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In this study, a time-dependent surrogate approach is presented to generate the training data for identifying the reduced-order
model of an unsteady aerodynamic system with the variation of mean angle of attack and Mach number in a transonic flight
regime. For such a purpose, a finite set of flight samples are selected to cover the flight range of concern at first. Subsequently,
the unsteady aerodynamic outputs of the system under given inputs of filtered white Gaussian noise at these flight samples are
simulated via CFD technique which solves Euler equations. The unsteady aerodynamic outputs, which are viewed as a time-
dependent function of flight parameters, can be approximated via the Kriging technique at each time step. By this way, the
training data for any combination of flight parameters in the range of concern can be obtained without performing any further
CFD simulations. To illustrate the accuracy and validity of the training data generated via the proposed approach, the
constructed data are used to identify the reduced-order aerodynamic models of a NACA 64A010 airfoil via a robust subspace
identification algorithm. The unsteady aerodynamics and aeroelastic responses under various flight conditions in a transonic
flight regime are computed. The results agree well with those obtained by using the training data of CFD technique.

1. Introduction

The techniques of computational fluid dynamics (CFD) have
been widely used to simulate both linear and nonlinear flow
fields for various flight vehicles. However, it is still time-
consuming for any high-fidelity CFD techniques to simulate
the unsteady aerodynamic loads due to the broad variation of
parameters, such as different combinations of mean angle of
attack and Mach number. For example, the linear doublet-
lattice method has been frequently used for the aeroelastic
analysis of aircraft although CFD techniques offer more
accurate numerical simulations. In a transonic flight regime,
however, the double-lattice method does not work properly
because of the aerodynamic nonlinearities coming from
shock waves and flow separations [1]. Thus, various CFD-
based reduced-order models (ROMs) have been developed
[2] so as to provide an effective way to simulate unsteady
aerodynamic loads with a high level of accuracy.

In general, the unsteady aerodynamic ROMs can be clas-
sified into frequency-domain type and time-domain type.
The frequency-domain ROMs mainly contain the proper
orthogonal decomposition (POD) approach [3], balanced
POD [4], and the harmonic balance approach [5]. On the
other hand, the time-domain ROMs include the Eigensys-
tem realization algorithm (ERA) [6], the Volterra theory
[7], the auto regressive-moving-average (ARMA) model
[8], surrogate models via artificial neural networks [9–11]
and Kriging technique [12], and the Wiener-type cascade
model [13].

Although a significant progress has been made for the
unsteady aerodynamic ROMs, almost all aforementioned
ROMs are only valid for a set of fixed flight parameters. It
is still time-consuming to generate the unsteady aerody-
namic ROMs for a range of flight parameters since the same
procedure of computation has to be repeated under each
flight condition in the range of concern. Recently, several
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reduced-order modeling approaches have been proposed to
predict unsteady aerodynamic loads for a range of flight
parameters. For example, a surrogate-based recurrence
framework ROM was developed to model the unsteady aero-
dynamics on a rotating airfoil [14]. Yet, it is time-consuming
to generate the training data for each combination of param-
eters in the parameter space. A ROM adaptation approach
based on the interpolation in a tangent space to a Grassmann
manifold was proposed to predict the aeroelastic characteris-
tics for an F-16 configuration [15]. To obtain new basis vec-
tors for a new flight condition via interpolation, the size of
the basis vectors of different local ROMs should be the same
so that the accuracy of the POD approach may be decreased.
A ROM approach by combining linear convolution with a
nonlinear correction factor was proposed to model the aero-
dynamic characteristics for multiple Mach regimes [16].
However, the approach gives a distinct phase shift at higher
oscillation frequencies. A time-dependent surrogate model
to fit the relationship between flight parameters and step
functions was proposed to model the unsteady and nonlinear
aerodynamic loads [17]. Only one kind of input, the pitching
motion of the aircraft in their study, can be taken into
account at each time. A Kriging surrogate model was pro-
posed to model the unsteady aerodynamic forces with
respect to a range of Mach numbers [18]. However, the com-
putational cost for Kriging model increased significantly in
order to take the Mach number into consideration. Recently,
a reduced-order modeling approach based on recurrent local
linear neuro-fuzzy models was developed to model the gen-
eralized aerodynamic forces over a range of Mach numbers
[19]. To guarantee the accuracy of the local linear neuro-
fuzzy model, the flight parameters for training data should
be selected carefully in the flight range of concern. Very
recently, a nonlinear interpolation method based on a set
of local linear state-space models was proposed to model
the generalized aerodynamic forces for an elastic wing with
control surfaces [20]. Nevertheless, enough local linear
state-space models were required to cover the flight range
of concern and only Mach number variations were taken
into consideration.

Almost all aforementioned unsteady aerodynamic
ROMs, which take flight parameter variations into account,
require enough training data to capture the dynamic charac-
teristics of the unsteady aerodynamic systems. However, it is
time-consuming to generate the training data via any direct
CFD simulations when both Mach number and mean angle
of attack are taken into consideration. The motivation of this
study is to generate the training data efficiently for a range of
flight parameters including mean angle of attack and Mach
number in a transonic flight regime. For such a purpose, a
time-dependent surrogate approach is proposed. Once the
Kriging models are constructed via the proposed approach,
the training data under an arbitrary flight condition in the
range of concern can be obtained without performing any
further CFD simulations. The remainder of the paper is orga-
nized as follows. In Section 2, the theoretical background of
the training data generation approach and the robust sub-
space algorithm is presented. In Section 3, the unsteady aero-
dynamics and aeroelastic responses of a NACA 64A010

airfoil under different flight conditions in a transonic flight
regime are investigated to validate the proposed approach.
In Section 4, some conclusions are given.

2. Theoretical Background

In this section, the theoretical background of the training
data generation approach and the robust subspace algorithm
is presented. The flowchart of the reduced-order modeling
approach is shown in Figure 1. The first step is to obtain
the unsteady aerodynamic outputs of the system via direct
CFD simulations at a finite set of flight samples selected to
cover the flight range of concern. Then, a time-dependent
surrogate method based on the Kriging technique is used to
approximate the relationship between the unsteady aerody-
namic outputs of the system and the flight parameters. After-
wards, with the training data obtained, the robust subspace
algorithm is implemented to identify the discrete-time state-
space model under an arbitrary flight condition.

2.1. Selection of Excitation Signal. As well known, the
dynamic characteristics of an unsteady aerodynamic system
of concern should be appropriately excited via the input sig-
nal in order to construct the training data for successfully
identifying the corresponding time-domain ROMs. For this
purpose, the filtered white Gaussian noise (FWGN) is used
as the input signal to make CFD simulations. Under such a
type of excitation, only the frequency response spectrum of
concern can be excited and there is no need to repeat compu-
tations for each combination of frequency and amplitude.

Once the type of input signal is determined, it is neces-
sary to select the sampling rate and the sampling length for
the input signal. The sampling rate f S determined by the time
step Δt of the CFD solver is given as follows:

f S =
1
Δt

1

According to the Nyquist sampling theorem, the Nyquist
frequency f N is f S/2 which must exceed the maximal fre-
quency of concern. Furthermore, the frequency resolution
of the input signal with the sampling length N , given by
f N/N , should be adequate for the representation of the
minimal frequency of concern. Hence, the time step Δt
and the sampling length N for the input signal need to
be adjusted carefully.

Although only one unsteady aerodynamic simulation
under FWGN excitation is required under each flight condi-
tion, it is still time-consuming to generate the training data
to capture the dynamic characteristics of an unsteady aero-
dynamic system in the mean angle of attack and Mach num-
ber space.

2.2. Time-Dependent Surrogate Approach for Training Data
Generation. To generate the training data for a range of flight
parameters efficiently, a time-dependent surrogate method
based on the Kriging technique is proposed in this subsec-
tion. Similar to the previous study [17], the unsteady aerody-
namic outputs of the system under the FWGN excitation and
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a finite set of flight conditions are considered as a set of time-
correlated spatial processes. Under such an assumption, the
surrogate techniques can be used to model the time-
dependent outputs of the aerodynamic system at each time
step as a function of flight parameters. Here, the Kriging
technique is implemented since it has good accuracy and
robustness with small data sets [21].

To approximate the input-output relationship between
the flight parameters and the unsteady aerodynamic outputs
of the system, M flight samples need to be selected to cover
the range of concern at first. The design of experimental
studies [22] can be used to select these samples from the
mean angle of attack α0 and Mach number M∞ space. It
is worthy to note that the selection of the input parameters
strongly depends on the flight regime of concern and the
aircraft configuration. For example, more flight parameter
samples need to be placed at the region where there exist
strong aerodynamic nonlinearities in the flow field. Subse-
quently, the input vector X for the Kriging technique can
be defined as

X =

M∞,1 α0,1

M∞,2 α0,2

⋮ ⋮

M∞,M α0,M

2

Under each flight condition defined by M∞,i and α0,i, an
unsteady aerodynamic computation needs to be performed
via direct CFD simulation under the given FWGN excitation.

The corresponding outputs of the aerodynamic system of the
M flight samples can be written as

Yo =

y1,1 y2,1 ⋯ yN ,1

y1,2 y2,2 ⋯ yN ,2

⋮ ⋮ ⋱ ⋮

y1,M y2,M ⋯ yN ,M

, 3

where yi,j is the aerodynamic output vector and N is the
number of time steps of the FWGN excitation. With the
input vector X and the output vector Yo known, the Kriging
technique can be used to approximate the relationship
between the flight parameter and the aerodynamic outputs
of the system at each time step.

What follows is a brief description of the Kriging tech-
nique, where the Kriging model approximates the target
function at an untried site x∗ as

Φ x∗ = f x∗ β + z x∗ , 4

Here, f x∗ and β are the regression model and the
regression coefficients, respectively. In (4), the first term is
the mean value, which can be thought as a globally valid
trend function. The second term z x∗ given in (4) is a
Gaussian distributed error term with zero mean and variance
σ2. To construct the Kriging model, the values of the regres-
sion coefficients β can be approximated by solving a least-
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Figure 1: The flowchart of the reduced-order modeling approach.
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square regression problem as follows:

β = FT R−1 F −1FTR−1h, 5

where R is the spatial correlation matrix. h and F are the M
× 1 output vector and the M ×M mapping matrix at the
sample inputs, respectively. h and F are defined as

h =

y1

y2

⋮

yM

,

F =

f1 x1 f2 x1 ⋯ f r+1 x1
f1 x2 f2 x2 ⋯ f r+1 x2
⋮ ⋮ ⋱ ⋮

f1 xM f2 xM ⋯ f r+1 xM

6

With the vector r = R x∗, x1 R x∗, x2 ⋯ R x∗, xM T,
the prediction at an unsampled location x∗ can be
obtained as

Φ x∗ = f x∗ β + rTR−1 h − Fβ 7

It has to be noted that one mapping function Φ needs
to be constructed for each component of the output vector
at each time step. Once the Kriging models are con-
structed, the unsteady aerodynamic outputs of the system
under an arbitrary flight condition in the range of concern
can be obtained without performing any further CFD sim-
ulations. For example, the corresponding aerodynamic
outputs of the system under the same FWGN excitation
for the mean angle of attack α0∗ and Mach number
M∞∗ can be written as

y1∗ y2∗ ⋯ yN∗

= Φ 1 M∞∗, α0∗ Φ2 M∞∗, α0∗ ⋯ΦN M∞∗, α0∗
8

Hence, the training data under an arbitrary flight con-
dition in the range of concern can be obtained efficiently
via the proposed approach.

2.3. Robust Subspace Algorithm. With the training data
obtained via the time-dependent surrogate approach, a
time-domain ROM approach can be used to construct the
unsteady aerodynamic ROM. In this study, the robust
subspace algorithm [23] is implemented to identify the
discrete-time state-space models. This algorithm is always
numerically stable and convergent and has no identification
problems, such as lack of convergence, slow convergence,
or numerical instability.

A brief description of the algorithm is given as follows.
The discrete-time state-space model assumes the following
model structure:

xa k + 1 =Axa k + Bu k ,

y k = Cxa k +Du k ,
9

where xa, u, and y are the vectors of state, input, and output
variables, respectively. Given the training data, four constant
matrices A, B, C, and D are estimated such that the unsteady
aerodynamic outputs of the system under the FWGN excita-
tion can be reproduced.

At first, the input and output Hankel block matrices
based on the training data are defined as

Up

Uf
=def

u0 u1 ⋯ uj−1

u1 u2 ⋯ uj

⋯ ⋯ ⋯ ⋯

ui−1 ui ⋯ ui+j−2
ui ui+1 ⋯ ui+j−1
ui+1 ui+2 ⋯ ui+j
⋯ ⋯ ⋯ ⋯

u2i−1 u2i ⋯ u2i+j−2

,

Yp

Yf
=def

y0 y1 ⋯ y j−1
y1 y2 ⋯ y j
⋯ ⋯ ⋯ ⋯

yi−1 yi ⋯ yi+j−2
yi yi+1 ⋯ yi+j−1
yi+1 yi+2 ⋯ yi+j
⋯ ⋯ ⋯ ⋯

y2i−1 y2i ⋯ y2i+j−2

,

10

where the number j of columns is given as

j =N − 2i + 1 11

In (11), N is the length of training data and i is the num-
ber of block rows in the Hankel block matrices. Then, based
on the RQ decomposition of the Hankel block matrix, the
weighted oblique projection οiΠU⊥

f
can be computed. The

singular value decomposition of the weighted oblique projec-
tion is given as follows:

οiΠU⊥
f
=USVT 12

The order of state-space model can be determined by
inspecting the singular values in S. Afterwards, U1 and
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S1 can be obtained according to the order and the
matrices. The extended observability matrix Γi can be
computed as

Γi =U1S1/21 13

Here, Γi−1 denotes the matrix Γi without the last p rows.
To this end, the system matrices A, B, C, and D can be
obtained with the matrices Γi, Γi−1, and the decomposition
matrix of the Hankel block matrix. For further details, one
can refer [23].

In summary, the efficiency of the algorithm enables one
to identify the unsteady aerodynamic ROM quickly under
an arbitrary flight condition.

3. Case Studies

This section presents the study on the unsteady aerodynamic
problem and aeroelastic problem of a NACA 64A010 airfoil,
respectively, for the mean angle of attack α0 ranging from 0
to 5 deg and the Mach number M∞ ranging from 0.75 to
0.85 so as to validate the proposed approach.

The airfoil of concern has two degrees of freedom, as
shown in Figure 2, where xα is the dimensionless distance
between the center of gravity and the stiffness center, rα is
the gyration radius of the airfoil around the stiffness center,
ωα and ωh are the uncoupled natural frequencies of the pitch
and plunge, and b, μ, V∞, and V∗

∞ are the half-chord length,
mass ratio, free-stream velocity, and dimensionless velocity,
respectively. With the dimensionless time τ = ωα ⋅ t, the
dynamic equation of the airfoil can be established in the
following state-space form.

x =As ⋅ x + Bs ⋅ fa x, t 14

The vectors and matrices in (14) can be written as

As =
02×2 I2×2

−M−1K 02×2
,

Bs =
02×2
M−1

,

fa =
V∗

∞
2

π
−Cl

2Cm

,

ξ =
h
b
α

,

x =
ξ
ξ

,

15

where the mass and stiffness matrices are defined as

M =
1 xα

xα r2α
,

K =
ωh

ωα

2
0

0 r2α

16

The structural parameters of the airfoil are chosen to
be xα = 1 8, r2α = 3 48, a = −2 0, ωh = 100 rad/sec, ωα = 100
rad/sec, and μ = 60, respectively.

3.1. Training Data for the Unsteady Aerodynamic System.
The CFD technique which solves the Euler equations [13, 18]
is used to compute the unsteady aerodynamics over the air-
foil in transonic regime. The spatial discretization of the
CFD solver is based on the cell-centered finite-volume
approach. The widely used central scheme with artificial dis-
sipation is employed for convective flux calculation. The dual
time-stepping approach is employed for unsteady simula-
tions. After performing mesh and time step sensitivity analy-
ses, the unstructured mesh with 4098 cells and dimensionless
fluid time step 0.2 are used in the present study. Figure 3 pre-
sents the CFD grid consisting of 4098 triangle elements and
2145 nodes. The high-fidelity CFD solver needs to be vali-
dated at first. In order to validate the Euler solver used in
the present study, the test case CT6 of [24] is studied. For
such case, the free stream Mach number is 0.796 and the
64A010 airfoil pitches around its quarter-chord point and
the pitching motion are governed as

α t = α0 + αA sin ωt , 17

where α0 = 0 deg and αA = 1 01 deg are the mean angle of
attack and the amplitude of pitching oscillation, respectively.
The relationship between the angular frequency ω and the
reduced frequency kr = 0 202 is described as

kr =
ωc
2V∞

, 18

where c and V∞ are the chord length and the free-stream
velocity, respectively. As shown in Figure 4, the CFD lift coef-
ficients agree well with the experimental data. However, there
are apparent differences for the moment coefficients between
the numerical and experimental results. Such discrepancy
may be due to the high sensitivity of the moment coefficients
to the location of shock wave.

In the numerical simulations, the dimensionless band-
width of the FWGN excitation signal is chosen to be
0.01~0.4. Figure 5 presents the time histories of the two
FWGN excitation signals selected to drive the pitch and
plunge motions of the airfoil, respectively. The length of the
input signal in CFD simulations is taken as 2000. Subse-
quently, 20 flight samples are selected for the mean angle of
attack α0 in [0, 5] deg and for the Mach number M∞ in
[0.75, 0.85], respectively, as shown in Figure 6. For each flight
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parameter sample, an unsteady aerodynamic simulation is
performed via the CFD solver.

According to the time-dependent surrogate approach,
4000 Kriging models are required since the length of the
FWGN excitation is 2000 for two unsteady aerodynamic out-
puts of the system, that is, the lift coefficient Cl and the
moment coefficient Cm. To demonstrate the accuracy of the
training data, Cl and Cm are predicted via the Kriging models
under two flight conditions in a transonic flight regime, one
with M∞ = 0 76 and α0 = 1 deg and the other with M∞ =
0 82 and α0 = 4 deg. As shown in Figures 7 and 8, the results
predicted via the Kriging models agree well with those
obtained via the direct CFD technique.

The CPU time to construct the Kriging models is shown
in Table 1, where all the computations are performed by

using a laptop with two CPUs of 2.4GHz. Even though the
total CPU time cost associated with the construction of the
Kriging models is a little bit expensive, the training data
under an arbitrary flight condition in the range of concern
can be obtained efficiently without performing any further
CFD simulation. For example, the computational time of
the direct CFD approach which solves Euler equations is
about 0.284 h in order to obtain the training data at M∞ =
0 76 and α0 = 3 deg, while the computational time of the
Kriging models for the same case is 0.006 h only.

3.2. Unsteady Aerodynamic Prediction. To demonstrate the
application of the training data in unsteady aerodynamic
prediction, the constructed data are used to identify the
state-space models via the robust subspace algorithm. The

K
h

K
𝛼

a
𝛼
·b

b b

h

Center of gravity
of the airfoil

𝛼

Figure 2: An airfoil of two degrees of freedom.

Figure 3: The CFD grid for the NACA64A010 airfoil.
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unsteady aerodynamic outputs of the system are computed
under different excitation signals, and the results are com-
pared with those obtained by using the CFD training data.

At first, the FWGN excitation signals, not the same as the
training signal during the ROM construction, are used to
drive the airfoil at M∞ = 0 76 and α0 = 3 deg. The pitch
and plunge motions of the airfoil are shown in Figure 9.
The corresponding unsteady aerodynamic coefficients are
shown in Figure 10. For further comparison, the flight condi-
tion with M∞ = 0 82 and α0 = 5 deg is also selected. The
excitation signals and the corresponding unsteady aerody-
namic results are presented in Figures 11 and 12, respectively.
In addition, a harmonic oscillation is chosen as the input sig-
nal atM∞ = 0 84 and α0 = 0 deg. The unsteady aerodynamic
results are presented in Figure 12.

As can be seen from Figures 10, 12, and 13, the time
histories of Cl and Cm obtained via the ROM2s identified
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Figure 4: Lift and moment coefficient loops for a NACA 64A010 airfoil at Mach number 0.796.
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by using the time-dependent surrogate approach agree well
with those of ROM1s identified by using the direct CFD sim-
ulation data. That is, the proposed approach is able to gener-
ate good training data for ROMs in a transonic flight regime.

3.3. Aeroelastic Time-Marching Simulation. To further dem-
onstrate the performance of the proposed approach in the

flutter prediction in a transonic flight regime, the ROM2s
are coupled with the structural model to make time-
marching simulations. At first, the airfoil is forced to make
three complete cycles of harmonic motion in pitch at the fre-
quency ωα/2. Then, the aeroelastic system is allowed to
evolve by its own self-induced loads.

In the present case, the aeroelastic responses of the air-
foil predicted via the ROM2s and ROM1s are compared
under two flight conditions. As shown in Figure 14, the
aeroelastic responses of the airfoil with M∞ = 0 81 and
α0 = 0 deg are computed for V∗

∞ = 0 73. Both ROM2 and
ROM1 can predict a neutrally stable oscillation. After-
wards, the aeroelastic responses of the airfoil with M∞ =

Table 1: The computational cost associated with the time-
dependent surrogate approach.

CPU time

Computation of the 20 training cases 4.98 h

Generation of the Kriging models 0.01 h

Total CPU time 4.99 h
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0 85 and α0 = 1 deg are evaluated. As shown in Figure 15,
the results of ROM2 and ROM1 present a neutrally stable
oscillation at V∗

∞ = 0 57.
Finally, Figures 16 and 17 give the flutter boundaries of

the aeroelastic model with the mean angle of attack α0 = 1
deg and α0 = 3 deg, respectively. As shown in these two fig-
ures, the computational results based on ROM2s and ROM1s
get a good agreement in the flutter boundaries. Nevertheless,
the computation of ROM2 is much more efficient than that
of ROM1 since no further CFD simulations are required once
the Kriging models are constructed.

As can be seen from the flutter boundaries of the airfoil at
different mean angle of attack, the aeroelastic characteristics
of the model are very sensitive to the mean angle of attack
in a transonic flight regime. Hence, the effects of the varia-
tions of the mean angle of attack have to be taken into
account for aeroelastic analysis.

4. Conclusions

In this study, an efficient approach is proposed to generate the
training data for constructing the reduced-order model of an
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data via the proposed method).
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data via the proposed method).
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unsteady aerodynamic system with the variation of flight
parameters in a transonic flight regime. The Kriging tech-
nique is used in the approach to approximate the relationship
between the unsteady aerodynamic outputs of the system
and the flight parameters. No further CFD simulations are
required to generate the training data once the Kriging
models are constructed. The training data obtained via the
proposed approach are used to identify the reduced-order
aerodynamic models of a NACA 64A010 airfoil via a robust
subspace identification algorithm. The unsteady aerody-
namics and aeroelastic responses of the airfoil under various

flight conditions in a transonic flight regime are computed.
The results agree well with those obtained by using the
direct simulations of computational fluid dynamics.

When the time-dependent surrogate approach is applied
to a three-dimensional aeroelastic model in a transonic flight
regime, it is expected to save more computation time
compared with two-dimensional cases. Furthermore, the
unsteady aerodynamics generated via the approach can be
used as the validation data to determine the validation region
of an unsteady aerodynamic ROM. Based on the time-
dependent surrogate approach, a method by assembling the
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Figure 14: The aeroelastic responses of the airfoil forV∗
∞ = 0 73 atM∞ = 0 81 and α0 = 0 deg (ROM1-training data via CFD; ROM2-training

data via the proposed method).
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aerodynamic outputs of a set of precomputed local linear
models will be investigated to construct the aerodynamic
ROM for a range of flight parameters.
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