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Trajectory planning is a prerequisite for the tracking control of a free-floating space robot. There are usually multiple planning
objectives, such as the pose of the end-effector and the base attitude. In efforts to achieve these goals, joint variables are often
taken as exclusive operable parameters, while the berth position is neglected. This paper provides a novel trajectory planning
strategy that considers the berth position by applying screw theory and an optimization method. First, kinematic equations at
the position level are established on the basis of the product of exponential formula and the conservation of the linear
momentum of the system. Then, generalized Jacobian matrices of the base and end-effector are derived separately. According to
the differential relationship, an ordinary differential equation for the base attitude is established, and it is solved by the modified
Euler method. With these sufficient and necessary preconditions, a parametric optimization strategy is proposed for two
trajectory planning cases: zero attitude disturbance and attitude adjustment of the base. First, the berth position is transformed
into the desired position of the end-effector, and its constraints are described. Joint variables are parameterized using a
sinusoidal function combined with a five-order polynomial function. Then, objective functions are constructed. Finally, a genetic
algorithm with a modified mutation operator is used to solve this optimization problem. The optimal berth position and
optimized trajectory are obtained synchronously. The simulation of a planar dual-link space robot demonstrates that the
proposed strategy is feasible, concise, and efficient.

1. Introduction

On-orbit servicing (OOS) [1] technology has been attracting
increasing research and investment from space institutions
worldwide for its potential to mitigate on-orbit failures [2]
and maintain and extend outer-space projects. Space robots
are one of the most successful and extensively used means
to achieve these goals, as demonstrated by several notable
deployments and experimental missions, such as Space Sta-
tion Remote Manipulator System (SSRMS) [3], Experimental
Test Satellite VII (ETS-VII) [4], Front-end Robotics Enabling
Near-term Demonstration (FREND) [5], and China’s intelli-
gent space robots [6]. The concept of cooperative small
robotic servicers to handle large passive objects has also been
studied in recent years [7–9]. Possible applications of space
robots include inspection, assembly, maintenance, repair,
and refueling [10]. When executing these tasks, the system

often works in one of three modes: free-flying mode
(in which the position and attitude of the base are both con-
trollable) [11], free-translation mode (in which only the base
attitude is controllable), and free-floating mode [12] (in
which the base is completely free).

Trajectory planning—a term that is often used inter-
changeably with path planning, despite their technical differ-
ences—is crucial for implementing a space mission. Many
research papers have addressed the trajectory planning and
control issues of the free-floating space robot because it con-
sumes relatively little fuel and avoids potential collisions that
can result from excess control [13]. The distinctive feature of
a free-floating space robotic system is that it is nonholonomic
because the angular momentum equation cannot be inte-
grated. This feature has been used to develop some helpful
planning strategies, known as nonholonomic trajectory plan-
ning. Vafa and Dubowsky [14] proposed the self-correcting
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motion method, which adjusts the base attitude by adding
small cyclic motions to the joint motions. They also devel-
oped another method called the Disturbance Map (DM)
[15]. The DM method builds a relationship between each
point in the joint space and the actual movement of the base,
and then the trajectory of the joints that causes the minimum
disturbance to the base can be selected. Dubowsky and
Torres [16, 17] improved the DMmethod to minimize space-
craft attitude disturbance. They called the improved method
the Enhanced Disturbance Map (EDM), which can also be
used to minimize the fuel consumption for attitude control.
Fernandes et al. [18] were inspired by the falling cat problem
and developed a near-optimal motion planning method.
Papadopoulos et al. [19, 20] proposed a path planning meth-
odology that allows for simultaneous control of the end-
effector and the base attitude. In this approach, polynomials
are employed to obtain a smooth and continuous trajectory.
Xu et al. [21] developed a coordinated trajectory planning
method to stabilize the base attitude and centroid position
by a balance arm.

In recent years, optimization algorithms have been intro-
duced in studies that aim to achieve optimal trajectories for
free-floating space robots. Huang et al. [22] provided an
approach based on a Genetic Algorithm (GA) to find a global
minimum-jerk trajectory of a space manipulator in the joint
space. Xu et al. [23] employed sinusoidal functions, whose
arguments are seven-order polynomials, and a GA to realize
the base attitude and attain the desired states of the joints.
They also proposed a similar planning strategy in Cartesian
space and searched for the optimal parameters using the Par-
ticle Swarm Optimization (PSO) algorithm [24]. PSO was
also used in the studies in [25, 26]. Rybus and Seweryn [27]
employed the Rapidly-exploring Random Trees (RRT) algo-
rithm for the trajectory planning of a satellite-manipulator
system, and joint limits and obstacles were taken into
account. Luo et al. [28] proposed a novel trajectory planning
framework with a task-priority handling strategy for a space
robot. A Quadratic Programming (QP) procedure was
applied to solve the problem.

In the above studies, the parameterization and optimiza-
tion approaches have been successfully applied to solve tra-
jectory planning problems. Nevertheless, the parameters to
be optimized are often exclusively chosen as coefficients of
joint trajectories that are represented by continuous func-
tions. Before executing the mission, the base (spacecraft)
hovers at a proper position (called the berth position) relative
to the target to avoid unexpected collision and change in the
work mode. The variation in the berth position markedly
affects the desired trajectories of the joints; however, it seems
to have been frequently omitted from trajectory planning
studies. Zhang and Liu [29] provided a new viewpoint that
utilizes the base berth position as an optimizable parameter.
A unified motion planning strategy based on the forward
kinematics and parametrical optimizationmethod was devel-
oped. The objective function was simplified by proposing the
concept of grasping area and using a penalty function.
Finally, PSO was employed to determine the parameters. It
was demonstrated that the DOF requirement of the manipu-
lator could be reduced by taking the berth position into

account. This innovative idea has great potential to diversify
the objectives of a single mission. However, only the desired
position and attitude of the end-effector are satisfied. Fur-
thermore, the berth position is not optimized directly;
instead, it is calculated from the optimal results of the joint
variables according to a geometric relationship. This point
is worth further exploring.

Another point of current research that can be expanded is
the kinematical theory. Kinematic equations constitute the
objective function, which directly affects the efficiency of a
given trajectory planning strategy. Because space robots dif-
fer from ground-based robots, researchers have developed
new kinematical theories for space robots, including the Vir-
tual Manipulator (VM) method [14], Generalized Jacobian
Matrix (GJM) [30], and Dynamically Equivalent Manipula-
tor (DEM) [31]. GJM is widely used in control of space
robots [32, 33]. However, when applied to trajectory plan-
ning, the VM and DEM methods focus on the transforma-
tion of the model, and the transformation process
significantly increases the workload. Furthermore, deriving
the GJM with body-fixed vectors makes the programming
difficult. Besides, integration is needed when calculating the
displacement of joints and the end-effector at the position
level, as Zhang and Liu did in the autonomous trajectory
planner [34].

Screw theory is an efficient alternative to the kinematic
analysis of a rigid body and its mechanism. It can establish
a global description of the rigid body and avoid singularities
[35]. It has been applied to research on the ground-based
robot [36] and parallel manipulator [37, 38]. The unified
description of translation and rotation confers the advan-
tages of conciseness and efficiency to screw theory. Rocha
et al. [39] compared the screw-based method with the
Denavit-Hartenberg method [40] in detail and concluded
that the former has advantages over the D-H approach,
although the latter is more commonly used. Nevertheless,
few studies on space robots using screw theory are available
in the current literature. Liu and Wu [41] developed a
dynamic model of a space robot system on the basis of screw
theory and Kane’s equation. Liu andWu [42] provided a sim-
ple and efficient method to derive the Jacobian matrix of a
free-floating branching robot system by dividing it into two
parts: the ground-robot with a fixed base and a locked-joint
robot with a floating base. The authors of this paper studied
kinematic problems at position level base on screw theory
[43]; a part of these works will be applied in this research.

This paper proposes a novel trajectory planning strategy
based on screw theory. The proposed approach considers
the berth position and aims to improve calculation efficiency.
First, the kinematic model of the free-floating space robot is
built using screw theory, and the model includes the position
and differential level. The base attitude is calculated using the
modified Euler method. Next, we construct the optimization
problem by transforming the berth position and parameter-
izing the joint variables. Then, the planning strategy is pro-
vided in detail. A simulation of a planar dual-link space
robot is presented, and Adams simulation results are pro-
vided to verify the proposed method. A nomenclature is
given to clarify important variables and abbreviations.
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2. Kinematic Modeling Using Screw Theory

2.1. Model of the Space Robotic System. A space robot (also
referred to as a space manipulator) is a very complicated sys-
tem, which can be simplified if only kinematics is considered.
Figure 1 provides a general model of the space robotic sys-
tem, which consists of the base (spacecraft), arm(s), and the
End-Effector (EE). The arm contains several links and joints.
The following assumptions are made to build a concise and
accurate kinematic model.

1. The position and orientation of the base is not con-
trolled, and there are no external forces applied to
the system, which means that the system is in free-
floating mode

2. The initial linear and angular momentum of the sys-
tem are both zero

3. The arm is a single chain connected to the base, and
the parallel manipulator is not considered

4. All links and joints are rigid

5. All joints are revolute, and all rotation angles are lim-
ited between −180∘ and 180∘

2.2. Kinematic Equations at the Position Level. According to
the product of exponentials (POE) formula, the final pose
of a centroid-fixed frame of the ith link with respect to the
base-fixed frame can be defined as follows:

C0
Ci
g = eθ1 ξ̂1eθ2 ξ̂2 ⋯ eθi ξ̂i C0

Ci
g 0ð Þ

=
C0Ri

C0pi
0 1

" #
, i = 1, 2,⋯, n,

ð1Þ

where ξi = ðωi, ri × ωiÞT denotes the twist coordinates of bξi .
Then, the final pose of the end-effector with respect to the

base-fixed frame can be determined by

C0
E g = eθ1 ξ̂1eθ2 ξ̂2 ⋯ eθn ξ̂nC0

E g 0ð Þ =
C0RE

C0pE
0 1

" #
: ð2Þ

The final pose of the base and the centroid-fixed frame of
the ith link with respect to the inertial frame can be expressed
as follows:

I
Ci
g =

IRi
Ipi

0 1

" #
, i = 0, 1,⋯, n, ð3Þ

where IR0 is determined by the orientation of the base. If
we define the attitude angles (roll, pitch, yaw) of the base as
Ψ = ðδ, β, γÞ, then

IR0 =

cβcγ sδsβcγ − cδsγ cδsβcγ + sδsγ

cβsγ sδsβsγ + cδcγ cδsβsγ − sδcγ

−sβ sδcβ cδcβ

2
664

3
775, ð4Þ

where c denotes cos and s denotes sin.
In terms of the transformation rule of rigid motion, the

following equation holds:

I
Ci
g = I

C0
gC0
Ci
g =

IR0
Ip0

0 1

" # C0Ri
C0pi

0 1

" #

=
IR0

C0Ri
IR0

C0pi + Ip0
0 1

" #
:

ð5Þ

Thus,

IRi =
IR0

C0Ri,
Ipi = IR0

C0pi + Ip0:

(
ð6Þ

Then, the final pose of the end-effector with respect to the
inertial frame can be derived as follows:

I
Eg = I

C0
gC0
E g =

IR0
Ip0

0 1

" # C0RE
C0pE

0 1

" #

=
IR0

C0RE
IR0

C0pE + Ip0
0 1

" #
:

ð7Þ

In the inertial frame, the centroid formula of the system is
written as follows:

m0
Ip0 + 〠

n

i=1
mi

Ipi =MIpC: ð8Þ

Substituting Equation (6) into Equation (8) yields

Ip0 = IpC −
IR0
M

〠
n

i=1
mi

C0pi = IpC − IR0pM , ð9Þ

where pM = 1/M∑n
i=0mi

C0pi. In particular, IpC = 0 when the
centroid of the system is chosen as the initial point of the
inertial frame.

Base Ip0

C0pE

C0pi

IpnIpi

IpE

ΣSI

ΣCi

ΣCn ΣCE

ΣC0

ΣI

IpC

Arm

Target

EE

Figure 1: Model of the space robot system.
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Substituting Equation (9) into Equation (7) yields

I
Eg =

IR0
C0RE

IR0
C0pE − pM
� �

+ IpC
0 1

" #
, i = 1, 2,⋯, n:

ð10Þ

2.3. The Generalized Jacobian Matrix. Angular momentum
of the base and the ith link with respect to the inertial frame
can be defined as follows:

Li = ICi
ωB
i +mi

Ipi × I _pi, ð11Þ

where ωB
i is the body angular velocity of the i

th link. The body
velocity of the base and the ith link is defined as follows:

I
Ci
V

B = I
Ci
g
−1I

Ci
_g

� �V
=

IωB
i

IvBi

2
4

3
5 =

IR
T
i
I _Ri

� �V
IR

T
i
I _pi

2
64

3
75: ð12Þ

Similarly, the spatial velocity is specified as follows:

I
Ci
V

S = I
Ci
_gICi

g
−1� �V

=
IωS

i

IvSi

2
4

3
5 =

I _Ri
IR

T
i

� �V
I _R

I
i R

T
i
Ipi + I _pi

2
64

3
75:

ð13Þ

The similarity transformation relationship between the
body and spatial velocity is specified as follows:

I
Ci
V

S = AdI
Ci
g
I
Ci
V

BorICi
V

B = AdI
Ci
g−1

I
Ci
V

S, ð14Þ

where AdI
Ci
g corresponds to the adjoint transformation of

I
Ci
g, and

AdI
Ci
g =

I
Ci
R 0

I p̂iICi
R I

Ci
R

2
4

3
5: ð15Þ

Then, Li can be derived as follows:

Li = ICi
 mi

I p̂iIRi

� � Iω
B
i

IR
T
i
I _pi

2
4

3
5

= ICi
mi

I p̂iIRi

h i
AdI

Ci
g−1

I
Ci
V

S

= ICi

IR
T
i −mi

I p̂iI p̂i mi
I p̂i

h i
I
Ci
V

S = Ki
I
Ci
V

S,

ð16Þ

where Ki ICi

IRT
i −mi

I p̂iI p̂i mi
I p̂i

h i
, which can be defined

as the generalized inertia matrix.

In terms of the transformation rule of spatial velocities,
the following equation holds:

I
Ci
V

S = I
C0
V

S + AdI
C0
g
C0
Ci
V

S
: ð17Þ

From Equations (16) and (17), the angular momentum of
the system can be defined by

L = 〠
n

i=1
Ki

I
C0
V

S + AdI
C0
g
C0
Ci
V

S� �
+ K0

I
C0
V

S = ~KB
I
C0
V

S + ~KN JN _θ,

ð18Þ

where ~KB =∑n
i=0Ki ∈ℝ3×6, ~KN =

K1AdI
C0
g K2AdC0Ig

⋯ KnAdI
C0
g

h i
∈ℝ3×6n, and JN =

J1 J2 ⋯ Jn½ �T ∈ℝ6n×n, Ji = ðbξ1 ′, bξ2 ′,⋯bξ i ′, 0,⋯0ÞT ∈
ℝn×6.

The angular momentum of the system is conserved.
Without loss of generality, it is considered to be zero. Thus,

I
C0
V

S = −~K+
B
~KN JN _θ = JB _θ, ð19Þ

where ~K
+
B is the pseudoinverse matrix of ~KB. JB = −~KB

+

~KN JN , which is defined as the generalized Jacobian matrix
of the base.

Furthermore,

I
EV

S = I
C0
V

S + AdI
C0
g
C0
E V

S
= JB + AdI

C0
gJn

� �
_θ = JE _θ, ð20Þ

where JE = ðJB + AdI
C0
gJnÞ, which is defined as the generalized

Jacobian matrix of the end-effector.

2.4. Attitude Calculation of the Base Using the Generalized
Jacobian Matrix. Equation (19) can be rewritten as follows:

I
C0
V

S =
IωS

0

IvS0

2
4

3
5 = JB _θ =

JBω

JBv

" #
_θ, ð21Þ

where JBω, JBv ∈ℝ3×n is the submatrix of JB related to orien-
tation and position, respectively. According to the deduc-
tions in Subsections 2.2 and 2.3, it is apparent that JBω is a
function that depends on Ψ. Thus,

IωS
0 = JBω Ψð Þ _θ: ð22Þ

On the other hand, according to Equations (4) and (13),

IωS
0 =

I _R0
IR

T
0

� �V
=

0 −sγ cγcβ

0 cγ sγcβ

1 0 −sβ

2
664

3
775

_δ

_β

_γ

2
664

3
775 = JEuler Ψð ÞΨ,

ð23Þ
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where

JEuler =

0 −sγ cγcβ

0 cγ sγcβ

1 0 −sβ

2
664

3
775: ð24Þ

Substituting Equation (23) into Equation (22) yields

_Ψ = J−1Euler Ψð ÞJBω Ψð Þ _θ = F Ψ, _θ, t
� �

: ð25Þ

If _θ is given, then Equation (25) is an ordinary differential
equation aboutΨ, which can be solved by the modified Euler
method. If the initial state of Ψ (Ψðt0Þ) is known, then

�Ψk =Ψk−1 + hF Ψk−1, _θk−1, tk−1
� �

,

Ψk =Ψk−1 +
h
2

F Ψk−1, _θk−1, tk−1
� �

+ F �Ψk, _θk, tk
� �h i

,

Ψ0 =Ψ t0ð Þ, _θk = _θ tkð Þ,

8>>>>><
>>>>>:

ð26Þ

where h is the time step.

3. Problem Construction

By considering berth position, we can achieve an extra goal
while the EE reaches the desired pose. A relatively simple case
is planning a trajectory with zero attitude disturbance to the
base. Another case is the adjustment of the attitude of the
base to the desired orientation simultaneously. Both trajec-
tory planning problems can be converted to parametric opti-
mization problems. The problems can be described clearly by
first performing the following preparations.

3.1. Transformation of the Berth Position. The problem can
be simplified by disregarding the movement of the target.
Thus, the berth position can be directly expressed as the vec-
tor Iptb from the target’s centroid to the base’s centroid,
which is the variable we aim to optimize. With respect to
the target-centroid-fixed inertial frame ∑TI , the desired posi-
tion of the end-effector Ipte is constant, while the centroid of
the system varies with Iptb because of the conservation of lin-
ear momentum. Conversely, the problems become complex
if they are analyzed in ∑TI . Given that the berth position
has no effect on the kinematic relationship, and the centroid
of the system will be immobile once the berth position is
determined, kinematic equations can be made much more
concise when expressed in the system-centroid-fixed inertial
frame ∑SI . In fact, if the berth position is expressed with
respect to ∑SI , then the kinematic equations contain no var-
iables of the berth position. Only the target’s centroid, as well
as the desired position of the EE, varies with Iptb, which
means that the berth position is transformed into the desired
position of the EE. The transformation process is shown in
Figure 2. It must be clarified that the transformation is per-

formed at the initial time, and all the involved vectors are
independent of time.

According to Equation (9), the position of the base’s cen-
troid with respect to ∑SI is as follows:

Ip0 0ð Þ = −pM 0ð Þ = −
1
M

〠
n

j=0
mj

C0pj 0ð Þ: ð27Þ

Then, the position of the target’s centroid with respect to
∑SI can be derived as follows:

Ipt = Ip0 0ð Þ − Iptb = −pM 0ð Þ − IptB: ð28Þ

Then, the desired position of the EE with respect to ∑SI
can be derived as follows:

Ipde = Ipt + Ipte = Ipte − pM 0ð Þ − Iptb: ð29Þ

Further, the desired orientation of the EE should also be
transformed:

I
ERd =

I
TR

T
PR

P
ERd , ð30Þ

where P
ERd is the desired rotation matrix from the capture

point to the EE, TPR is the rotation matrix of the capture point
with respect to∑TI , and

I
TR is the rotation matrix of∑TI with

respect to ∑SI .
Next, constraints of Iptb need to be specified.

(1) Safe distance, which is designed to avoid unexpected
collision while the space robot system is docking, is
expressed as follows:

Iptb
�� �� > Ps, ð31Þ

where Ps is the threshold value of safe distance.

(2) In workspace, which is designed to guarantee that the
capture point is reachable by the EE, is expressed as

Base

Ip0

Ipt

Ipde

Iptb

ΣSI

ΣTI

Ipte

ΣC0

Arm

Target

EE

x y

z

Figure 2: Transformation of the berth position.
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follows:

Ipde
�� �� < Rw, ð32Þ

where Rw is the radius of the system’s guaranteed
workspace. In terms of the inequality property of
the norm,

Iptb
�� �� = Ipte − pM 0ð Þ − Ipde

�� �� < Rw + Ipte
�� �� + pM 0ð Þk k:

ð33Þ

(3) Proper location, which is designed to prevent the sys-
tem from docking at the opposite side of the capture
point. Considering the situation in Figure 2,

Iptbx < Iptex, ð34Þ

where Iptbx and Iptex are projections of Iptb and Ipte
along the x axis, respectively.

3.2. Parameterization of Joint Variables. Trajectory planning
in the joint space requires that the joint variables be parame-
terized first. Many methods have been developed to obtain a
feasible and smooth trajectory. Since these variables are
bounded, we chose a concise and effective approach—a sinu-
soidal function combined with five-order polynomial func-
tions—to parameterize the joint angles, angle velocities, and
angular accelerations.

θi = li1 sin Að Þ + li2,
_θi = li1 cos Að Þ · _A,
€θi = −li1 sin Að Þ · _A2 + li1 cos Að Þ · €A,

8>><
>>: ð35Þ

where A = ai5t
5 + ai4t

4 + ai3t
3 + ai2t

2 + ai1t + ai0, and li1, li2,
aijðj = 0, 1,⋯, 5Þ are undetermined coefficients.

Furthermore, the constraints of these variables are speci-
fied as follows.

(1) Equality constraints, including the initial and final
states of the joint angles, angle velocities, and angle
accelerations, are defined by

θ 0ð Þ = 0,
_θ 0ð Þ = _θ t f

� �
= 0,

€θ 0ð Þ = €θ t f
� �

= 0,

8>><
>>: ð36Þ

where t f is the final time. Substituting Equation (35)
into Equation (36) yields

ai0 = − arcsin
li2
li1

	 

,

ai1 = ai2 = 0,

ai3 =
5

3t2f ai5
,

ai4 =
−5

2t f ai5
:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð37Þ

Then, Equation (35) can be rewritten as follows:

θi = li1 sin ~A
� �

+ li2,

_θi = li1 cos ~A
� �

· _~A,

€θi = −li1 sin ~A
� �

· _~A
� �2

+ li1 cos ~A
� �

· €~A,

8>>>>>><
>>>>>>:

ð38Þ

where ~A = ai5ðt5 − 5/2t f t4 + 5/3t2f t3Þ − arcsin ðli2/li1Þ.

(2) Inequality constraints, including limits of joint
angles, angle velocities, and angular accelerations,
are expressed as follows:

θmin ≤ θ ≤ θ max: ð39Þ

_θmin ≤ _θ ≤ _θmax: ð40Þ

€θmin ≤ €θ ≤ €θmax: ð41Þ

According to Equations (38) and (39), li1 and li2 can be
determined as follows:

l1 =
θmin + θmax

2
,

l2 =
θmax + θmin

2
,

ð42Þ

where l1 = fli1g, l2 = fli2g.
According to Equations (38), (40), and (41), the bound-

ary limits of ai5 can be determined by

ai5 min = max
_θi min
li1M1

,
€θi min

li1 M1
2 +M2

� �
( )

,

ai5 max = min
_θi max
li1M1

,
€θi max

li1 M1
2 +M2

� �
( )

,

ð43Þ

where M1 = max fð5t4 − 10t f t3 + 5t2f t2Þ, t ∈ ð0, t f Þg, and M2
= max fð20t3 − 30t f t2 + 10t2f tÞ, t ∈ ð0, t f Þg. Let a5 = fai5g,
a5 min = fai5 ming, a5 max = fai5 maxg.
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3.3. Objective Function. According to Subsection 3.1, the
desired pose of the EE can be determined by

I
Egd =

I
ERd

Ipde
0 1

" #
: ð44Þ

For the trajectory planning of zero attitude disturbance to
the base, the following equality should be satisfied:

I
C0
ωS = JBω _θ ≡ 0: ð45Þ

Thus, the objective function for this case can be defined
as follows:

Jzd = log I
Eg

−1
d

I
Eg

� ���� ��� + ðt f
0

JBω _θ
��� ���dt, ð46Þ

where log() means logarithm mapping of a matrix.
For the trajectory planning of the attitude adjustment of

the base, the following equality should be satisfied:

Ψf =Ψd: ð47Þ

Thus, the objective function for this case can be defined
as follows:

Jαα = log I
Eg

−1
d

I
Eg

� ���� ��� + Ψf −Ψd

�� ��: ð48Þ

4. Trajectory Planning Strategy with
Consideration of the Optimal Berth Position

With the conclusion of Section 3, trajectory planning prob-
lems using a parametric optimization method can be
described as follows:

min  Jzd α5, Iptb
� �

orJαα α5, Iptb
� �

st: α5 min ≤ α5 ≤ α5 max

Ps < Iptb
�� �� < Rw + Ipte

�� �� + pM 0ð Þk k
Iptbx < Iptex,

ð49Þ

where the coefficients α5and berth position Iptb are variables
to be optimized, and X = ½α5, Iptb�.

A genetic algorithm is employed to solve this minimi-
zation problem because of its fast and stochastic searching
ability. Here, the designation and procedure of the trajec-
tory planning strategy is sketched. A flowchart is shown
in Figure 3.

Step 1. Coding. Choose real-number coding, and vector
X is the individual

Step 2. Fitness function. Let the fitness function f ðXÞ
equal the objective function Jzd or Jaa. The smaller
the value of f ðXÞ, the better the individual

Step 3. Initialization. Set the genetic algorithm parame-
ters, including the population size ns, maximum
generation number ng, crossover fraction pc,
mutation fraction pm, and stopping criterion ε.
Then, generate the first generation randomly in
terms of constraints

Step 4. Fitness calculation. Fitness functions for the two
cases consist of two parts. Here, the calculation
process is detailed as follows:

(a) Calculate C0
Ci
g, C0

E g by substituting Equation
(38) into Equations (1) and (2), respectively.
Thus, C0Ri,

C0pi is known

(b) Denote IR0, JEuler by substituting undeter-
mined Ψ into Equations (4) and (23),
respectively

(c) Denote Ip0 by substituting IR0,
C0pi into

Equation (9), where IpC = 0

(d) Denote the generalized Jacobian matrix of
the base JB by substituting I

C0
g, C0

Ci
g into

Equation (19)

(e) Calculate the final attitude of the base Ψ by
Equation (26)

(f) Calculate JBω by using Step 4 and Equation
(21)

(g) Calculate log ðIEg−1d I
EgÞ, where I

Eg can be cal-
culated by Equation (10), and I

Egd can be cal-
culated by Equations (29), (30), and (44)

From the above, f ðXÞ can be achieved. Then, rank indi-
viduals according to their fitness values and judge whether
the minimum fitness value is less than ε. If yes, go to Step
7; otherwise, go to the next step.

Step 5. Reproduction. Generate the next generation by
the selection, crossover, and mutation operator

Selection. Use the Roulette Wheel Selection method, in
which the area of each individual depends on its rank

Crossover. Choose the scatter crossover operator; a ran-
dom binary vector selects the genes of the parents, which
then combine to form the child

Mutation. Modify the classical Gaussian mutation
method, which is usually used for unconstrained problems.
The Gaussian mutation method adds random numbers from
a Gaussian distribution in terms of ðμk, σkÞ to the parent, and
σk shrinks as the generations increase. The method has two
disadvantages: the first is that the genes of the child might
exceed the boundary, and the second is that the process
might slow down to find the optimal solution when
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performing the local search because σk only varies with the
generation. In view of these shortcomings, we offer a modi-
fied Gaussian mutation method. The determination of σk is
defined as follows:

σk = Xbound 1 −
k
ng

 !
if f best ≥ 1,

σk = Xbound 1 −
k
ng

 !
0:5 exp f bestð Þ − 0:5ð Þ if 0:05 < f best < 1,

σk = Xbound 1 −
k
ng

 !
0:8 exp f bestð Þ − 0:8ð Þ if f best ≤ 0:05,

8>>>>>>>>>>><
>>>>>>>>>>>:

ð50Þ

where Xbound = Xmax − Xmin, k is current generation number,
and f best is the smallest fitness value of the current popula-
tion. Furthermore, correction is made when the genes of
the child exceed the boundary:

Xi = Xmaxi − r Xmaxi − Xminið Þ if Xi > Xmaxi,

Xi = Xmini + r Xmaxi − Xminið Þ if Xi < Xmini,

(
ð51Þ

where Xi is the i
th gene of the child and r is a random number

between ð0, 1Þ.

Step 6. Stopping judgment. Judge whether the number of
the current generation exceeds ng. If yes, go to
Step 7; otherwise, go to Step 4

Figure 3: Flowchart of the provided trajectory planning strategy.
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Step 7. Trajectory calculation. Obtain the population
containing the best individual. Calculate the tra-
jectory of each joint using ai5 of the best individ-
ual. Thus, the planning concludes

5. Simulation Examples

Trajectory planning of a planar dual-link space robot was
performed with MATLAB. To verify the effectiveness of our
strategy and illustrate berth position and the moving process
of optimized joint trajectory, we built a corresponding model
by Adams. The optimal results of each calculation were
substituted into the Adams model, and Adams simulations
were run. The simulation model in the initial configuration
is shown in Figure 4. The CPU clock of the computer used
is 3.5GHz.

The detailed initial and inertia parameters of the model
are as follows.

ω1 = ω2 = ð0, 0, 1ÞT, r1 = ð1:2,0:7,0ÞT, r2 = ð2:09,−0:85,0ÞT.
Then, ξ1 = ðω1, r1 × ω1ÞT = ð0, 0, 1,0:7,−1:2,0ÞT, ξ2 = ðω2,

r2 × ω2ÞT = ð0,−1, 0,−0:85,−2:09,0ÞT.

Next, m0 = 400,m1 = 18,m2 = 24 ; Iz0 = 260, Iz1 = 6, Iz2 =
7:8;

B
C1
g 0ð Þ =

1:68

Rz −60°ð Þ −0:14

0

0 1

2
666664

3
777775,

B
C2
g 0ð Þ =

2:65

Rz 60°ð Þ 0:12

0

0 1

2
666664

3
777775,

B
Eg 0ð Þ =

3:0

Rz 60°ð Þ 0:72

0

0 1

2
666664

3
777775,

ð52Þ

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

Generation

Fi
tn

es
s v

al
ue

 

Best fitness
Mean fitness

(a)

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

Generation

Fi
tn

es
s v

al
ue

Best fitness
Mean fitness

(b)

Figure 5: Variation in the mean fitness and best fitness of each generation.
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Figure 4: Simulation model of the planar dual-link space robot in the initial configuration.
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where

Rz ϕð Þ =
cos ϕ −sin ϕ 0

sin ϕ cos ϕ 0

0 0 1

2
664

3
775 ð53Þ

is the direction cosine matrix along z axis. According to Equa-
tion (27), pMð0Þ = ð−0:212,0, 0ÞT and Ipte = ð−0:65, 0, 0ÞT,

Ps = 3:60, Rw = 4:69, so constraints of Iptb can be given as
3:60 < kIptbk < 5:55 and Iptbx<−0:65. Constraints of the
angular variables are as follows.

θmin = −75,−165ð ÞT °ð Þ, θmax = 75,165ð ÞT °ð Þ,
_θmin = −30,−35ð ÞT °/sð Þ, _θmax = 30, 35ð ÞT °/sð Þ,
€θmin = −15,−20ð ÞT °/s2

� �
, €θmax = 15, 20ð ÞT °/s2

� �
:

8>><
>>: :

ð54Þ

Trajectory

Berth position

Figure 8: Optimized berth position and motion process for the planning case of zero attitude disturbance.
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Figure 7: Optimized trajectory of the base for the planning case of zero attitude disturbance.
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Figure 6: Optimized trajectories of joints for the planning case of zero attitude disturbance.
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According to Equations (42) and (43), α5 min =
ð−2:002,−0:801ÞT × 10−4, α5 max = ð2:002,0:801ÞT × 10−4, l1 =
ð75,165ÞT, l2 = ð0, 0ÞT, where t f = 10:0s.

The desired orientation of the EE is set at PERd = Rzð−90°Þ,
and the desired attitude of the base is set as Ψd = ½0, 0,−7:5°�
for attitude adjustment. The parameters of the genetic algo-
rithm are set at ns = 45, ng = 300, pc = 0:83, pm = 0:08, ε =
0:001. The results of the simulation using MATLAB pro-
grams are as follows.

For the planning case of zero attitude disturbance to the
base, the iteration stops when the maximum generation
number is reached. The variation in the mean fitness and best
fitness of each generation is shown in Figure 5(a). The opti-
mal individual is Xbest = ½−5:227,−0:010,0:316,−0:380�, and
the corresponding fitness is f ðXbestÞ = 0:0144. The distur-
bance to the base attitude is tolerable, and the maximum
amplitudes of the base’s angle and angular velocity are
0:216° and 0:080°/s, respectively. The optimized trajectories
of the joints and the base attitude are shown in Figures 6
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Figure 10: Optimized trajectory of the base for the planning case of attitude adjustment.
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Figure 9: Optimized trajectories of joints for the planning case of attitude adjustment.

Berth position
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Figure 11: Optimized berth position and motion process for the planning case of attitude adjustment.
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and 7, respectively. Figure 8 shows the optimized berth
position and motion process simulated by Adams, with
the dotted lines denoting the initial configuration. It can be
observed that the EE reaches the capture point precisely,
and the base attitude is nearly changeless. The trajectory of
the EE is also sketched. The calculation time for each simula-
tion is about 7.5min.

For the planning case of attitude adjustment of the base,
iteration stops at the 297th generation as the stopping crite-
rion ε is satisfied. Variation in the mean fitness and the best
fitness of each generation is shown in Figure 5(b). The opti-
mal individual is Xbest = ½−5:422,−0:401,0:622,−0:473�, and
the corresponding fitness is f ðXbestÞ = 0:00087. The final atti-
tude of the base achieves the desired adjustment, Ψf = ½0, 0,
−7:514∘�, and the corresponding error is 0:19% compared
withΨd . The optimized trajectories of the joints and the base
attitude are shown in Figures 9 and 10, respectively. Figure 11
shows the optimized berth position and motion process sim-
ulated by Adams, and it shows that the EE again reaches the
capture point precisely. The trajectory of the EE is also
sketched. The calculation time for each simulation is about
8min.

6. Conclusion

In this paper, several innovations are presented to improve
the approach to the trajectory planning of a free-floating
space robot. First, there are two useful techniques to improve
the calculation efficiency: systematical deduction of the
generalized Jacobian matrix using screw theory and the cal-
culation of the base attitude by the modified Euler method
without integration. Second, the berth position is opti-
mized with the joint variables by the transformation between
the target-centroid-fixed and system-centroid-fixed inertial
frame. The extra goals proposed are all achieved by consider-
ing the berth position, while the EE reaches the desired posi-
tion and orientation. More importantly, the simulations of
example missions are completed by using only two joints.
Figure 5 shows that the presented optimization method con-
verges quickly and stably, thereby demonstrating that the
proposed objective function is of good quality. Furthermore,
the optimized trajectories of both the joints and the EE are
feasible and smooth.

Nomenclature

ΣI : The general inertial frame
ΣSI , ΣTI : System-centroid-fixed, target-centroid-fixed

inertial frame
ΣCI : The centroid-fixed frame of the ith link (i = 0, 1,

…, n, 0 represents the base hereinafter)
ΣCE: The end-effector-fixed frame
Api: The position of the centroid of the ith link

expressed in frame A (A denotes an arbitrary
frame hereinafter)

ApE: The position of the end-effector expressed in
frame A

ApC : The position of the centroid of the system
expressed in frame A

ARi: The orientation matrix of the centroid of the ith

link expressed in frame A
ARE : The orientation matrix of the end-effector

expressed in frame A
B
Ag: The pose of frame A expressed in frame B, and

B
Ag =

B
AR

BpA

0 1

" #

θi: The angle of joint i
ωi: The rotational axis of joint i
ri: An arbitrary point on the rotational axis of joint ibξ i ∈ seð3Þ: The corresponding twist of joint i

eθiξ̂i : The matrix exponential of θi
bξ i

ICi
: The inertial tensor of the ith link with respect to

its body frame
mi: The mass of the ith link
ð̂Þ: The operator that maps a vector to the corre-

sponding skew-symmetric matrix (or twist), ℝ3

→ soð3Þ
ðÞ∨: The operator that maps a skew-symmetric matrix

(or twist) to the corresponding vector, soð3Þ→
ℝ3.
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