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In order to improve the accuracy of the dynamical model used in the orbit determination of the Lagrangian navigation satellites, the
nonlinear perturbations acting on Lagrangian navigation satellites are estimated by a neural network. A neural network based state
observer is applied to autonomously determine the orbits of Lagrangian navigation satellites using only satellite-to-satellite range.
This autonomous orbit determination method does not require linearizing the dynamical mode. There is no need to calculate
the transition matrix. It is proved that three satellite-to-satellite ranges are needed using this method; therefore, the navigation
constellation should include four Lagrangian navigation satellites at least. Four satellites orbiting on the collinear libration orbits
are chosen to construct a constellation which is used to demonstrate the utility of this method. Simulation results illustrate that the
stable error of autonomous orbit determination is about 10m. The perturbation can be estimated by the neural network.

1. Introduction

The navigation of deep space probes is one of the main
problems that restrict the deep space exploration. Gener-
ally, navigation support for deep space probes is primarily
provided by the NASA’s Deep Space Network (DSN). In
order to improve the navigation performance by efficiently
determining angular position of interplanetary spacecraft,
the delta differential one-way tanging technique is also
employed by some missions. Besides that, some autonomous
navigation strategies are also proposed to support future
deep space exploration missions. Autonomous navigation is
important for deep space probes to deal with communication
delay as well as reducing the dependency on ground stations.
Several autonomous navigationmethods have been proposed
for deep space probes. As early as 1968, the sextant had been
used for autonomous navigation in Apollo program [1]. In
1999, Deep Space 1 achieved autonomous orbit determination
by tracking small celestial bodies with an optical sensor [2].
The comet probe “Deep Impact” carried out its navigation
automatically based on an optical navigation system [3]. The
rotation period of X-ray pulsar is extremely stable; therefore,
time and the location of spacecraft have been proposed to be

determined by tracking several X-ray pulsars in [4, 5]. The
Global Positioning System (GPS) can support the navigation
of deep space probes when they are orbiting in low Earth
orbits and medium Earth orbits. For deep space transfer
orbits and deep space target orbits, due to limited visibil-
ity, extremely low signal-to-noise ratio, and poor relative
geometry among sources and users, GPS is not adequate. In
2005, Hill suggested placing navigation constellation on the
periodic orbits in the vicinity of libration points of the Earth-
Moon system to support deep space navigation [6]. Similar
to GPS, a high-precision satellite navigation constellation
which consists of libration point satellites in the Earth-Moon
system is introduced to provide navigation information for
deep space probes, which can be called, accordingly, the
Lagrangian point satellite navigation system. The satellites
which construct the Lagrangian point satellite navigation
system are called Lagrangian navigation satellites. Zhang and
Xu analyzed the architecture and navigation performance of
the Lagrangian point satellite navigation system [7–9]. The
Lagrangian navigation constellation is introduced to navigate
the deep space probes autonomously. Hence the navigation
constellation itself should have the ability of autonomous
orbit determination (AOD). In [10], the feasibility of AOD
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for satellites in quasiperiodic orbits about the Earth-Moon
libration point was verified. Based on circular restricted
three-body problem (CRTBP), Du et al. researched the
autonomous orbit determination method of satellites in halo
orbits, and only satellite-to-satellite range was used as obser-
vation [11]. For the Earth navigation satellite constellation,
there is a rank deficiency problem when only satellite-to-
satellite range is used to determine the orbit. However, the
rank deficiency problem does not exist for the Lagrangian
navigation satellites because of the special dynamics near
the libration points [6]. Thus, the Lagrangian navigation
satellites in the navigation constellation can autonomously
determine their orbits using only satellite-to-satellite range.
In [12], Gao et al. discussed the algorithm of autonomous
orbit determination using only the satellite-to-satellite range
measurement for Lagrangian navigation constellation. The
current studies aboutAODof Lagrangiannavigation satellites
are under the CRTBP model. However, the motion of the
Moon around the Earth is eccentric. Therefore, the elliptic
restricted three-body problem (ERTBP) is more accurate to
describe the motion of the Lagrangian navigation satellite
[13]. The ERTBP has been discussed in detail in [14–16].
Our purpose here is to extend the applicability of ERTBP
to the study of the AOD of Lagrangian navigation satellites.
In this study, we consider ERTBP with perturbation. The
perturbation is estimated using a neural network. Meanwhile
an observer is designed to determine the orbit of Lagrangian
satellite.We reference the design of a reduced-ordermodified
state observer which is introduced in [17]. However, in [17],
the authors assume that the position can be measured. In our
study, we improve the observer which can estimate the state
of Lagrangian satellite with only satellite-to-satellite range.

First the dynamical model of ERTBP with perturbation
is introduced. Then we design a neural network based state
observer to determine the orbit of Lagrangian satellites.
Afterwards the stability of the observer is proved. Finally four
Lagrangian satellites are chosen to validate the effectiveness of
this AOD method.

2. Elliptic Restricted Three-Body
Problem with Perturbation

As shown in Figure 1, 𝑃1 and 𝑃2 are the primaries in the
three-body system. 𝑃1 and 𝑃2 are in elliptical orbits. 𝑃 is the
third body which is vanishingly small compared to the two
primaries. Similar to the CRTBP, we study the motion of 𝑃 in
a rotating coordinates.

Let 𝐶-𝑋𝑌𝑍 represent the barycentric synodic coordinate
depicted in Figure 1; the 𝑥-axis of this frame is along the
radius vector, which connects the primaries, positive in the
direction pointing from 𝑃1 to 𝑃2. The 𝑦-axis of this frame is
perpendicular to the 𝑥-axis, positive in the direction of the
motion of 𝑃2. The 𝑋𝑌 frame rotates with an angular velocity
equal to the instantmotion of𝑃2 with respect to𝑃1.The 𝑧-axis
is perpendicular to the orbital plane of the primaries.

The equations of motion in ERTBP are dimensionless.
The dimensionless units are as follows:

[𝑀] = 𝑚1 + 𝑚2
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Figure 1: The barycenter synodic coordinates 𝐶-𝑋𝑌𝑍 and the
libration points.

[𝐿] = 𝑎 (1 − 𝑒2)
1 + 𝑒 cos𝑓

[𝑇] = [ 𝐿3𝐺 (𝑚1 + 𝑚2)]
1/2 = √1 + 𝑒 cos𝑓̇𝑓 ,

(1)

where 𝑚1 and 𝑚2 are the masses of the two primaries. 𝑎, 𝑒,
respectively, refer to the semimajor axis and eccentricity of
the two primaries’ elliptical relative revolving orbit. 𝑓 is the
true anomaly of the secondary on the elliptic orbit. Then the
motion of the Lagrangian satellite in the barycentric synodic
coordinate system is governed by the following [18]:

𝑋󸀠󸀠 − 2𝑌󸀠 = 11 + 𝑒 cos𝑓 𝜕Ω𝜕𝑋
𝑌󸀠󸀠 + 2𝑋󸀠 = 11 + 𝑒 cos𝑓 𝜕Ω𝜕𝑌

𝑍󸀠󸀠 = 11 + 𝑒 cos𝑓 𝜕Ω𝜕𝑍 .
(2)

𝑓 is taken as the time-like independent variable.The first and
second derivatives of the coordinate with respect to 𝑓 are
calculated as

𝑋󸀠 = 𝑑𝑋𝑑𝑓 ,
𝑋󸀠󸀠 = 𝑑2𝑋𝑑𝑓2 .

(3)

Ω is the pseudo-potential function of the three-body prob-
lem; it is described as follows:

Ω = 12 [𝑋2 + 𝑌2 + 𝑍2 + 𝜇 (1 − 𝜇)] + 1 − 𝜇𝑟1 + 𝜇𝑟2 , (4)

where 𝜇 = 𝑚2/(𝑚1 + 𝑚2), 𝑟1 = √(𝑋 + 𝜇)2 + 𝑌2 + 𝑍2, 𝑟2 =
√(𝑋 − 1 + 𝜇)2 + 𝑌2 + 𝑍2.

In this study, only the motions around the collinear
libration point 𝐿1 or 𝐿2 are investigated.Therefore the origin
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Figure 2: The 𝐿1-centered synodic reference frame.

of the coordinate can bemoved from the barycenter of system
to the interested libration point for convenient analysis. As
shown in Figure 2, the instantaneous distance between the
libration point and its closest primary which is denoted as 𝛾
is chosen as the new length unit. The new reference frame is
defined as the 𝐿1- or 𝐿2-centered synodic reference frame.
The directions of the axes of this new coordinate system are
coincident with the barycentric synodic reference frame.

Let (𝑥, 𝑦, 𝑧, 𝑥󸀠, 𝑦󸀠, 𝑧󸀠) represent the state variables in 𝐿1-
or 𝐿2-centered synodic reference frame. The transformation
of coordinates between the barycentric synodic frame and the𝐿1- or 𝐿2-centered synodic system is represented as follows
[19]:

𝑋 = 𝛾 (𝑥 ∓ 1) + 1 − 𝜇
𝑌 = 𝛾𝑦
𝑍 = 𝛾𝑧,

(5)

where the upper sign refers to the 𝐿1 case and the lower one
refers to the 𝐿2 case. The linearized equations of motion in
the 𝐿1- or 𝐿2-centered synodic system can be formulated as
follows [20]:

𝑥󸀠󸀠 − 2𝑦󸀠 − (1 + 2𝑐2) 𝑥 = ∑
𝑖≥1

[(−𝑒)𝑖 cos𝑖𝑓 (1 + 2𝑐2) 𝑥]
𝑦󸀠󸀠 + 2𝑥󸀠 − (1 − 𝑐2) 𝑦 = ∑

𝑖≥1

[(−𝑒)𝑖 cos𝑖𝑓 (1 − 𝑐2) 𝑦]
𝑧󸀠󸀠 + 𝑐2𝑧 = ∑

𝑖≥1

[(−𝑒)𝑖 cos𝑖𝑓 (1 − 𝑐2) 𝑧] ,
(6)

where 𝑐2(𝜇) = (1/𝛾3𝑗 )(𝜇 + (1 − 𝜇)𝛾2𝑗 /(1 ∓ 𝛾𝑗)3) and 𝛾𝑗 (𝑗 =1, 2) is the instantaneous distance between 𝐿𝑗 and its closest
primary.

We define a new variable 𝑋 = [𝑥, 𝑦, 𝑧, 𝑥󸀠, 𝑦󸀠, 𝑧󸀠]𝑇; then
(6) can be written as

𝑋󸀠 = 𝐴𝑋, (7)

where

𝐴 =

[[[[[[[[[[[[[[[[[
[

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

(1 + 2𝑐2)(1 + ∑
𝑖≥1

[(−𝑒)𝑖 cos𝑖𝑓]) 0 0 0 2 0
0 (1 − 𝑐2)(∑

𝑖≥1

[(−𝑒)𝑖 cos𝑖𝑓] + 1) 0 −2 0 0
0 0 0 0 0 −𝑐2 + ∑

𝑖≥1

[(−𝑒)𝑖 cos𝑖𝑓 (1 − 𝑐2)]

]]]]]]]]]]]]]]]]]
]

(8)

In addition to the gravitational force from the two primaries,
several perturbations can affect the motion of Lagrangian
satellite.When these perturbations are considered, themotion
equation of the Lagrangian satellite can be described as

𝑋󸀠 = 𝐴𝑋 + 𝐵𝑔 (𝑋) , (9)

where

𝑔 (𝑋) = [
[
𝑔𝑥𝑔𝑦𝑔𝑧

]
]

(10)

is the nonlinear perturbing force on per unit mass. And

𝐵 =
[[[[[[[[[[[
[

0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

]]]]]]]]]]]
]

. (11)
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3. The Observation

In this paper, satellite-to-satellite range is the observation.The
relationship between the observation and the state is

𝑌 = 𝜌 (𝑋, 𝑡) = √(𝑥 − 𝑥2)2 + (𝑦 − 𝑦2)2 + (𝑧 − 𝑧2)2, (12)

where [𝑥 𝑦 𝑧]𝑇 and [𝑥2 𝑦2 𝑧2]𝑇 are the position variable
of Lagrangian satellite 1 and Lagrangian satellite 2, respec-
tively, in 𝐿1- or 𝐿2-centered synodic reference frame.

Expanding (12) in a Taylor series with respect to estimated
state yields

𝑌 = √(𝑥 − 𝑥2)2 + (𝑦 − 𝑦2)2 + (𝑧 − 𝑧2)2
= �̂� + 𝜕𝑌𝜕𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=𝑥 (𝑥 − 𝑥) + 𝜕𝑌𝜕𝑦
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑦=𝑦 (𝑦 − 𝑦)

+ 𝜕𝑌𝜕𝑧
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧=�̂� (𝑧 − �̂�) + ⋅ ⋅ ⋅ .

(13)

We get the linearized relation between observation and states
by neglecting the higher order terms.

𝑌 = �̂� + 𝜕𝑌𝜕𝑥
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=𝑥 (𝑥 − 𝑥) + 𝜕𝑌𝜕𝑦1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑦=𝑦 (𝑦 − 𝑦)

+ 𝜕𝑌𝜕𝑧
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧=�̂� (𝑧 − �̂�)

= �̂� + 𝑥 − 𝑥2𝜌 (𝑥 − 𝑥) + 𝑦 − 𝑦2𝜌 (𝑦 − 𝑦)
+ �̂� − 𝑧2𝜌 (𝑧 − �̂�) .

(14)

Now define the state estimate error as

𝑋 = 𝑋 − �̂�. (15)

Further, the residual error of observation is defined as

�̃� = 𝑌 − �̂�. (16)

Then we get

�̃� = 𝐶𝑋, (17)

where

𝐶 = [𝑥 − 𝑥2𝜌 𝑦 − 𝑦2𝜌 �̂� − 𝑧2𝜌 0 0 0] . (18)

Usually we only can get the estimated value of the position of
Lagrangian satellite 2; thus the matrix 𝐶 can be calculated by
using the following:

𝐶 = [𝑥 − 𝑥2𝜌 𝑦 − 𝑦2𝜌 �̂� − �̂�2𝜌 0 0 0] . (19)

4. Design of the Adaptive Observer Based on
Neural Network

The perturbation 𝑔(𝑋) in (9) can be estimated using a neural
network over a compact set𝐷𝑋 as follows [17]:

𝑔 (𝑋) = 𝑊𝑇𝜙 (𝑋) + 𝜀 (𝑋) ‖𝜀‖ ≤ 𝜀∗, 𝑋 ∈ 𝐷𝑋, (20)

where 𝑊 is a matrix of unknown neural network weights,𝜙(𝑋) is a known vector of bounded basis functions, and 𝜀∗
is a uniform bound on the approximation error.

In order to estimate the state of Lagrangian satellite using
the satellite-to-satellite range, an observer is designed as

�̂�󸀠 = 𝐴�̂� + 𝐵 [𝑔 (�̂�) − 𝜐 (𝑓)] + 𝐾�̃�, (21)

where 𝜐(𝑓) is a robust term that will be determined later. 𝑓
is the time-like independent variable. 𝐾 is a user-specified
gain matrix. 𝑔(�̂�) is the estimated uncertainty vector which
is given by

𝑔 (�̂�) = �̂�𝑇𝜙 (�̂�) . (22)

A weight estimate update ̇̂𝑊 is designed as

̇̂𝑊 = 𝐹 (𝜙 (�̂�) �̃�𝑇 − 𝜎�̂�) , (23)

where 𝐹 is a positive-definite symmetric matrices that will be
determined later. And

𝜐 (𝑓) = −𝐷 �̃�󵄩󵄩󵄩󵄩󵄩�̃�󵄩󵄩󵄩󵄩󵄩 − 𝜀max�̃�. (24)

𝜙(�̂�) is calculated as follows [17]:

𝜙 (�̂�) = [1 𝑥𝑅⊕
𝑦𝑅⊕

�̂�𝑅⊕
𝑥𝑦𝑅2⊕

𝑥�̂�𝑅2⊕
𝑦�̂�𝑅2⊕ ] . (25)

Now we have completed the design of the observer. How-
ever when this method is used to determine the orbits of
the Lagrangian satellite in a navigation constellation, the
number of the Lagrangian navigation satellites must satisfy
a constraint condition. In the following, we will derive the
minimum number of the Lagrangian navigation satellites
which is needed in this method.

In order to prove that the designed observer in (21) can
estimate the state of Lagrangian satellites accurately, we define
the errors in the neural network weights and the basis vector𝜙 as follows:

�̃� = 𝑊 − �̂�
𝜙 = 𝜙 (𝑋) − 𝜙 (�̂�) . (26)

And a candidate Lyapunov functions is chosen as [17]

𝑉 = 12𝑋𝑇𝑃𝑋 + 12 tr [�̃�𝑇𝐹−1�̃�] , (27)
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where 𝑃 and 𝐹 are positive-definite symmetric matrices.
By differentiating (27), the Lyapunov function’s derivative is
illustrated as

�̇� = 𝑋𝑇𝑃 ̇̃𝑋 + tr [�̃�𝑇𝐹−1 ̇̃𝑊] = 𝑋𝑇𝑃 {(𝐴 − 𝐾𝐶)𝑋
+ 𝐵 [𝑊𝑇𝜙 (𝑋) − �̂�𝑇𝜙 (�̂�) + 𝜐 (𝑓)] + 𝐵𝜀 (𝑋)}
+ tr [�̃�𝑇𝐹−1 ̇̃𝑊] .

(28)

We define
𝐴𝑐𝑙 = 𝐴 − 𝐾𝐶. (29)

Then it yields

�̇� = 𝑋𝑇𝑃{𝐴𝑐𝑙𝑋 + 𝐵 [𝑊𝑇𝜙 (𝑋) − 𝑊𝑇𝜙 (�̂�)
+ 𝑊𝑇𝜙 (�̂�) − �̂�𝑇𝜙 (�̂�) + 𝜐 (𝑓)] + 𝐵𝜀 (𝑋)}
+ tr [�̃�𝑇𝐹−1 ̇̃𝑊] = 𝑋𝑇𝑃 {𝐴𝑐𝑙𝑋 + 𝐵 [𝑊𝑇𝜙
+ �̃�𝑇𝜙 (�̂�) + 𝜐 (𝑓) + 𝜀 (𝑋)]} + tr [�̃�𝑇𝐹−1 ̇̃𝑊]
= 12𝑋𝑇 [𝑃𝐴𝑐𝑙 + 𝐴𝑇𝑐𝑙𝑃]𝑋 + 𝑋𝑇𝑃𝐵 [𝑊𝑇𝜙
+ �̃�𝑇𝜙 (�̂�) + 𝜐 (𝑓) + 𝜀 (𝑋)] + tr [�̃�𝑇𝐹−1 ̇̃𝑊] .

(30)

If 𝑃𝐵 = 𝐶𝑇, it will yield
�̇� = 12𝑋𝑇 [𝑃𝐴𝑐𝑙 + 𝐴𝑇𝑐𝑙𝑃]𝑋 + (𝐶𝑋)𝑇 [𝑊𝑇𝜙

+ �̃�𝑇𝜙 (�̂�) + 𝜐 (𝑓) + 𝜀 (𝑋)] + tr [�̃�𝑇𝐹−1 ̇̃𝑊]
= 12𝑋𝑇 [𝑃𝐴𝑐𝑙 + 𝐴𝑇𝑐𝑙𝑃]𝑋
+ tr {[𝑊𝑇𝜙 + �̃�𝑇𝜙 (�̂�) + 𝜐 (𝑓) + 𝜀 (𝑋)] �̃�𝑇
+ [�̃�𝑇𝐹−1 ̇̃𝑊]} .

(31)

Here the Meyer-Kalman-Yakubovich (MKY) lemma [17, 21]
is used to derive 𝑃𝐵 = 𝐶𝑇. Noting that 𝑃 ∼ 6 × 6, 𝐵 ∼6 × 3, if 𝑃𝐵 = 𝐶𝑇, 𝐶 should satisfy 𝐶 ∼ 6 × 3. It means
that three satellite-to-satellite ranges should be provided. In
other words, the navigation constellation should include four
Lagrangian satellites which can generate three satellite-to-
satellite ranges.

If four Lagrangian satellites construct the navigation
constellation, C can be derived as

𝐶 =
[[[[[[[[[
[

𝑥 − 𝑥2𝜌2
𝑦 − 𝑦2𝜌2

�̂� − �̂�2𝜌2 0 0 0
𝑥 − 𝑥3𝜌3

𝑦 − 𝑦3𝜌3
�̂� − �̂�3𝜌3 0 0 0

𝑥 − 𝑥4𝜌4
𝑦 − 𝑦4𝜌4

�̂� − �̂�4𝜌4 0 0 0

]]]]]]]]]
]

, (32)

where [𝑥3 𝑦3 �̂�3]𝑇 and [𝑥4 𝑦4 �̂�4]𝑇 are the estimated posi-
tion variable of Lagrangian satellite 3 and Lagrangian satellite
4, respectively.

Define matrix 𝑄 as

−𝑄 = 𝑃𝐴𝑐𝑙 + 𝐴𝑇𝑐𝑙𝑃, (𝑄 > 0) . (33)

The Lyapunov function’s derivative becomes

�̇� = −12𝑋𝑇𝑄𝑋
+ tr {[𝑊𝑇𝜙 + �̃�𝑇𝜙 (�̂�) + 𝜐 (𝑓) + 𝜀 (𝑋)] �̃�𝑇
+ �̃�𝑇𝐹−1 ̇̃𝑊} .

(34)

Since ̇̃𝑊 = − ̇̂𝑊 and ̇̂𝑊 = 𝐹(𝜙(�̂�)�̃�𝑇 − 𝜎�̂�),
�̇� = −12𝑋𝑇𝑄𝑋 + tr {[𝑊𝑇𝜙 + 𝜐 (𝑓) + 𝜀 (𝑋)] �̃�𝑇

+ �̃�𝑇 [𝜙 (�̂�) �̃�𝑇 − 𝐹−1 (𝐹 (𝜙 (�̂�) �̃�𝑇 − 𝜎�̂�))]}
= −12𝑋𝑇𝑄𝑋 + tr (𝑊𝑇𝜙�̃�𝑇) − tr(𝐷�̃��̃�𝑇󵄩󵄩󵄩󵄩󵄩�̃�󵄩󵄩󵄩󵄩󵄩 )
− tr (𝜀max�̃��̃�𝑇) + tr [𝜀 (𝑋) �̃�𝑇] + tr (𝜎�̃�𝑇�̂�)
= −12𝑋𝑇𝑄𝑋 + tr (𝑊𝑇𝜙�̃�𝑇) − tr (𝐷 󵄩󵄩󵄩󵄩󵄩�̃�󵄩󵄩󵄩󵄩󵄩)
− tr (𝜀max�̃��̃�𝑇) + tr [𝜀 (𝑋) �̃�𝑇] + tr (𝜎�̃�𝑇�̂�) .

(35)

From [17], it is noted that

tr [𝑊𝑇𝜙�̃�𝑇] ≤ 𝛼 󵄩󵄩󵄩󵄩󵄩�̃�󵄩󵄩󵄩󵄩󵄩 . (36)

We also can get

−12𝑋𝑇𝑄𝑋 ≤ −𝜆min (𝑄) 󵄩󵄩󵄩󵄩󵄩𝑋󵄩󵄩󵄩󵄩󵄩2 ≤ −𝜆min (𝑄) 󵄩󵄩󵄩󵄩󵄩�̃�󵄩󵄩󵄩󵄩󵄩2
tr (𝜀max�̃��̃�𝑇) = 𝜀max

󵄩󵄩󵄩󵄩󵄩�̃�󵄩󵄩󵄩󵄩󵄩2
tr (𝜎�̃�𝑇�̂�) ≤ 𝑊max

󵄩󵄩󵄩󵄩󵄩�̂�󵄩󵄩󵄩󵄩󵄩𝐹 − 󵄩󵄩󵄩󵄩󵄩�̂�󵄩󵄩󵄩󵄩󵄩2𝐹 .
(37)

‖ ⋅ ‖𝐹 is calculated as the Frobenius norm.
Substituting (36)-(37) into (35), we can get

�̇� ≤ − (𝜆min (𝑄) + 𝜀max) 󵄩󵄩󵄩󵄩󵄩�̃�󵄩󵄩󵄩󵄩󵄩2 + (𝛼 − 𝐷 + 𝜀∗) 󵄩󵄩󵄩󵄩󵄩�̃�󵄩󵄩󵄩󵄩󵄩
+ 𝜎𝑊max

󵄩󵄩󵄩󵄩󵄩�̂�󵄩󵄩󵄩󵄩󵄩𝐹 − 𝜎 󵄩󵄩󵄩󵄩󵄩�̂�󵄩󵄩󵄩󵄩󵄩2𝐹
≤ − (𝜆min (𝑄) + 𝜀max) 󵄩󵄩󵄩󵄩󵄩�̃�󵄩󵄩󵄩󵄩󵄩2 + (𝛼 − 𝐷 + 𝜀∗) 󵄩󵄩󵄩󵄩󵄩�̃�󵄩󵄩󵄩󵄩󵄩

− 𝜎 (󵄩󵄩󵄩󵄩󵄩�̂�󵄩󵄩󵄩󵄩󵄩𝐹 − 𝑊max2 )2 + 𝜎𝑊2max4 .

(38)
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Table 1: Initial state of the Lagrangian satellites.

Satellites S1 S2 S3 S4𝑥 (𝐿) −0.009158653890369 −0.008426021835493 −0.011852455058632 −0.012153563498421𝑦 (𝐿) 0.057117380302627 0.063116578748419 0.018916778218648 −0.000027358900568𝑧 (𝐿) −0.005441690073741 −0.009538268525430 0.000050795432543 −0.001861700547480�̇� (𝐿/𝑇) 0.071242540915778 0.077724037910168 0.043377272215699 0.030872891241568̇𝑦 (𝐿/𝑇) 0.025237253422237 0.044432703977482 0.002938265403217 −0.000128391119819�̇� (𝐿/𝑇) 0.024768142966689 0.092125880718452 −0.000042323140915 0.011290787920073

Thus, from (38), �̇� < 0 when
󵄩󵄩󵄩󵄩󵄩�̃�󵄩󵄩󵄩󵄩󵄩
≥ (𝛼 − 𝐷 + 𝜀∗) + √(𝛼 − 𝐷 + 𝜀∗)2 + (𝜆min (𝑄) + 𝜀max) 𝜎𝑊2max2 (𝜆min (𝑄) + 𝜀max) , (39)

or
󵄩󵄩󵄩󵄩󵄩�̂�󵄩󵄩󵄩󵄩󵄩𝐹
≥ 𝑊max + √𝑊2max + (𝛼 − 𝐷 + 𝜀∗)2 /𝜎 (𝜆min (𝑄) + 𝜀max)2 .

(40)

Note that parameters 𝐷, 𝜀max, 𝜎 are user selected so they can
be appropriately chosen to minimize the estimation error.

5. Simulation and Analysis

In order to illustrate the effectiveness of the method intro-
duced in this paper, we design a constellation around
the Earth-Moon L1 libration point which includes four
Lagrangian satellites. The initial states of the four satellites
are listed in Table 1. The data are normalized. Quasiperiodic
orbits are sensitive to initial states.Thus the initial states must
be accurate enough. This is why the data in Table 1 retain
many valid digits after the dot. We calculate quasiperiodic
orbits with different initial states. The conditions in Table 1
may be different from the actual task situation. Therefore the
initial conditions and measurement noise here are assumed
conditions based on the characteristics of CRTBP.

Four quasiperiodic orbits are shown in Figure 3. The
ephemeris of the Moon and Earth is obtained by DE405.
In order to illustrate the AOD error, the “true trajectory” of
Lagrangian satellites should be provided. In this paper, the
“true trajectory” is calculated by using the precise dynamical
equations as follows:

R̈ = −𝜇3𝑅3R − 𝑛∑
𝑖=1

𝜇𝑖 (Δ𝑖Δ3𝑖 +
R𝑖𝑅3𝑖 ) , (41)

where R is the position vector of the Lagrangian satellite
in the J2000 coordinate. Δ𝑖 is the position vector of the𝑖th celestial with respect to the Moon. R𝑖 is the position
vector of the 𝑖th celestial with respect to the Earth. 𝜇𝑖 is
the gravitational parameter of 𝑖th celestial. The quasiperiodic
orbits are calculated by using multiple shooting method. The
initial targets are obtained by using approximate analytic

Table 2: The simulation conditions.

Initial state error (m) Observation error (m)
Scenario 1 1 1
Scenario 2 10 1
Scenario 3 100 1

solutions. The initial targets are expressed in the barycentric
synodic coordinate. Therefore, we should translate the initial
targets into J2000 coordinate. Then the initial target is
modified according to the task constraint, and the ideal
quasiperiodic trajectory is obtained. Since the Lagrangian
satellites in the Earth-Moon system is far away from the
Earth, the perturbation caused by atmospheric resistance,
temporal change in gravity, oblateness, and mass distribution
is not considered. The main perturbations come from the
gravity of the Sun and other planets. Therefore, the above
equation is appropriate to describe the precise motion of the
Lagrangian satellites.

The various tuning constants used in this scenario were
chosen as follows:

𝐾 =
[[[[[[[[[[[[
[

1.5 × 10−3 0 0
0 1.5 × 10−3 0
0 0 1.5 × 10−3

6.5 × 10−4 0 0
0 6.5 × 10−4 0
0 0 6.5 × 10−4

]]]]]]]]]]]]
]

𝐹 = diag (1.5 × 10−5, 3.2 × 10−5, 1.5 × 10−5, 3.2
× 10−5, 2.25 × 10−5, 1.5 × 10−5, 1.5 × 10−5) .

(42)

The parameters are designed as 𝜀max = 1 × 10−12, 𝐷 = 1 ×10−9.The step of AOD is 1 hour.Three scenarios with different
initial state errors and observation errors as shown in Table 2
are analyzed. The gravitational attraction from the Sun is the
only perturbation considered in the simulation.

For scenario 1, we give the simulation results of two
Lagrangian satellites S1 and S2. The AOD errors in 30 days
are presented in Figures 4(a) and 4(b). It can be seen that the
AOD error of the both Lagrangian satellites is less than 10m.
TheRMSof theAODerror of S1 in𝑥-,𝑦-, and 𝑧-axis are 2.3m,
2.6m, and 2.1m, respectively. From Figures 5(a) and 5(b), we
can see that this method can estimate the perturbation with
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Figure 3: The quasiperiodic orbits around the L1 libration.
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small errors. The red curves are the theoretical calculating
value of the Sun gravitational perturbation. The blue curves
are the estimation of the Sun’s gravity. The RMS of the
estimate error of perturbation of S1 in 𝑥-, 𝑦-, and 𝑧-axis are6.1 × 10−6m/s2, 5.9 × 10−6m/s2, and 4.3 × 10−7m/s2.

In Figures 6(a), 6(b), 7(a), and 7(b), we give the results for
Scenario 2 and Scenario 3. As we can see, themaximumAOD
errors increase with the initial state errors. All the stable AOD
errors are less than 10m. As shown in Figure 7(a), the AOD
errors can converge to less than 10m in 5 days, even the initial
errors 100m.

6. Conclusions

We analyzed the AOD for Lagrangian navigation constella-
tion based on accurate dynamical mode. A neural network

based method is applied to estimate the solar gravitational
perturbation and the state of the Lagrangian satellites. The
update rate of neural network weights is obtained by con-
vergence of Lyapunov function. Therefore, the stability of
the method introduced in this paper is proven. We derived
that the constellation must include more than four satellites
when this method is used. The simulation results show
that this method can achieve a stable AOD error about
10m only using satellite-to-satellite range as observation.
Since the CRTBP is an approximate model for the Earth-
Moon system, the AOD based on perturbed ERTBP is much
useful for the future Lagrangian navigation constellation. We
only test a Lagrangian navigation constellation with four
satellites around L1 libration in this paper. Future work will
be focused on a more complex constellation with satellites
around different librations.
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