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The correlation of the thermal mathematical models (TMMs) of spacecrafts with the results of the thermal test is a demanding task
in terms of time and effort.Theoretically, it can be automatized by means of optimization techniques, although this is a challenging
task. Previous studies have shown the ability of genetic algorithms to perform this task in several cases, although some limitations
have been detected. In addition, gradient-based methods, although also presenting some limitations, have provided good solutions
in other technical fields. For this reason, the performance of genetic algorithms and gradient-based methods in the correlation of
TMMs is discussed in this paper to compare the pros and cons of them. The case of study used in the comparison is a real space
instrument flown aboard the International Space Station.

1. Introduction

Thermal control of spacecrafts and experiments is one of the
key technologies needed to ensure the success of any space
mission. This technology tries to make sure that the tem-
perature of any component of the spacecraft or experiment
is always inside the range foreseen during the design. Very
high or very low temperatures can damage the different
components of the spacecrafts, so these extreme temperatures
must be avoided. Also, heat transfer between different com-
ponents must be maintained under control. The design of
the thermal control system is usually done following the hot
and cold cases technique. This approach (consult the book of
Karam [1] for information) bases the design on the coldest
and the hottest situations expected during the mission. It is
performed by means of two thermal mathematical models
(TMMs) that represent the hot and the cold cases. The books
of Gilmore and Redor [2, 3] can be also consulted for more
information about the spacecraft thermal control.

Prior to any space mission, the thermal mathematical
models of the spacecraft are created and different sets of tem-
peratures are numerically calculated for particular mission
phases or events. The use of the Thermal Lumped Param-
eters (TLP) method is very frequent in the space industry.
This method divides the instrument in isothermal nodes
with associated thermal inertias (MCs). These nodes are
connected by means of conductive conductances (GLs) and
radiative conductances (GRs). Reference [4] explains in detail
this methodology.

These computational models must be verified by compar-
ison with the results of the thermal balance test. The space-
craft or the experiment is placed inside a vacuum chamber
where different thermal conditions are applied and it is tested
under different operation modes, reproducing the situations
expected in orbit. These boundary conditions, the operation
modes, and the different thermal properties of the materials
produce a range of thermal gradients inside the spacecraft.
The temperatures of the different parts of the spacecraft are
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measured with thermocouples that are located in strategic
positions, mainly in places where the thermal engineers need
to know the temperatures with some degree of accuracy. As
a result, various distributions of temperatures are obtained
when the thermal test is done. For more detailed information
about the thermal control testing, the book of Meseguer et al.
[5] can be consulted.

In parallel, the TMMs of the spacecraft have predicted
sets of temperatures for the situations tested in the thermal
balance test. In an ideal world, both sets of temperatures
would be the same, if the TMMs were constructed with care
and the geometry and material properties of the components
were known exactly. However, as it could be expected,
this is not the case. There are always differences between
the measured temperatures and the predicted ones, even
for TMMs done with extreme care. Although several well-
established methods exist to calculate the TMM parame-
ters, these methods have some limitations, so this type of
modeling is always approximated. For example, Garmendia
et al. explain in [6] the difficulties associated with the
calculation of the conductive conductances. Moreover, there
are parameters, for example, the contact conductances, whose
exact calculation is almost impossible.

The main objective of the correlation task is to minimize
the differences between the calculated andmeasured temper-
atures. Therefore, the correlation problem can be formulated
as an optimization problem. This optimization is performed
modifying the parameters of the TMM (mainly the GLs, GRs,
and MCs) in such a way that the temperatures calculated by
the thermal solver are as near as possible to the temperatures
measured in the test. If this target is achieved, the thermal
engineerswill have a reliable TMMthat can be used to explore
thermal scenarios that could hardly (or not at all) be studied
by thermal tests.

This type of optimization problemhas the added difficulty
that there is not a unique solution; that is, different sets
of parameters of the TMM can produce almost the same
temperature results. As an extreme situation, it could be
possible to have a set of thermal parameters that produce a set
of temperatures which fits exactly themeasured temperatures
but has no physical meaning. As a consequence, the changes
in the TMM parameters should be done taking into account
the physics behind the calculation of the parameters (geome-
try of the different parts of the spacecraft,material properties,
etc.).This is possible when the correlation is tackledmanually
but it is difficult when automatic correlation is performed by
means of optimization methods.

Different mathematical approaches can be used to handle
the optimization problem already described, and a very
complete description of them can be found somewhere else
[7]. In our previous works [8, 9], our attention was focused
on genetic algorithms (GAs), which are good candidates to
solve the global optimization problem present in the TMM
correlation. At the same time, we felt that classical optimiza-
tion methods (mainly, gradient-based methods) deserved
a deeper attention, as they provide good and operative
solutions in other technical fields [10]. Although this type
of methods tends to find the local optimum, we think that
thermal parameters (GLs,GRs, andMCs) of TMMsproduced

carefully by thermal engineers are, in many cases, close
enough to the real values and, as a consequence, the solution
provided by the thermal solvers is a good starting point for
using classical optimization methods. In a previous work
[11], the use of several algorithms of Broyden class in TMM
correlation was compared with the results obtained bymeans
of a GA. Although some limitations were detected for the
use of Broyden class algorithms, the results obtained were
promising. For this reason, it has been considered of interest
to evaluate more in deep the application of classical methods
to the TMM correlations. In particular, the extensive work
done by Powell, presented in [12–16], and the availability
of FORTRAN subroutines that implemented this work were
crucial to the decision to make a comparison between
classical optimization methods and genetic algorithms.

All in all, we decided to evaluate the performance of
both types of algorithms, basing the comparison on the
reduced thermal mathematical model of an experiment that
was flown aboard the International Space Station (ISS).
This experiment, called TriboLab, executed several tribology
experiments during its mission. More information about it
can be found in [17]. The thermal control system of this
instrument was formed by the radiator, the heaters, the
thermostats, and the multilayer insulation (MLI).

2. Optimization Methods in TMM Correlations

The detailed mathematical description of the different opti-
mization methods employed in the correlation of thermal
tests is outside the scope of this paper. However, we feel that
a succinct description of the employed algorithms and the
software that implements them is a necessary approach to the
study we are doing.

The two types of algorithms studied require the use of
one thermal analysis software to calculate the fitness function
value. An in-house developed software able to solve steady-
state and transient thermal problems including the use of
thermostats and time-dependent boundary conditions has
been used. It solves the set of𝑁 nonlinear transient algebraic
equations (see (1)) that are obtained using the Thermal
Lumped Parameters method, which is briefly explained in
Section 3. The set of equations is solved by means of the
Newton-Raphson linearization technique, using the iterative
methods included in the public domain subroutines of the
ITPACK 2C package developed by Kincaid et al. [18].

𝑛∑
𝑗=1

GL (𝑖, 𝑗) (𝑇𝑖 − 𝑇𝑗) + 𝑛∑
𝑗=1

𝜎 ⋅ GR (𝑖, 𝑗) (𝑇4𝑖 − 𝑇4𝑗 )

+MC𝑖
𝑑𝑇𝑖𝑑𝑡 = 𝑞𝑖.

(1)

2.1. Classical Optimization Methods (Powell Approach). We
have used four different available FORTRAN subroutines to
generate four programs to run correlations. These subrou-
tines are public domain and can be used subjected to some
conditions (see [19]). They are based on an early work of
Professor Powell in 1969, the subroutine VA05, available in
[12]. This subroutine minimizes the sum of squares of 𝑚
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given functions, 𝑓𝑗, 𝑗 = 1, 2, . . . , 𝑚, each of 𝑛 variables,
x = (𝑥1, 𝑥2, . . . , 𝑥𝑛), 𝑚 ≥ 𝑛, without the use of any partial
derivatives, that is, to find x to minimize. In our case, 𝑚
is the number of nodal temperature differences (𝑇measured −𝑇calculated) multiplied by the number of time instants where
temperatures are calculated (in steady state, 1 time instant).
Also, 𝑛 is the number of thermal parameters (GLs, GRs, and
MCs) whose real values are looked for. The method that
VA05 uses is a compromise between three different algo-
rithms for minimizing a sum of squares, namely, Newton-
Raphson, Steepest Descent, and Marquardt. The subroutine
automatically obtains an approximation to the first derivative
matrix following the ideas of Broyden:

(i) Subroutine TOLMIN: this subroutine was developed
later, in 1989. The subroutine minimizes a general
differentiable objective function subject to linear
constraints. The same definition of the objective
function as that in the subroutine VA05 applies here
but now linear constraints can be applied. This is a
very interesting point, as the values of the thermal
parameters must always be positive to have physical
sense. This subroutine needs the user to supply the
partial derivatives of the function with respect to the
thermal parameters (gradient-based method)

(ii) Subroutine NEWUOA: the year of publishing of this
software is 2004. The software seeks the least value of
a function 𝐹 (in our case, the sum of the temperature
differences again) but this time without constraints
and without derivatives. By this definition, it is clear
that we are using a subroutine similar to the VA05
software but with a different approach. In fact, a
quadratic approximation 𝑄 of the 𝐹 function is used
to obtain a fast convergence ratio and successive
values of the 𝑄 approximation are used as the calcu-
lations progress

(iii) Subroutine BOBYQA: this piece of software was pre-
sented in 2009. The subroutine finds a minimum of
a function 𝐹 subject to bounds in the variables. The
user does not supply derivatives. In our case, this
particular approach seems to be very interesting, as
extreme values for the thermal parameters can be
imposed. These extreme values are, in fact, related to
physical values of the problem; for instance, values of
one of the thermal inertia MC(1) must be between
2000 J/∘C and 3000 J/∘C. As can be seen by this def-
inition, BOBYQA is related with TOLMIN software

(iv) Subroutine LINCOA: this is the final work of Professor
Powel, made public in 2014, before his passing away in
April 2015. LINCOA stands for linearly constrained
optimization. The software can be used even if the
derivatives of the 𝐹 function are not available. Lin-
ear constraints are possible with this software and
emphasis is put on the successive calculations of the𝑄 quadratic function that approximates 𝐹 function

2.2. Genetic Algorithms. Genetic algorithms (GAs) are opti-
mization algorithms of general purpose inspired in Darwin’s

theory of evolution. The main advantage of these types of
algorithms is to be able to find the global optimum indepen-
dently of the characteristics of the function. Although they
are approximated algorithms, that is, do not guarantee the
finding of the exact optimum, they are able to provide a good
approximation in a reasonable time.

Thebasic idea consists in generating a randompopulation
of individuals, where each of them represents one possible
solution to the problem.The population progresses by means
of crossover and mutation operators that generate new
individuals, the children, from two previous individuals,
the parents. The parents are randomly selected from the
population but better individuals (those that represent better
solutions to the problem) have more probabilities to be
selected. The children from better parents are expected to
be better individuals, so new better individuals are generated
with the successive generations.

Genetic algorithms are a well-established method of
optimization. Although there are many possible ways of
implementation, one of them must be selected depending on
the problem. For this reason, only a brief description of the
configuration of the GA used in this case is included here.
References [20–22] can be consulted for more information
about GAs.

The genetic algorithm used in this case is an in-house
development similar to the GA used in [8] where the detailed
description can be found.The fitness function used is defined
in (2) and (3), where 𝑁 corresponds to the number of
temperature points or nodes, K corresponds to the number
of instants, and 𝐽 corresponds to the number of cases.
The parents are selected by proportional selection based on
a weighted fitness, following (4), by means of stochastic
sampling with replacement. The crossover operator used
corresponds to the simple arithmetic crossover. The range of
the mutation operator is modified when the fitness has not
been improved in last 20 iterations. The new population is
created using an elitist strategy, so it is formed by the children
and by the best individual of the previous population. The
values of the definition parameters used are collected in
Table 1.

𝐹 (𝑋) = 𝐽∑
𝑗=1

[ 𝐾∑
𝑘=1

[ 𝑁∑
𝑛=1

(node error𝑗,𝑘,𝑛)]]
∀ (node error𝑗,𝑘,𝑛) > target,

(2)

node error𝑗,𝑘,𝑛 = (𝑇calculated)𝑗,𝑘,𝑛 − (𝑇measured)𝑗,𝑘,𝑛 , (3)

𝑓𝑖 = 𝑓𝑖 − 𝛽 where 𝛽 = min
𝑖∈population

(𝑓𝑖) . (4)

The GA is an approximated algorithm where the final
results are influenced by some randomvalues. For this reason,
for each case of study subjected to correlation, the GA has
been run 5 times obtaining 5 correlated models. The reason
of this procedure is twofold. On one side, it makes it possible
to evaluate the percentage of success of the algorithm, and on
the other side it permits evaluating the variability between the
different results obtained.
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Table 1: Values of the GA definition parameters.

Parameters Target
(∘C)

Iteration
max.

Population in
steady-state

cases

Population in
transient cases

Crossover
probability (𝑃𝑐)

Mutation
probability (𝑃𝑚) Variation of 𝑃𝑚

Value 0.5 10,000 10 20 0.2 0.8 1.1

ISS
(node 10000)

TriboLab
lower area

(node 85040)

SPACE
upper area

(node 99271)
upper area

(node 85070)

TriboLab
lower radiator
(node 85041)

upper radiator
(node 85071)

SPACE
lower area

(node 99241)

GL

GL

GL

GL

GR

GR

TriboLab

TriboLab

Figure 1: Thermal network of the TriboLab reduced model (re-
printed from Acta Astronautica, 108 (2015), Eva Anglada and
Iñaki Garmendia, Correlation of thermal mathematical models for
thermal control of space vehicles by means of genetic algorithms,
1–17, Copyright (2014), with permission from Elsevier).

3. Thermal Mathematical Model Description

The thermalmathematical model used to evaluate the perfor-
mance of the studied algorithms corresponds to the reduced
model of the TriboLab experiment previously introduced.
The design of the thermal control system of this experiment
was performed following the hot and cold casesmethodology
and the thermalmathematical model is based on theThermal
LumpedParametersmethod.As a result, twodifferentmodels
were obtained. A detailed model formed by 47 nodes and
the reduced model used in this work. The latter is shown in
Figure 1. This reduced model is formed by 7 nodes, where 4
of them are diffusive nodes representing different instrument
areas (85040, 85041, 85070, and 85071) and the other 3 are
boundary nodes that represent the ISS and the outer space
(10000, 99271, and 99241).

In order to evaluate the performance of the compared
algorithms, it is interesting to have a model where reference
temperatures for all nodes of the model and the theoretical
values of the variables are known. In this way, the results of
the correlation can be better evaluated not only in terms of
error level but also checking that temperature values are good
for all nodes and that reasonable values have been obtained
for the correlated variables. For this reason, instead of using as
reference temperatures the values measured during thermal
tests, the following procedure has been employed.

TheTriboLab reducedmodel has been assumed as the ref-
erence model.That is, the values of its parameters (GLs, GRs,
and MCs) are considered the real ones and the temperatures
obtained from this model are taken as reference temperatures
substituting the measured temperatures.

This model has been transformed modifying the value of
its parameters (GLs, GRs, and MCs) randomly. As a result, a
new model, called base model hereafter, has been obtained.
This base model has been subjected to correlation to evaluate
the performance of the compared algorithms. The four GLs,
the two GRs, and the four MCs that form the model have
been modified in a percentage up to 75%. This implies big
differences between the theoretical values of the parameters
of the reference model and the parameters used in the base
model. These differences are higher than the expected ones
in real cases, but this way the capacity of the algorithms to
succeed in the correlation is tested with a challenging case.
This model is the same as that previously used in the work
presented in [8], where the detailed information about its
values can be found.

The number of variables included in the correlation is 6
in the steady-state cases (the 4 GLs and the 2 GRs) and 10 in
the transient cases (the 4 GLs, the 2 GRs, and the 4 MCs).

4. Results and Discussion

Results have been evaluated considering the temperature
values, the values assigned to the correlated variables, and
the CPU times. The accuracy of the temperature results has
been quantified by means of the error expression shown in
the following equation:

error = ∑𝑁𝑖=1√(𝑇reference − 𝑇calculated)
2

𝑁 . (5)

The error levels existing in the base model subjected
to correlation, that is, the initial situation, are collected in
Table 2.

4.1. Steady-State Cases. A first approximation to evaluate
the capacity of the algorithms to correlate TMMs has been
done with the steady-state cases. Table 3 shows the error
values achieved in the correlations with Powell’s algorithms.
The temperature results obtained for the hot case can be
considered to be exact. For the cold case, the results only can
be considered to be exact with the NEWUOA algorithm; the
rest are not so accurate but they reduce the error from 9.3∘C
to less than 0.45∘C, which is a good result. These values are
similar to those obtained with the GA (see Table 4).

The analysis of the temperature values obtained in all
cases in each node (see Figures 2 and 3) shows that the
values are good in all of them. No nodes with anomalous
temperatures exist in the correlated models.

As it has been introduced previously, one of the difficul-
ties of the TMM correlation is the fact that the solution is
not unique.Therefore, different combinations of the involved
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Table 2: Temperature errors of the base models (∘C).

Case Steady-state
hot case

Steady-state
cold case

Transient
hot case

Transient
cold case

Error (∘C) 8.074 9.308 7.928 5.778

Table 3: Error values achieved with Powell’s algorithms for steady-state cases (∘C).

TOLMIN NEWUOA BOBYQA LINCOA
Hot case (∘C) 0.000 0.000 0.000 0.000
Cold case (∘C) 0.351 0.000 0.442 0.351

Table 4: Error values achieved with the GA for steady-state cases (∘C).

GA
Try 01

GA
Try 02

GA
Try 03

GA
Try 04

GA
Try 05

GA
Average

Hot case (∘C) 0.190 0.216 0.237 0.392 0.301 0.267
Cold case (∘C) 0.407 0.310 0.439 0.318 0.293 0.353

85040 85041 85070 85071

Reference
Initial
TOLMIN
NEWUOA
BOBYQA
LINCOA

GA.Try_1
GA.Try_2
GA.Try_3
GA.Try_4
GA.Try_5

0

20

40

60

80

Te
m
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ra

tu
re

 (∘
C)

Figure 2: Steady-state hot case. Temperatures obtained from corre-
lations.

parameters (GLs, GRs, and MCs) may give solutions which
fulfil the error criteria used to evaluate the correlation but
assign values with no physical sense for some variables. For
this reason, it is interesting to evaluate the values obtained
for the different variables in order to check whether some
algorithms provide better values than others.

Figure 4 shows the values obtained for the variables in
the correlation of the hot and cold steady-state cases with
Powell’s algorithms. The values obtained for each variable
in the hot case correlation by the different algorithms do
not present big differences, with the exception of the value
of GL(10000, 85040) obtained with TOLMIN. Clearly, the
values obtained are close to the initial values and not to the
reference values; that is, the algorithm tends to find a local
minimum close to the initial values.

The values obtained in the correlation of the cold case
present higher variability compared to the hot case. In some

85040 85041 85070 85071

Te
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pe
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tu
re

 (∘
C)

0

−40

−30

−20

−10

Reference
Initial
TOLMIN
NEWUOA
BOBYQA
LINCOA

GA.Try_1
GA.Try_2
GA.Try_3
GA.Try_4
GA.Try_5

Figure 3: Steady-state cold case. Temperatures obtained from cor-
relations.

cases, for example, for the GRs, the values are closer to the
reference values than to the initial ones. But, in other cases
as GL(85040, 85070), two of the values assigned are equal to
zero which is really far from the reference value.

Figure 5 shows the same values but obtained with the
genetic algorithm. In general, the results can be considered
similar to those obtained with the classical methods. No big
differences are found in terms of variability or proximity to
the reference values. In some cases, the values obtained with
the classical methods are slightly better and in other cases the
values obtained with the GA are better.

After performing independently the correlations of the
hot and cold cases, it could be expected that the values of each
variable should be the same in the hot and cold cases, but, as
can be observed, the values obtained in the correlation of the
hot case do not match with those obtained in the cold case
correlations. In fact, if the values obtained in the correlation
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Figure 4: Steady-state, classical methods. Variable values obtained from correlations.
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Figure 5: Steady-state GA. Variable values obtained from correlations.

of the hot case, for example, with NEWUOA algorithm, are
used in the cold case, the temperatures obtained present an
error equal to 3.2∘C, lower than the initial error (9.3∘C) but
not very accurate. In the alternative case, when the values
obtained in the correlation of the cold case (NEWUOA) are
used with the hot case, the error is equal to 9.6∘C, higher
indeed than the error of the base model (8.07∘C). This fact
was also studied in a previous work devoted to the TMM

correlations with GAs [8], where the same circumstance was
observed. In that work, it was shown that the simultaneous
correlation of the hot and cold cases solved this problem,
obtaining variable values that fit well for the hot and cold
cases. The limitation here is that the implemented versions
of Powell’s algorithms do not permit performing the simulta-
neous correlation of two different steady-state cases as are the
hot and cold cases.
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Table 5: Error values achieved with Powell’s algorithms for transient cases (∘C).

TOLMIN NEWUOA BOBYQA LINCOA
Hot and cold cases combined (∘C) — 0.400 1.965 0.885

Table 6: Error values achieved with the GA for transient cases (∘C).

GA
Try 01

GA
Try 02

GA
Try 03

GA
Try 04

GA
Try 05

GA
Average

Hot and cold cases
combined (∘C) 0.202 0.118 0.191 0.163 0.216 0.178
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Figure 6: Transient hot and cold cases combined sequentially.

4.2. Transient Cases. As it has been observed, the indepen-
dent correlation of the hot and cold cases is not valid to obtain
a set of variables useful for both cases. Therefore, it is needed
to tackle the correlation considering the hot and cold cases
simultaneously.

In the case of the GA, this is not a difficulty and both
cases can be simultaneously correlated without problems. In
the case of the present implementation of Powell’s algorithms,
this is not possible in a straightforward way, so the following
workaround has been depicted. The cases have been com-
bined consecutively: first the hot case and next the cold case.
In this way, a new case to be used in the correlation has
been created, combining the boundary conditions of each
case sequentially. Figure 6 shows the temperature profile of
this case.

Table 5 collects the error values calculated for the cor-
relation of the combined hot and cold transient cases with
the classical methods. In this case, the algorithm TOLMIN
has not converged and does not give results. Considering that
the initial error is equal to 6.8∘C, the other three algorithms
give good results, the best being those obtained with the
NEWUOA algorithm (error: 0.4∘C).

In the case of the GA, the results are collected in Table 6.
In each of the 5 trials performed, the GA has reached an error
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Figure 7: Transient hot case. Temperatures obtained from correla-
tions with NEWUOA.

value lower than the NEWUOA algorithm, the average error
being equal to 0.18∘C.

Figures 7–10 show the comparison between the reference
and calculated temperatures after the correlation performed
with the NEWUOA algorithm and the GA. In the case of
GA, the values correspond to the trial which has reached the
lower error, Try 02. As can be observed, the results obtained
with both alternatives are good, although those obtainedwith
NEWUOA are slightly worse, especially in nodes 85040 and
85041.

If we consider the variable values (see Figure 11), the varia-
bility obtained with Powell’s algorithms is significant. TOL-
MIN algorithm has not converged not providing results and
BOBYQA clearly fails in GL(10000, 85040) and GL(85040,85070). The values obtained with NEWUOA are quite good.
The values obtained with the GA present lower variability. It
is remarkable that, in this combined case, the values obtained
are closer to the reference values than to the initial values for
both approaches.

4.3. CPU Times. Table 7 collects the CPU times required for
the different algorithms to perform the correlations. As can
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Table 7: CPU times (in seconds).

TOLMIN NEWUOA BOBYQA LINCOA GA∗

Steady-state, hot case 10 3 2 5 1.5
Steady-state, cold case 13 13 5 5 15
Transient, hot and cold case — 1020 89 104 179
∗The values shown for the GA correspond to the average value obtained in the 5 executions of the algorithm.
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Figure 8: Transient hot case. Temperatures obtained from correla-
tions with GA.
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Figure 9: Transient cold case. Temperatures obtained from correla-
tions with NEWUOA.
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Figure 10: Transient cold case. Temperatures obtained from corre-
lations with GA.

be observed, the calculations are really fast for the steady-
state cases, 15 seconds maximum. The times needed for the
transient cases are higher but are also very fast. The longest
time,which corresponds to theNEWUOAalgorithm, is equal
to 1020 seconds (17 minutes).

Numerical values of the elapsed CPU times presented in
Table 7 should be read with some caution, as the computers
used for Powell’s algorithms and GA algorithms, although
similar, were not exactly the same.

Although one of the drawbacks of the genetic algorithms
is usually the high number of iterations needed to perform
the correlation, as can be observed in this case, this does not
imply long CPU times.

4.4. Considerations about Convergence. It is very convenient
to study the convergence of the results obtained with the
different correlation methods explained so far. In fact, this
is a critical point that could make the difference between a
method that is interesting and amethod that could be used for
practical applications. There are two main aspects that are to
be studied: first the temperature distribution (thosemeasured
in the tests versus those predicted in the models) and second
the value of the thermal parameters of the model (GLs, GRs,
and MCs).
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Table 8: GLs values for case 1 and case 2 [W/∘C].

Parameter GL(1, 2) GL(1, 3) GL(1, 4) GL(2, 3) GL(2, 4) GL(3, 4)
Case 1 [W/∘C] 8.00 6.00 5.00 4.00 8.00 3.00
Case 2 [W/∘C] 6.00 7.00 5.57 8.00 6.94 2.97
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Figure 11: Transient. Variable values obtained from correlations.

4.4.1. Convergence of Temperatures. The methods already
presented (gradient-based and genetic algorithms-based) are,
in general, capable of doing a good job in reproducing the
temperatures measured in the tests. To do so, they change
the values of the thermal parameters and reach a reasonable
solutionwithmoderate CPU times, as has been shown before.
For bigger models, the CPU times increase significantly, but
values can be affordable, at least with the examples studied
with genetic algorithms (see [9] for more details). In fact, the
objective of correlation, that is, the minimization of the sum
of the differences between themeasured temperatures and the
calculated ones, is almost always achieved with both types of
methods. As an exception, the TOLMIN subroutine has not
achieved this objective (see Figure 11). We believe that this
subroutine is more appropriate for seeking local minimums,
those no “far” from the initial solution provided. So, the big
mismatch between the base parameters and the reference
ones (which could be as big as 75%) may be the reason of this
bad result.

4.4.2. Convergence of Thermal Parameters. To reach the
reference parameters when starting with the base parameters
through the optimization of the differences of temperatures
is a difficult task. The first and most important difficulty is
the fact that the inverse problem does not have a unique
solution; that is, different sets of thermal parameters can
produce the same temperature distribution. If this is so, how
could the optimization method distinguish between a set of

GL(1, 2) 2

1 4
GL(1, 4) 

G
L(

2,
 3

) 

GL(3, 4) 3GL(1, 3)

GL(2, 4) 

Figure 12: Complementary model.

“correct” thermal parameters and a set of “incorrect” ones if
both produce a minimum in the temperature optimization
method? There is not a simple answer to this question, but
it is interesting to note that better results for the thermal
parameters are obtained if both hot and cold cases are
used simultaneously to do the temperature correlation. As a
consequence, a complementary study has been developed in
order to understand this fact.

(1) Complementary Model. A new model formed by 4 nodes
and 6GLs, shown in Figure 12, has been defined together with
two study cases. Both cases have a source of power equal to
120W applied in node 1 (𝑞1 = 120W) and a fixed temperature
of 20∘C set in node 4 (𝑇4 = 20∘C).The difference between the
two study cases is the values assigned to the GLs, which are
shown in Table 8.
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Table 9: Temperature results (∘C).

Node 1 2 3 4
Case 1 (𝑞2 = 120W) 30.84 25.69 26.75 20.00
Case 2 (𝑞2 = 120W) 30.84 25.69 26.75 20.00

Table 10: Heat flows (W).

Parameter 𝑞1→2 𝑞1→3 𝑞1→4 𝑞2→3 𝑞2→4 𝑞3→4
Case 1 41.24 24.53 54.22 −4.267 45.51 20.27
Case 2 30.93 28.62 60.44 −8.53 39.47 20.09

Table 11: Temperature results (∘C).

Node Case 1𝑞1 = 180W
Case 2𝑞1 = 180W

Case 1𝑞2 = 120W
Case 2𝑞2 = 120W

1 36.27 36.27 25.69 25.69
2 28.53 28.53 29.38 29.89
3 30.13 30.13 25.51 26.62
4 20.00 20.00 20.00 20.00

The GLs values of case 1 have been defined arbitrarily.
The GLs of case 2 have been selected to be different from
the values of case 1 but to produce the same temperature
distribution.The procedure followed to obtain the GLs values
of case 2 has been the following: the temperature results for
case 1 have been calculated with the help of the TK software,
obtaining the values shown in Table 9. Then, three arbitrary
values have been assigned to three parameters of themodel, in
this case GL(1, 2), GL(1, 3), andGL(2, 3). Taking into account
these values, the temperature results of case 1, (1), and the
boundary conditions 𝑞1 = 120W and𝑇4 = 20∘C, the values for
the other three parameters GL(1, 4), GL(2, 4), and GL(3, 4)
have been obtained.

Case 2 produces the same nodal temperatures as case 1
(see Table 9), although the flow distributions between nodes
are different in both cases (see Table 10). This is just a
simple example that shows that two different sets of thermal
parameters can produce the same temperature distribution.

Moreover, if we change the power applied in node 1
and set it to 180W (𝑞1 = 180W) in both cases, the same
temperature distribution is obtained for both cases 1 and 2
(see Table 11). This fact is explained because we have not
altered the general “layout” of the model; we are applying
the boundary conditions in the same nodes in a very
simple model. Also, it is important to note that only linear
conductances are present in this case (only GLs, not GRs).

However, if we modify original cases 1 and 2 applying
120W in node 2 rather than node 1, that is, 𝑞2 = 120W,
maintaining 𝑇4 = 20∘C, we obtain two different temperature
distributions for each case as can be seen in Table 11.

This fact implies that two sets of thermal parameters that
produce the same temperature distribution with a particular
set of boundary conditions will produce a different distribu-
tion of temperatures if a different set of boundary conditions

is applied. This is a mechanism to discriminate between two
sets of thermal parameters that produce the same result for
one set of boundary conditions.

When the hot and cold cases are used at the same time
for the correlation of temperatures, we are somehow applying
different sets of boundary conditions. In doing so, we are
“discriminating” between solutions that produce a bigger
error than others and we are conducted by the optimization
algorithms towards a solution closer to the reference values.
The hot and cold cases “activate” different aspects of the
model and the algorithms have more information in order
to get the reference answer. Somehow, we are providing
the optimization algorithms with more useful information.
Finally, using transient hot and cold cases for the correlations
means that more information is added in the intermediate
steps, facilitating the finding of the reference values of the
thermal parameters. If in these transient cases the boundary
conditions change with time (which is quite usual, for exam-
ple, heaters switch on or off depending on the temperatures,
space sink temperatures change with time, etc.), we are even
adding more useful information to the algorithm.

(2) TriboLab Model. The ideas expressed in the previous
paragraphs have been applied to the TriboLab model (Fig-
ure 1). The situation is far more complicated in this case,
mainly because of the presence of 2 radiative conductances
GR(85041, 99241) and GR(85071, 99271) and because the
power input takes place in 4 nodes (85040, 85041, 85070,
and 85071). Table 12 shows the thermal parameters of the
TriboLab model and of one alternative model that produces
the same temperature distribution for the TriboLab hot case.
The thermal parameters of the alternative model have been
calculated in the same way as the previous complementary
model.
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Table 12: TriboLab model definition.

Parameter TriboLab model Alternative model
GL(10000, 85040) [W/∘C] 0.033270 0.02567
GL(85040, 85070) [W/∘C] 0.48830 0.2
GL(85040, 85041) [W/∘C] 3.2190 5.0
GL(85070, 85071) [W/∘C] 4.4309 2.0014
GR(85041, 99241) [m2] 0.038300 0.0529
GR(85071, 99271) [m2] 0.061200 0.0420

Table 13: Temperature results [∘C].

Node TriboLab model𝑞 (W) = 𝑞/2 Alternative case𝑞 (W) = 𝑞/2
85040 21.8251 24.1327
85041 19.4234 21.5761
85070 1.7115 1.5587
85071 −0.6405 −0.9970

The change applied has been to reduce the input powers to
the half in these two cases.The new distributions of tempera-
tures obtained for the two models (TriboLab and alternative)
are different, as can be seen in Table 13. In the complementary
model previously described, the change in the value of the
source of power for the two sets of thermal variables did not
produce different set of temperatures. But, in this model, the
presence of GRs and the fact that the heat source is applied
in four nodes and not in only one make the modification of
the heat source values be enough to produce a different set of
temperatures.

All these initial steps about the convergence of the ther-
mal parameters towards the reference parameters need more
in-depth investigation, trying to formulate in a consistent way
the advantages of using hot and cold cases simultaneously.
We believe that the presence of GRs in the TMMs facilitates
the finding of the reference parameters when optimizing the
correlation. This is so because of the nonlinearity implied
in the radiation heat transfer process. If two sets of thermal
parameters have the same temperature distribution and the
applied power changes, the new distributions of temperatures
for the two sets will probably be somehow different. We also
believe that the addition of other thermal scenarios of the
mission (not only the hot and cold cases but also the nominal
functioning, for instance)will providemore chances to obtain
better results.

5. Conclusions

Results obtained for steady-state cases with both types of
algorithms, classical and GA, are good in terms of temper-
atures. The error levels have been reduced from 8.1 and 9.3∘C
to values below 0.44∘C, and Powell’s algorithms indeed have
reached the exact value in some cases.The nodal temperature
distributions obtained are also appropriate and the CPU
times are extremely short, less than 15 seconds.

Unfortunately, the values assigned to the variables are not
good. The main problem is the difference between the values
obtained in the correlation of the hot and the cold cases. The
values obtained in one case, hot case, for example, fail when
used in the other case, cold case, and vice versa. To obtain
a set of values appropriate for both cases, performing the
simultaneous correlation of both cases is needed. This is not
a problem for the GA but unfortunately it is not possible with
the present implementation of Powell’s algorithms.

In the transient case combining the hot and cold cases, the
results are good in terms of temperature with the exception
of TOLMIN algorithm which does not converge. Results
obtainedwithBOBYQAandLINCOAare not exceptional but
get a reduction of the initial error (6.8∘C) to 1.97 and 0.88∘C,
respectively. NEWUOA algorithm reaches an error level
equal to 0.4∘C, which is a good value, and the GAs succeed
in reaching values below 0.22∘C. The nodal temperature
distribution is also appropriate and the CPU times are very
short with the GA, less than 3 minutes. The time needed by
NEWUOAalgorithm is longer, 17minutes, but is a good value
compared with the time needed for manual correlation.

Referring to the variable values, in this case, the sets of
values obtained are valid for the hot and cold cases. With the
exception of BOBYQA, which clearly fails in the calculation
of some values, the rest provide reasonable values. It is
remarkable that, in this combined case, the values obtained
tend to converge to values closer to the reference values
than to the initial values. A complementary model has been
presented to explain the better convergence in this situation.

As a general conclusion, it can be said that the studied
gradient-based solutions are not an appropriate tool for the
steady-state correlation of TMMs of spacecrafts, with the use
of a GA being a better solution. In the case of the correlation
of transient TMMs, the use of NEWUOA algorithm is a
valid option but the GA seems to be a better solution. The
GA has been faster and the values provided for the thermal
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parameters tend to converge a little better to the reference
values.
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