errors in east, north, and up directions (January 16-20, 2016).

East (m) North (m) Up (m)
Day ARMA GA ARMA GA ARMA GA
Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD
16 0.14 0.05 0.02 0.02 -0.14 0.08 0.03 0.02 0.27 0.30 -0.22 0.06
17 -0.09 0.03 -0.11 0.02 0.04 0.02 0.09 0.01 -0.07 0.12 -0.01 0.03
18 -0.10 0.08 -0.11 0.04 0.03 0.03 -0.02 0.02 0.22 0.12 -0.13 0.05
19 —-0.08 0.03 -0.03 0.03 0.04 0.03 -0.04 0.02 -0.57 0.27 -0.07 0.11
20 -0.14 0.04 -0.15 0.03 0.08 0.07 ~0 0.05 -0.04 0.09 -0.09 0.08
2.5 : T T T T 1.50 T T T T T
| .
L ! VPredlrctllonrstart i 100 L o o |
— | =
E ; ‘ _ Jan. 16‘ 20,2016 : b,
et , Jan. 16, 2016 g 050 . . . : .
g 15} ! R . = "fp‘
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Z 1 , - = ‘ 24 ‘ ‘
2 ! 050 - e
2 | S
1
05 : 7 SLO0 |
0 : | | | | ~1.50 | | | | |
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—— ARMA —— BRDC ¢ ARMA e BRDC

FIGURE 7: User positioning errors by using predicted corrections
(January 16, 2016).
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FIGURE 8: Estimation result of the receiver clock bias (January 16,
2016).

900 s. This increase is similar to the ARMA clock prediction
error increase.

Figure 9 represents the trace of horizontal positioning
errors from January 16 to 20 in 2016. The error trace of the
raw RTS is within 0.04 m, and it overlaps with other traces.

FIGURE 9: Estimation result of the horizontal and vertical errors
(January 16-20, 2016).

The GA-ARMA error trace is clearly smaller than the ARMA
error trace. The GA-ARMA horizontal positioning error is
within 0.25 m, but the ARMA error is greater than 0.30 m on
January 17. These types of errors are caused by the intermittent
divergence of the ARMA prediction results. The divergence
problem is less severe in the GA-ARMA prediction.

Table 3 summarizes the ARMA and GA-ARMA position-
ing errors for five days, from January 16 to 20. The errors
are classified into east, north, and up directions. The five-day
means of the east/north standard deviations (STDs) are 0.028
for GA-ARMA and 0.046 m for ARMA.

5. Conclusions

A GA-ARMA algorithm is applied to predict IGS RTS correc-
tions during data loss periods. The GA is used to compute the
best ARMA coefhicients. Four RTS correction components,
radial, along-track, cross-track, and clock corrections, are
processed via independent GA-ARMA processors. Data with
a length of 900s is predicted using data with a length of
3600 s. Although GA-ARMA shows a marginal improvement
over ARMA in its orbit correction prediction, it shows a
significant improvement in its clock correction prediction.
The five-day mean RMS errors of the clock prediction are
0.046 m for ARMA and 0.068 m for GA-ARMA. This error
reduction is approximately 13% of the RT'S clock accuracy.
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Predicted RTS corrections are applied to the GPS broad-
cast ephemeris, and PPP positioning errors are subsequently
analyzed. Due to the better clock prediction performance, the
GA-ARMA 3D positioning accuracy (0.298 m) is well below
that of ARMA (0.461 m). GA-ARMA’s advantage is significant
in terms of vertical positioning accuracy.
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