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In this paper, adaptive tracking control is applied to improve performances of an underactuated quadrotor helicopter with respect
to attitude and position control. Firstly, the dynamic model is presented. Then a new trajectory tracking algorithm is designed by
using the sigma-pi neural network and backstepping. The paper designs the sigma-pi neural network compensation control law and
gives the Lyapunov-type stability analysis. Then the corresponding numerical simulations are performed by using MATLAB.
Simulation results are shown to demonstrate the effectiveness of the proposed control strategy, which could reduce tracking
error, decrease tracking time, and improve the anti-interference ability of the system.

1. Introduction

Presently, the quadrotor is very popular since it can not only
vertically take-off and land but also swiftly manoeuvre in any
direction [1]. However, the quadrotor is well known to be a
nonlinear, underactuated, and highly coupled system. There-
fore, how to design a flying control system has become a chal-
lenging research.

In recent years, researchers have proposed many control
methods for the quadrotor system, such as PID method and
LQR [2–5]. Although those methods can control UAVs well
in some respect, the tracking accuracy performance is terrible
when the speed of the UAV increases or the UAV performs
large maneuvering. In addition to the above methods, the sig-
nal compensation method is used to improve attitude control
performances of roll and pitch channels in the condition of a
large maneuvering flight [6]. Reference [7] introduces the
LQT to improve tracking performance, but this method
mainly focuses on decreasing energy consumption. The feed-
back linearization is used to divide the quadrotor system into
two fully actuated subsystems [8], but this method focuses on
stabilizing the quadrotor instead of tracking a desired

trajectory. The gain scheduling control method is used to
get acceptable performance, but this method is the severe
trade-off between control performance and the number of
the required trim points [9]. Backstepping technique with
command filtering is used to finish the control of trajectory
tracking, and it uses second-order filter quaternion to get
the desired angular velocity vector [10]. The adaptive back-
stepping sliding mode control technique is used to finish
the attitude control, which can reduce the tremor phenome-
non of the first-order fixed gain sliding mode [11]. Reference
[12] uses the integrator backstepping approach in position
and yaw trajectory tracking of the quadrotor. Reference
[13] derives the BIOAC (backstepping-based inverse optimal
attitude controller) to solve the attitude rapidly located prob-
lem, when the input limit is in a large manoeuvre condition.

In recent years, many researchers apply the neural net-
work to UAV control. Reference [14] discusses the BP neural
network to train the data and construct the dynamics of the
UAV. Reference [15] uses the only INS data and neural
network to generate hover command and applies this
method on JR Ergo 60. The multilayer feedforward network
(MFN) is designed to detect obstacles in highways and uses
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backpropagation algorithm to supervise the training of the
proposed neural network by minimizing the square error
function via descending gradient criteria [16]. Reference
[17] designs an adaptive inverse controller to realize UAV
formation flight, combining with the BP neural network. Ref-
erence [18] designs an adaptive sliding mode control based
on two neural networks for quadrotor stabilization, which
presents solutions to conventional control drawbacks as
chattering phenomenon and dynamical model imprecision.

Combining the sigma-pi neural network with backstep-
ping, this paper presents an algorithm of trajectory tracking
control for quadrotor UAVs. The sigma-pi neural network
control law is established to compensate for the trajectory
tracking error. At the same time, the paper gives the proof
of stability by using Lyapunov function. The comparative
simulation shows that the tracking error will be reduced con-
siderably, the tracking time will be shortened, and the jitter of
the attitude angle will be decreased.

Thepaper isorganizedas follows.Thenonlinearquadrotor
UAV dynamic model and the sigma-pi neural network are
given in Section 2. In Section 3, the sigma-pi neural network
control law is designed and the stability analysis of the control
lawwill also be given. Some comparative simulations are given
in Section 4. At last, Section 5 will conclude this paper.

2. Quadrotor Dynamic Modelling

2.1. Coordinate Definition. To describe the UAV motion, the
Earth coordinate frame SE and the body coordinate frame SB
are used in this paper. At the same time, in the paper, SE is
assumed as the inertial coordinate and the Earth’s rotation
is negligible. SB is fixed to the quadrotor body. The detailed
information of those two reference coordinate frames are
shown in Figure 1.

As shown in Figure 1, F1 F2 F3 F4 represent the rotor
thrust. T1 T2 T3 T4 represent themoment generated by each
rotor. φ θψ are Euler angles.mg represents the gravity.

2.2. Quadrotor Dynamic Modelling and Parameters. When
modelling the quadrotor UAV, the paper considers that the
UAV is just affected by gravity, rotor thrust, and aerodynamic
drag during the flight. Using Newton’s kinematics law, the
dynamic equations can be written in the following form:
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where f x f y f z denotes the aerodynamic drag coefficient.Ui

i = 2, 3, 4 represents the resultant moment. U1 = ∑4
i=1Fi

represents the resultant force. Ix Iy Iz represents themoment
of inertia about the x-axis, y-axis, and z-axis.ux,uy , anduz rep-
resentU1 in thex, y, z direction,which is equal to the following
formulas, respectively.

ux = cos φ sin θ cos ψ + sin φ sin ψ ,

uy = cos φ sin θ sin ψ − sin φ sin ψ ,

uz = cos φ cos θ

2

3. Sigma-PiNeuralNetwork andControl
LawDesign

3.1. Sigma-Pi Neural Network. Compared with other neural
networks, the sigma-pi neural network uses summation neu-
rons and quadrature neurons to construct the hidden layers. It
notonlypreservesthehighlynonlinearmappingabilitybutalso
increases theflexibilityof thenetwork.So, according to thespe-
cific problems, which can construct appropriate neural net-
works to improve the learning efficiencyof theneural network.

Figure 2 takes a three-layer sigma-pi neural network as an
example, which includes the input layer, product layer, and
output layer. The input x is an N-dimensional vector and
xk is the kth component of x. The inputs are weighted and
fed to a layer of K linear product units, where K is the desired
order of the network. Let hji be the output of the jth product
units for the ith output, yi. Then

hji = k
wkjixkβ + θ ji,

yi = σ 〠
j

hji ,
3

where wkji is an adjustable weight from input xk to the jth
product units of the ith output and θ ji is an adjustable thresh-
old of the jth product units of the ith output. β represents the
basis function vector. σ x denotes the nonlinear activation
function and is selected as the logistic function, σ x = 1/ 1
+ e−x for all the results reported in this paper. In this paper,
it should be noted that connections from product units to an
output have fixed weights. Thus, there is no notion of hidden
units in the network and fast-learning rules can be used.

ze

zb

yb

F3
T3

Left
Front

Rear

xe

xb

F4
T4

Oe

Ob
ye

SE

SB
𝜃

𝜓

mg

𝜙

F1

T2

Right

F2

T1

Figure 1: Reference coordinate frames SE and SB.
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In this paper, the signal layer sigma-pi neural network
which just have the input layer and product units to compen-
sate for the error of attitude and position will be used. Then
the attitude compensation control law will be designed first,
and in this section, the detailed derivation process and the

Lyapunov stability analysis will be provided. Followed by
using the same method, this paper will give the position com-
pensation control law.

3.2. Adaptive Control Law Design. Combing with the back-
stepping control method, this paper introduces the sigma-pi
neural network into the position and attitude control system
to improve trajectory tracking performances. The control
loop with sigma-pi neural network compensation control is
shown in Figure 3, which consists of the command filter mod-
ule, position control module, attitude control module,
dynamic model of the UAV, and sigma-pi neural network.

As can be seen in Figure 3, the “state” outputted by the
dynamic model consists of x, y, z, x, y, z, φ, θ, ψ, φ, θ, ψ .
Before designing the sigma-pi neural network compensation
attitudeandpositioncontrol law, it ismoreconvenient toestab-
lishastate-spacemodel todesignacontrol systemfor thequad-
rotorUAV.Then the state-space system for theUAVdynamic
model described in (1) can be expressed as follows.

3.3. Attitude Control Law Design. In this section, the attitude

control law will be designed. As shown in Figure 4, which is
part of Figure 3, the quadrotor attitude control loop is com-
posed of the command filter, attitude control module, and
sigma-pi neural network module.

As can be seen in Figure 4, the attitude angle control
instruction φd , θd , ψd will be filtered by the command filter
module. Then it combines the states of the quadrotor UAV
to get the attitude errors. In addition, the sigma-pi neural
network module will combine the states of the quadrotor

UAV with Uang which is the current attitude control input

Uang = U2,U3,U4
T to get the compensation control input

US‐P. Then combining US‐P with attitude errors, the attitude
control module will calculate the control input for the roll,
pitch, and yaw of the quadrotor. Using these attitude control
inputs U1,U2,U3,U4 , the dynamic model calculates the
parameter in each channel to control the attitude and output
states of the quadrotor UAV. And the “state” outputted by

the dynamic model contains x, y, z, x, y, z, φ, θ, ψ, φ, θ, ψ .
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Figure 2: A sigma-pi neural network.
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Now, this paper begins designing the attitude control law.
Considering the modelling error and external disturbances,
equation (4) can be shown in following equation.

X1 = X2,

X2 = f X1, X2,U +US‐P − e~,
5

where X1 = φ θψ x y z T ; e~ = eφ eθ eψ ex ey ez
T denotes the

modelling error and external disturbances; US‐P represents
the sigma-pi control input.

In this paper, the single-layer sigma-pi neural network
is used to compensate for the error. So, US‐P can be
expressed as follows.

US‐P =WTβ, 6

where WT denotes the weight coefficient matrix; β repre-
sents the basis function vector which is defined as follows:

β = kron kron C1, C2 , C3 , 7

where “kron” represents the Kronecker product and in the
attitude control system, C1, C2, C3 are defined as follows:

C1 = 0 01ww2 T ,

C2 = 0 01φdθd ψd U
φ
S‐P U

θ
S‐P U

ψ
S‐P

T
,

C3 = φ θψ T

8

To design the adaptive control law, the paper defines
that U∗ is the optimal sigma-pi neural network control
input. Then we will get the following equation.

U∗ =W∗Tβ,

US‐P −U∗ =WTβ −W∗Tβ =W~∗Tβ,
9

where W∗T is the optimal weight coefficient matrix; then
the error between the optimal control input and the
modelling error can be expressed as follows:
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Figure 3: The control loop with sigma-pi neural network compensation.
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US‐P − e~ =W~∗Tβ +U∗ − e~ 10

Now, this paper takes the roll channel as an example
to design the appropriate adaptive control law and give
the Lyapunov-type stability analysis. Firstly, we define the
roll angle x1 φ tracking error as follows:

z1 = x1d − x1 11

Then the Lyapunov-type equation V z1 and the
appropriate first-order differential equation V z1 can be
defined as the following equations:

V z1 =
1
2
z21, 12

V z1 = z1 x1d − x2 13

According to equation (13), x2 can be defined as x2
= x1d + α1z1 α1 > 0 to satisfy the stability of the Lyapunov
function. Then V z1 = −α1z21 < 0.

The roll angle rate x1 φ error can be defined using the
same method z2 = x2d − x2. Then we can define the Lyapunov
function which is rated to z1 and z2.

V z1, z2 =
1
2
z21 +

1
2
z22 +

1
2γ

W~T
φW

~
φ 14

Then the first order differential equation V z1, z2 can be
defined as the following equation:

V z1, z2 = z1z1 + z2z2 +
1
γφ

W~T
φW

~
φ,

z2 = x2d − x2

15

Combining with equations (4), (5), and (11) and defin-
ing x2d = x1d + α1z1, x2 in equation (4) can be expressed as
follows:

x2 = x4x6a1 + b1U2 +W~T
φβφ +U∗φ

S‐P − eφ, 16

where a1 = Iy − Iz /Ix and b1 = d/Ix.
Then substituting equation (16) into (15) can get the fol-

lowing equation:

V z1, z2 = z1z1 + z2z2 +
1
γφ

W~T
φW

~
φ,

z2 = x1d + α1z1 − x2,

x2 = x4x6a1 + b1U2 +W~T
φβφ +U∗φ

S‐P − eφ

17

According to (17), we can select the control input U2
and the sigma-pi neural network compensation control
law as follows:

U2 =
1
b1

z1 + α1z2 − α21z1 − x4x6a1 + α2z2 ,

α1 > 0,

α2 > 0,

W~
φ = −γφz2βφ

18

Substituting equation (18) into (17), the first-order dif-
ferential Lyapunov function V z1, z2 is as follows:

V z1, z2 = −α1z
2
1 − α2z

2
2 + z2 U∗φ

S P − eφ ≤ − α1z
2
1 − α2z

2
2 + ε z2

= −α1z
2
1 − z2 α2 z2 − ε

19

According to (18), if z2 satisfies z2 > ε/α2, the Lya-
punov function is V z1, z2 < 0. The system is stable. Oth-
erwise, the system is not. If z2 does not satisfy z2 > ε/α2,
then the paper defines the sigma-pi adaptive control law

W~
φ = 0.
Using the same method, we can get the adaptive

sigma-pi neural network control law of the pitch and the
yaw channel.

U3 =
1
b2

z3 + α3z4 − α23z3 − x2x6a3 + α4z4 ,

W~
θ = −γθz4βθ,

U4 =
1
b3

z5 + α5z6 − α25z5 − x4x2a5 + α6z6 ,

W~
ψ = −γψz6βψ

20

Using the same approaches of the roll channel, then
z3, z4, z5, z6 are defined as follows:

z3 = x3d − x3,

z4 = x4d − x4 x4d = x3d + α3z3 α3 > 0 ,

z5 = x5d − x5,

z6 = x6d − x6 x6d = x6d + α6z6 α6 > 0

21

3.4. Position Control Law Design. To reduce the trajectory
tracking error, this paper also adds the sigma-pi neural
network to quadrotor position control loop which is
shown in Figure 5, which is part of Figure 3. As can be
seen in Figure 5, the position control loop is also com-
posed of the command filter module, position control
module, and sigma-pi neural network module.
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As can be seen in Figure 5, xd , yd , zd represent the
desired position instruction, which will be filtered by the
command filter module. The “state” outputted by the
dynamic model contains x, y, z, x, y, z, φ, θ, ψ, φ, θ, ψ . It
is different from the attitude control loop and the posi-
tion control loop which defines the basis function vector
β as follows:

β = kron kron Cp1, Cp2 , Cp3 , 22

where “kron” represents Kronecker product and in the
position control loop, Cp1, Cp2, Cp3 are defined as follows:

Cp1 = 0 01 d d2 T ,

Cp2 = 0 01xdydzdxyzU
x
S‐PU

y
S‐PU

z
S‐P

T ,

Cp3 = xyz T ,

23

where d in (23) denotes the distance error between the
desired position and the current states.

Using the same method, we can get the sigma-pi neural
network compensation control law in the x, y, z direction.

W~
x = −γxzxβx,W~

y = −γyzyβy ,W~
z = −γzzzβz , 24

where zx, zy , zz represent the position error.
After deriving the formula, integrating equations (18),

(20), and (24) can get the sigma-pi neural network compen-
sation control law of attitude and position.

W = Wφ,Wθ,Wψ
T ,

W = Wx,Wy,Wz
T

25

Then substituting equations (7), (22), and (25) into equa-
tion (6) can get the sigma-pi neural network compensation of
the system.

4. Simulation and Discussion

Some comparative simulations are carried out to illustrate
the trajectory tracking algorithms proposed in this paper,
which can decrease the tracking error, improve the track-
ing precision, reduce the tracking time, and improve the
antijamming capability. The first case wants the UAV to
track the 3D spiral trajectory by using the backstepping
method as a contrast. The second case will add the disturb-
ing items into the dynamic model to illustrate the ability of
anti-interference.

5. 3D Spiral Trajectory Tracking

In this case, we will use the sigma-pi neural network compen-
sation control method proposed in this paper and backstep-
ping method in [19] to track the 3D spiral trajectory. The
desired trajectory and initial position in simulation are
shown in Table 1, and the simulation results are shown in
Figures 6–9.

The trajectory tracking result is shown in Figures 6 and 7.
Figure 6 uses the backstepping method only, and Figure 7
uses the sigma-pi neural network to compensate for the con-
trol error. By comparison, it can be seen clearly that the
tracking performance of using the adaptive sigma-pi neural
network is better than using backstepping only.

The curve of the attitude angle and tracking error by
using these two methods can be seen in Figure 8. By contrast,
it is clearly seen that the tracking error curve which has the
sigma-pi neural network compensation control approach is
obviously small especially in x and z directions. And to be
more specific, the tracking error in the x, y, z direction will
all converge to 0 at around 10 s.

Figure 9 gives the attitude angle change of the UAV by
using these two methods. To be more specific, it is clear
that the change range of the attitude by using the sigma-
pi neural network compensation control method is smaller
than backstepping. Apart from this, the jitter of the quadro-
tor UAV is significantly reduced before 5 s, when using the
sigma-pi neural network compensation control method.
Moreover, the curve of the attitude angle is smoother with-
out mutation by using the sigma-pi neural network com-
pensation control approach.

5.1. Disturbance Rejection Simulation. In this section, distur-
bance rejection properties of the using sigma-pi neural net-
work compensation control method will be analyzed. This

Command
filter

xd,yd,zd Position
control 

Sigma-pi
ANN

US-P

U1

State

State

Upos

Figure 5: The quadrotor position control loop.

Table 1: Parameters using in simulation.

Parameter Definition Value

xd (m) Desired x t

yd (m) Desired y 3 cos
t
2

zd (m) Desired z 3 sin
t
2
+ 3

x0, y0, z0 (m) Initial position (0,1,3)
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paper will regard gust force as one of the disturbance terms
added to the quadrotor UAV. Then the equation of transla-
tion motion can be expressed as follows:

x

y

z

=

uxU1
m

−
f xx
m

+ dx +Ux
S‐P − e~x

uyU1

m
−
f yy

m
+ dy +Uy

S‐P − e~y

−g + uzU1
m

−
f zz
m

+ dz +Uz
S−P − e~z ,

26

where dx, dy , and dz represent additional disturbance terms
in the x, y, z direction; as can be seen in equation (20), distur-
bances are added to the dynamics as additional external
forces; therefore, they are in the units of (N). The disturbance
term equation is shown as follows, and the corresponding
disturbance force curve is shown in Figure 10.

Vw =

0,  t < T ,

Vg max

2
1 − cos 2π

t − T1
Tg

, T1 ≤ t ≤ T1 + Tg,

0,  t > T1 + Tg

27

As can be seen in Figure 10, it is clear that for the motion
in the x, y, and z direction, a strong constant disturbance is
added to the system at 10, 20, and 30 seconds, respectively.
Since constant disturbances are very strong, they last for 1
second; thus, they can be considered as impulse disturbances.
All of these different sizes of disturbing external forces are
added simultaneously in the whole simulation process.

In this simulation, the desired trajectory and initial posi-
tion are shown in Table 2. And the trajectory tracking result,
attitude angle, and the tracking error in disturbance circum-
stance are shown in Figures 11–13.

0 10 20 30 40

−4−2024
−1

0
1

2
3
4
5

6
7

X (m)Y (m)

StartStartZ
 (m

)

Tracking trajectory
Desired trajectory

Figure 6: Simulation result using backstepping only.

−10
0 10 20 30

40

−4
−2

0
2

4
0
1
2
3
4
5
6

X (m)

Start

Y (m)

Start

Z
 (m

)

Tracking trajectory
Desired trajectory

Figure 7: Simulation result using adaptive sigma-pi neural network
control.

−0.5

0

0.5

Er
ro

r x
 (m

)

−2
0
2

Er
ro

r y
 (m

)

0 5 10 15 20 25 30 35 40
−0.5

0

0.5

Time (s)

Er
ro

r z
 (m

)

Sigma-pi neural network
Backstepping

0 5 10 15 20 25 30 35 40
Time (s)

0 5 10 15 20 25 30 35 40
Time (s)

Figure 8: Curves of trajectory tracking error.

−20

0

20

Ro
ll 

(°
)

−20
0

20

Pi
tc

h 
(°

)

Backstepping
Sigma-pi neural network

0 5 10 15 20 25 30 35 40
−200

0

200

Time (s)

0 5 10 15 20 25 30 35 40
Time (s)

0 5 10 15 20 25 30 35 40
Time (s)

Ya
w

 (°
)

Figure 9: Curves of the trajectory attitude angle.

7International Journal of Aerospace Engineering



As can be seen in Figure 11, disturbances are successfully
rejected. At 10, 20, and 30 seconds, the quadrotor is exposed
to strong impulse disturbances and deviates from the
desired path. However, as can be seen in Figure 12, the sys-
tem tries to return to the desired path by changing Euler
angles significantly. And the change of Euler angles is very
small in each direction.

Figure 12 gives the curve of the attitude angle. It is clear
that when the additional disturbance terms occur in each
direction at 10, 20, and 30 seconds, the quadrotor UAV
briefly fluctuates and then restores stability soon. This illus-
trates that the sigma-pi neural network compensation con-
trol method has the ability of anti-inference.

Figure 13 shows the change of tracking error curves. It is
clear that at 10, 20, and 30 seconds, despite the appearing
error fluctuations, the tracking error is still very small in the
whole process and soon converges to 0. Therefore, it also
proves that the quadrotor UAV can track the desired trajec-
tory well in disturbance circumstances.

6. Conclusions

This paper proposes a new trajectory tracking algorithm of
a quadrotor UAV by introducing the sigma-pi neural net-
work to backstepping. Firstly, the paper gives the quadrotor
UAV dynamics. Then the paper establishes the sigma-pi
neural network compensation control law and gives the
Lyapunov stability analysis. At last, some contrastive simu-
lations show that the method proposed in this paper is

valid. By comparison, using the proposed method in this
paper, we can improve the tracking performance, reduce
the tracking time, improve the tracking accuracy, and
decrease the jitter of the system.
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Table 2: Parameters used in this simulation.

Parameter Definition Value

xd (m) Desired x t

yd (m) Desired y 3 cos
t
2

zd (m) Desired z 3 sin
t
2
+ 3

x0, y0, z0 (m) Initial position (0,1,3)
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Figure 12: The curve of the attitude angle.
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