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This study deals with the application of optimization in Finocyl grain design with ballistic objective functions using a genetic
algorithm. The classical sampling method is used for space filling; a level-set method is used for simulating the evaluation of a
burning surface of the propellant grain. An algorithm is developed beside the level-set code that prepares the initial grain
configuration using a computer-aided design (CAD) to export generated models to the level-set code. The lumped method is
used to perform internal ballistic analysis. A meta-model is used to surrogate the level-set method in an optimization design
loop. Finally, a case study is done to verify the proposed algorithm. Observed results show that the grain design method reduced

the design time significantly, and this algorithm can be used in designing any grain type.

1. Introduction

Using solid propellant motors is increasing due to their
compactness, simplicity, and low cost [1-5]. Since the
solid propellant motor firing static tests are costly during
the design or qualification phase, simulation is cheapest
and sometimes is the only way to predict and to under-
stand the phenomena which may be essential for design
[4]. Grain design is the most obligatory section in perfect-
ing a solid rocket motor (SRM) design in order to satisty
the mission requirements [3]. An effective design of solid
propellant grains mostly depends on the specialists’ exper-
tise, and the performance of their design is analyzed by
numerical methods or experimental static tests. If this
designed grain cannot satisfy the mission requirements, it
is essential to modify the geometry of grain configuration.
It is clear that this try-and-error method is too expensive
and is a very time-consuming method. The first attempt
of grain design was performed by Sforzini [6]; other
attempts are [2, 3, 7-11] and [5].

Despite development in capacity and processing speed
of computers, high computing cost of complicated engi-
neering simulations with high accuracy, is very time con-
suming process. The strategy is to use approximate

models instead of direct use of simulation, which are often
referred to as meta-models [12].

In recent years, evolutionary methods are used to solve
optimization design problems. Population-based optimiza-
tion procedures are an attractive choice for this problem
because using them is easy and they are effective for inten-
sively nonlinear problems [12-14].

Meta-modeling is widely used for design optimization in
many engineering applications; a summary of meta-model
applications in aerospace systems can be found in ref. [15].
The last works which have been done for grain design using
the level-set code are [3, 5], which first implemented a
genetic algorithm and secondly implemented the RBF
meta-model and a sequential field approximate optimization
algorithm. In this paper, a strategy based on the meta-model
technique beside the evolutionary optimization technique is
used instead of the direct use of the level-set method in order
to decrease the run time and eliminate the divergent effects
of numerical methods; besides, the advantages of using the
level-set method are its capability to adapt various grain
configuration burnbacks and no limitation on the grain con-
figuration. The genetic algorithm (GA) is used as an opti-
mizer because of global search efficiency. Discrete and
continuous variables are both supported in GA, which
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makes it suitable for any major design. GA is able to use
historical data from the previous design; GA has neither sen-
sitivity to derivatives nor a starting solution. There are many
recent articles that use this method for optimization [1-3,
11, 12, 16], and it has been proved to be a powerful
optimization tool.

This paper includes five parts. Section 1 is the intro-
duction. In Section 2, the optimization method is dis-
cussed. In Section 3, the grain burnback analysis based
on the level-set method is proposed. Section 4 is devoted
to using a surrogate model based on the adaptive basis
function construction method. In Section 5, the possibility
and precision of the proposed algorithm are demonstrated
by presenting a case study.

2. Design Optimization

2.1. Objective. Finocyl grain is the most widely used type
for 3D grain configuration. Finocyl grain with 13 geometry
parameters is presented in Figures 1 and 2.

The objective of this paper is to achieve a thrust his-
tory of missile system designer requirement with fixed
outside diameter and grain length, in which thrust history,
propellant density, grain outer diameter, grain length, and
nozzle geometry are design parameters. The mathematical
description of design function is as follows:

Ny

Min Z (F design; (X)-F objective; X ))2 : (1)

i=1

Ny, is the number of design points in the objective
thrust history, and the design variable X is

X=f(F,, F5Fs,Hy, Hy, Ly, Ly, Ly, Ls, L, N, a, R,). (2)

2.2. Design Constraints. Design constraints related to
Finocyl grain is presented as

i=1,2,...,4. (3)
Here, C is

C, : F, =700 mm,

C, : L, =2395mm,

C;: P <7MPa, (4)
C, : 5400 < m,,

m:

Cs : m, <5600 kg.

2.3. Design Boundaries. The upper and lower boundaries
of design variables of Finocyl grain [10] are presented as

V,20,i=1,2,...,13. (5)
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Here, V is

V', : 6 <N < 13isaninteger,
V, 1220 < Fy <280 mm,

V5 :30<H, <50mm,

V, 1180 < L; <350 mm,

Vs :25<a<50mm,

Ve 125 <R, <95mm,

V. :500< H, <580 mm, (6)
Vg 180 < F| <120 mm,

Vg : 350 < F5 <400 mm,
Vip:80<L, <130 mm,

Vi1 :80<L; <120 mm,

Vi, :80<L, <120 mm,

Vi3 1180 < Ls <270 mm.

2.4. Optimization Method. The aim of design optimization
is to find the optimal solution to a design problem. The
genetic algorithm (GA) is the most popular optimization
method of the evolutionary algorithms. Exploration prop-
erties of GA make it a practical method for aerospace
applications. The geometry of optimization of 3D grains
requires solving nonlinear equations with numerous design
variables. Since gradient-based optimization methods most
likely might get caught in the local optima, GA uses a ran-
dom operator in which its possibility of falling into a local
optima is much smaller than the gradient-based methods.
Moreover, heuristic methods are capable of applying both
continuous and discrete variables suitable for large design
problems. GA is able to survey data from a previous
design in order to find a pattern in input parameters to
produce the desired output.

A surrogate model or meta-model is a simple mathe-
matical approximation of a simulation model that illus-
trates a correlation between the input and output of the
system. Surrogate models are most suitable to design grain
geometry, especially when using population-based heuristic
methods, since these methods require several function
evaluations and each evaluation is associated with a model
grid generation and a numerical analysis of the level-set
method. So, grain geometry optimization by GA without
using surrogate models is very difficult. Using surrogate
models decreases computation cost significantly and makes
it possible to utilize optimization methods.

To initialize the grain design geometry, grain parame-
ters must be recognized. Then, a design space is defined
by design of experiment (DOE) methods. In this paper, a
central composite design (CCD) with three levels is used
which is one of the classic methods of DOE.

The next step is to develop a code in MATLAB based
on the upper and lower bounds of geometry grain param-
eters and design space defined by the DOE method
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FIGURE 1: The plan of grain geometry parameters.

F1GURE 2: Fin geometry configuration in length and star cross section of fin.
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FIGURE 3: Initial grain model preparation flowchart.
through an algorithm illustrated in Figure 3. The initial

grain geometry is produced based on DOE and
computer-aided design (CAD) software. The grid is

established for generated geometries to prepare them to
be used in the level-set code.

The pseudocode of the
Pseudocode 1:

After running the level-set code for generated geome-
tries, the burning surface vs. the web burned is produced
then pressure time is predicted by the equilibrium pressure
method. The internal pressure of the motor and therefore
the thrust history are produced. Now, the database is defined
based on geometric grain variables and design space defined
by the DOE method. The meta-model is used to train data
instead of expensive running of the level-set code and ballis-
tic calculations. To overcome this problem, a surrogate
model will be used. The meta-model method used here is
Adaptive Basis Function Construction (ABFC). Then, a sur-
rogate model defined by the ABFC meta-model is trans-
formed to GA. The surrogate model in the ABFC method
consists of several polynomials. They are defined for any dis-
crete points of thrust-time diagram (pressure vs. time or
burning surface vs. web-burned). These polynomials send a
function and call anytime in the design loop. Then, the opti-
mization is performed with respect to the defined con-
straints and objective function. Finally, an optimized
geometry of grain is extracted. The resulting geometry
through GA would be drawn again. After grid generation,
grain burnback analysis is done by the level-set code and
internal ballistic analysis is done by the equilibrium pressure
method. The results are compared to results of the
meta-model method. If results are within the defined toler-
ance, optimization is finished; otherwise, the design process
should be repeated using the last iteration results. Figure 4
shows the 3D grain geometry optimization process which
uses the GA based on surrogate models (meta-models).

The pseudocode of the optimization is shown as
Pseudocode 2.

training is shown as
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Training routine
(i) Define independent grain geometry parameters

Call CAD
(i) Create grain geometry manual in CAD

Call Design expert

(i) Create design space based on DOE
Call MATLAB code

(i) Arrange input data for CAD
Call CAD

Call Grid generator

Call Level set code
(a) Calculate burning area-web burned diagram
(b) Write output data
Call Internal ballistic code
(a) Calculate pressure- time diagram
(b) Calculate thrust- time diagram
Call ABFC Meta-model
(a) Discrete diagrams into points

(c) Write output data
Create database based on DOE
End

(ii) Define upper & lower boundary of geom. parameters

(ii) Define relation between grain parameters created manual in CAD and independent grain parameters

(i) Make 3D model of grain geometry automatically

(i) Grid generation for 3D model of grain geometry

(b) Training discrete point based on grain geometry parameters

PseupocoDpe 1.

3. Level Set-Based Grain Burnback Analysis

Due to the wide use of solid propellant motors in the aero-
space industry, the accurate prediction of a solid propellant
motor decreases the number of expensive tests of motors.
Therefore, it decreases the development cost of motors
[17]. To reach this goal, there is an intense requirement to
determine the pressure time and thrust time of the SRMs
which greatly depend on the changes of the burning surface
area and volume of the combustion chamber through time.
There are several methods to describe the solid propellant
grain burnback analysis. With respect to the low perfor-
mance of analytical and drawing methods, it is useful to
apply numerical methods. Numerical methods generally sur-
vey the moving interface between solid propulsion and com-
bustion gas and is classified by two procedures: frontier
following method (Lagrangian method) and frontier captur-
ing method (Eulerian method) [18]. In the frontier following
method, the moving front is explicitly followed by tracking
the nodes along the path of each fluid particle, and in the
frontier capturing method, the grid is kept stationary and
the fluid particles on the front are captured [19]. In frontier
capturing methods, the front is represented by a grid func-
tion ¢(x(t), t). This function is a quick computing technique
that uses minimum distance function [20]. Two main equa-
tions of the Eulerian method are VOF and level set.

The level-set method is a frontier capturing method
defined by a grid function with a different representation
of the front; the grid function in this method is an implicit
function that represents the zero-level interface to be evolved

at any time [18]. In the level-set method, the velocity of the
frontier can be either positive or negative. The initial posi-
tion of the frontier is considered as level zero set from a
higher-dimensional function ¢ which transforms the gov-
erning equations into initial value formulation. It is required
that the level-set value of the frontier particle with path x(t)
must always be zero [18, 19, 21]. Function ¢ is defined as a
least distance between a point on the motor volume grid
and the grain boundary. The level set shows a moving
boundary I'(t) bounding a region of Q(¢) in R” by Lipschitz
function ¢(x(t), t) which is expressed as

¢(x(t),t)=d(x) inQ",
¢(x(t),t) =00n 0O
¢(x(t),t)=—d(X)inQ".

orI[(t), (7)
(8)

The value of this function on the boundary (where X'e
0Q)) is zero. Therefore,

d(X) =min(|x - x;|) forall x;€0Q.

P(x(t), 1) )

The motion of I'(t) can be considered as an evolution
function for (x(¢), t). After differentiation,

@, + Vo(x(t), t).x'(t) = 0. (10)
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FIGURE 4: Optimization process of 3D geometry grain design by GA based on a surrogate model.

Optimization routine
Initialize

(i) Set population size

(ii) Set stopping criteria
While (stopping criteria not achieved)

(i) Create public-board to store information

(ii) Generate population (random)
For i =1 to total generations
For j =1 to population size
Call ABFC Meta-model code
For k=1 to web
(a) Calculate burning-area
(b) Calculate pressure-time
(c) Calculate thrust-time
(d) Write output data
End
Evaluate constraints
Evaluate fitness
Call Crossover
Check crossover rate
Create new offsprings
Call Mutation
Mutate individual specified amount (random)
Send information to public-board
End
End

PSEUDOCODE 2.

After inserting X' (t).7 = Fand 7 = Vgo/ |V(p| into eq.
(8), the following equation can be evolved for ¢.

got+F‘7(p‘:0. (11)

Grain burnback analysis is done with F velocity into the
burning surface normal direction by using the level-set
method based on eq. (9). In the level-set method, the frontier
is the boundary between the solid propellant grain phase and
gas in the combustion chamber. X is the solid propellant
grain phase, (X, t) is negative, and x in the gas phase in
the combustion chamber, ¢(x,t) is positive. Therefore,
the burning surface is captured by the level-set method
which can be used to calculate the burning area and free
chamber volume.

The algorithm for grain burnback analysis can be divided
into three main categories: grid generation, signed distance
function determination, and burnback parameter calculation.

In the grid generation category, two grid types are being
generated: one for the initial grain port and one for the vol-
ume of the motor. The initial grain port grid is generated
using elements of the tetrahedral unstructured grid. The
motor volume grid is a Cartesian grid that is generated by
cubic elements. This grid includes information of coordi-
nates of the vertices in the grid and how to connect the



nodes to construct nearby elements as a numerical file called
in the main program. The motor volume grid is created by a
code in such a way to include the entire motor volume. In
determining the signed distance function section, the
level-set function ¢ is defined as a minimum distance
between a point from the motor volume grid and the
grain interface. Calculating the signed distance function
has three steps:

(1) Calculating the distance from each node of the motor
volume grid and all vertices of the initial port grid
and finding the minimum of this value which is con-
sidered as signed distance function for each individ-
ual node in a Cartesian grid. This process is
performed for all points of the motor volume grid

(2) Determining the location of each point in the
motor volume grid with respect to the port inter-
face using tetrahedral elements of the initial port
grid based on the normal vector method. Then
demonstrating their locations by identifying the
internal and external nodes

(3) Multiplying the value of the signed distance function
multiplied by -1 for each point inside of the interface.

Since determining the location of each point in the Car-
tesian grid is too time-consuming, to reduce run time, the
Gambit output file is used in which the output file surface
element is determined. So, this is enough to determine the
surface element location in the Cartesian grid; the run time
decreases intensely.

After computing the minimum distance function in each
time step, it is time to calculate the grain burnback parame-
ters such as burning surface, port area, and port volume.
Based on previous research, there are four methods to calcu-
late the grain burnback parameters:

(1) Capturing cell method [22, 23]

(2) Section method [24]

(3) Dirac Delta and Heaviside function methods [18, 25]
(4) Cut cell method [26]

In this paper, the cut cell method is used. In this method,
elements that are cut by the interface are accounted for. This
method is more precise with a shorter run-time in compar-
ison with other methods [27].

Grain burnback analysis is performed by a level-set
method and compared with a drawing method, using CAD
software (SolidWorks), for a Finocyl grain represented in
Figure 5. This comparison is done to validate the level-set
code developed by this method.

4. Using the Meta-Model Based on Adaptive
Basis Function Construction

Meta-modeling or approximation techniques were used as
surrogate of expensive simulation to increase the efficiency
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FIGURE 5: Burning surface vs. the web-burned validated by CAD
software (SolidWorks).

of calculations. Now, they are used as a valuable tool in order
to support a wide domain of activities in engineering, espe-
cially in design optimization [28, 29]. A surrogate model or
meta-model is a simple mathematical approximation from
a simulation model that is used to illustrate the correlation
between the input and output of the system. In other words,
finding a correlation between the system input and output
reduces the number of simulations that are needed to be
evaluated [28]. The meta-models can be used in engineering
applications as surrogates for the detailed model when a
large number of evaluations are needed, due to the high
computational cost [30], as in grain geometry optimization,
or when it is too time-consuming to run the detailed model
for each evaluation. The mathematical model, ie,
meta-model type, suitable for the approximation could vary
depending on the intended use or the underlying physics
that the model should be captured.

Haftka et al. [31] discussed the relation between
experiments and optimization. The advantages of meta-
model-based design optimization (MBDO) are as follows:
synchronizing different simulation codes, enabling parallel
simulations in multiple design points, filtering noises more
efficiently than gradient-based methods, and representing a
general view of the design space. And since the entire
domain of the design is analyzed, it is easier to detect
errors in simulation.

Meta-modeling requires four steps. The first step is to
choose a DOE method to generate data. The second step is
to choose a model to demonstrate data. The third step is to
fit the model. The fourth step is to validate the observed
model data based on DOE [32].

Different sampling techniques might be used for build-
ing different meta-models. The action of determining the
place of the design points in the design space is called
DOE [16]. In this paper, the location of data points in the
design space where true responses are evaluated is deter-
mined by a classical DOE called central composite design
(CCD) [33]. The CCD method for experimental design in
three variables is illustrated in Figure 6.

When running a detailed simulation model, a vector of
input (design variable values), x, results in a vector of output
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F1GURE 6: Central composite design (CCD) for experimental designs
in three variables.

(response values), y, where a vector of input contains grain
geometry parameters and a vector of output contains grain
burnback analysis vs. web increment.

There are different approaches to build the meta-models.
Parametric techniques are based on a priori correlation
between the design variables and the response. The
meta-model is fitted to the dataset of design variables and
corresponding responses from the detailed model by deter-
mining the coefficients of the chosen function. Nonparamet-
ric techniques are used to build different types of neural
network models [16, 30].

One of the parametric techniques is regression. Most of
the regression modeling methods use basis function. In non-
adaptive modeling methods, the degree of basis function is
fixed, and the model always contains a fixed number of basis
functions. However, in adaptive modeling methods, basis
functions are adapted to data by applying search methods,
and this method does not have any limitations on degree
of polynomials [34-36]. However, increasing the model’s
polynomial degree increases the number of basis func-
tions exponentially which increases the number of data
samples making the meta-model impossible.

In this paper, the “Adaptive Basis Function Construc-
tion” (ABFC) method is used. This method requires basis
functions to be constructed based on heuristic search
methods. Moreover, this method makes adaptive models
to be used without any restriction on the degree of the
model and execution time. The number of required input
variables and the degree and complexity of the target
model are similar to polynomial methods, but the run
time does not increase with time exponentially. Finally, it
can be performed without the need to repeat the
model-making process [34].

The thrust time (pressure time or burning surface vs.
web-burned) diagram should be discrete to a finite num-
ber of points. Each point has two coordinates: (1) thrust
and (2) time. Therefore, for each point, there are two
training polynomial models, one for thrust and one for
time.

The general form of a polynomial model is presented
in eq. (12). In this equation, f,(x) is a basis function,

and coefficient a can be calculated using ordinary least
squares (OLS) [35].

F(x)= Y af (x). (12)

=1

In Equation (12), g; are coefficients of basis functions,
and f;(x) are basis functions. x is a vector of grain geometry
parameters (input variables); for Finocyl grain, there are 13
input variables.

The basis function for the ABFC method can be defined
by input variables each with a single exponent as shown in
eq. (13). In this equation, r is an h x k matrix with positive
integer degrees, k is the number of input variables, h is the
number of rows in the matrix, and r;; is the degree of the j

th variable in the ith basis function [36].

k
f= {ijU
j=1

i:1,2,...,h}. (13)

For example, for a discrete point (one point of the
thrust-time diagram), the model is as follows:

F(x) = a, + ayX; + a3%,X5 + ,%,°Xs. (14)

x is a vector of grain geometry parameters. Here, only
four geometry parameters (x,, x5, X4, X;) are used to define
one point of the thrust time diagram. The corresponding r
matrix with h=4 (number of basis functions) and k=5
(number of design variables used to train polynomial) is

00000

00100
r= . (15)
01001

00021

The basis function is as follows:

_ £40,0,0,.0.0 00100 01001 00021
f = {X1x9X354 X0, X X5 X300, X)X, X3X, X5, X} X9 X3XX5 }.

(16)

Finding the optimum set of basis functions (f*) results
in finding the optimum matrix r with the optimum combi-
nation of positive integer values:

k
r* =arg, min]({Hx;’j i:1,2,...,h}>. (17)

j=1

Using the ABFC method, polynomial models of arbitrary
complexity can be generated, for each input variable with an
arbitrary number of basis functions and an arbitrary power.
Therefore, the process of constructing the model is
extremely flexible.




By applying this regression model (ABFC) [35], to
use meta-modeling/surrogate modeling is constructed to
describe a relation between input variables x = (x;, x5, *,x;)
which are geometry parameters of grain and output variables
F(x) = (F;(x), F5(x),-~,F,(x)) which are specific points that
define thrust time (burning surface vs. web plot).

The meta-model accuracy is measured by the following

criteria that would be shown in the analysis of variance
(ANOVA) table:

(i) Average absolute error: averages of differences
between real and approximated values

(i) Maximum error: maximum of differences between
real and approximated values

(ili) Variance (VAR): the expectation of the squared
deviation of a random variable from its mean

(iv) Standard deviation (STD): the square root of the
variance

(v) Sum of squared errors of prediction (SSE): the sum
of the squares of residuals (deviations predicted
from actual empirical values of data). It is a mea-
sure of the discrepancy between the data and an
estimation model. A small RSS indicates a tight fit
of the model to the data

(vi) Relative root mean squared error (RRMSE): RMSE
divided by STD

(vil) Mean square error (MSE): measures the average of
the squares of the errors

(viii) Root mean square error (RMSE): squared differ-
ences between real and approximated values

RSME = 21:1()/1_}}1) (18)
n

(ix) Coefficient of determination or R-squared (R?): the
proportion of the variance in the dependent vari-
able that is predictable from the independent vari-
able, R?, is varied between 0 and 1; R*> = 1 means
that there is no error between real and approxi-
mated values.

where y,, ¥, and y, are the observed values, mean
of the observed value, and approximated values,
respectively.

5. Internal Ballistic Analysis

The steady-state lumped-parameter method [37] was used
for predicting the pressure-time curve based on equal
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TasLE 1: RMSE and R? values used for different sampling methods.

DOE method compcozliltgiilesign Latin hypercube
meta-model Type RMSE Iy RMSE R

1 0.36 — 0.713 —
2 0.349 — 0.396 —
3 0.313 0.986 0.377 0.982
4 0.384 0.992 0.719 0.983
5 1.862 0.817 2.834 0.744
6 0.318 0.986 0.333 0.987

variations of the mass inside the combustion chamber and
that exiting through the throat. After computing the burning
area vs. web-burned based on the level-set method, and
using propellant parameters (such as burning rate, density),
nozzle throat area and characteristic velocity in combustion
chamber, it is time to calculate pressure from

ap AbC* 1/((1-n))
PC:( PA ) . (20)
t

Thrust time is calculated using eq. (21), and the thrust
coefficient is calculated using eq. (22):

Th=C}A,P, (21)
242 2\ /-1 pNOU¥] p _p
Cp= Ly 1-(= + 4T
y-1\y+1 P, P,
(22)

This method is used when the velocity inside of the
chamber is low in comparison with local sound speed.

6. Results

In this paper, to validate the grain design process, a Finocyl
grain configuration with 13 independent geometric parame-
ters based on the lowest number of input datasets using
design of experiment (DOE) method has been investigated.
In this method, the process of work is that the initial grain
configuration should be generated in CAD software; then,
input settings are performed for data. To do this, the
response surface method (RSM) from the DOE method is
used. Different sampling techniques can be implemented
for generating different meta-models. Two sampling
methods for a star grain with 7 independent geometry
parameters were tested: a classical DOE method, namely,
the central composite design (CCD) method, and a
space-filling method called the Latin hypercube sampling
(LHS) method. The number of samplings was 40 for the
CCD method and the LHS method. Due to the existence of
analytic methods for the star-shaped grain burnback analy-
sis, the burning area vs. web-burned diagram was obtained
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TABLE 2: Analysis of variance results (ANOVA).
Average absolute error Maximum error RMSE STD RRMSE VAR R?
0.03% 2.3% 1.85e07 9.01e07 0.206 8.122el5 0.957
8 x 10°
from analytic relations, then trained with different meta 7 .
models based on two DOE methods. E
The results obtained from the CCD and the LHS % I s
methods are compared for a sampling size of 40. It is g,
observed that, although the LHS method randomly selects 3
the parameters from the start, the middle, and the end of Ed 3
the parameter range, the CCD sampling method provides £ 2
better results as compared with the LHS method. As can B
be seen in Table 1 for different meta-models, the values of 0 ; ; ; ;
RMSE for the central composite design are lower than those 100 200 300 400 200
of the LHS method, and values of R? are more than those of Web burned (mm)

the LHS method.

In this step, since the CCD sampling method is selected,
and Finocyl grain has 13 geometry parameters (design vari-
ables), the minimum number of samples for this method is
124. If after training with 124 samples using the Adaptive
Basis Function Construction (ABFC) meta-model, the mean
difference between the thrust time (pressure time or burning
surface-web-burned) diagram obtained from the level set and
values obtained from the meta-model was less than 0.1%, a
convergence occurs. Here, with 124 samples, the average
absolute error is 0.03%, so there is no need to add any sample
to the database and start the training from the first.

According to Figure 3, the geometries of grains are gen-
erated automatically according to the DOE file. By entering
these files into grid generator software, the user can generate
a nonstructure grid with tetrahedral elements. Now the file is
ready to be exported to the level-set code, to do grain burn-
back analysis. The grid size for this Finocyl grain is 150 x
150 x 249. The level-set code run for each variant on an Intel
server with Pentium Core i7 2.0 GHz and 6 GB RAM takes
14 hours. ANOVA results of the grain burnback analysis
by the ABFC method are displayed in Table 2. A comparison
of burning surface vs. web-burned from the level-set method
and training data based on ABFC is illustrated in Figures 7
and 8.

Since each run is independent of others, one can run
more than 1 variant on a system depending on the value of
the system’s RAM. Now the design objective is to design a
grain geometry in such a way that the thrust vs. time is
according with the desired diagram. The genetic algorithm
method is used to find design variables of the grain geometry
in order to fit the thrust history with the desired thrust his-
tory. The purpose of optimization is to minimize the differ-
ence between the grain burnback diagram with a specific
basis diagram. In other words, the aim of optimization is
to find values of geometric grain parameters, in a way that
burning surface vs. time of grain which is trained by the
ABFC method has the least difference with the assumed base
diagram. The range of input geometry parameters (design
variables) and constraints used for optimization was dis-
cussed before and are illustrated in egs. 3 and 5.

—e— Real data (level set)
- Train data (ABFC)

FiGure 7: Comparing burning surface area real data output (from
the level-set method) and training data based on the ABFC
surrogate model. F; =220, H, =50, Ly =180, N=13, a =25, R;
=25, H,=500, F,=80, F,=400, L,=80, L,=120, L,=80,
and L; =270.

x 10°

Burning surface (mm?)

0 100 200 300 400 500
Web burned (mm)

- Real data (level set)
—e— Train data (ABFC)

Ficure 8: Comparing burning surface area real data output (from
the level-set method) and training data based on the ABFC
surrogate model. F, =220, H, =50, Ly =350, N=13, a =25, R,
=25, H, =580, F, =80, F,=400, L, =120, L, =120, L, =80,
and L; =180

The population size of individuals is considered equal to
100, and the algorithm was set to stop if upon 10 consecutive
iterations, the mean difference between the objective func-
tion values obtained during the 10th iteration and the previ-
ous iteration was less than 0.001. Here, individuals are
considered as grain designs, with each design containing
design parameters and a thrust time (pressure time or burn-
ing surface-web-burned) diagram. Convergence occurred
after 51 iterations, and the corresponding value obtained
for the objective function was 54. Optimal values of the
design variables for the Finocyl grain based on the desired
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TaBLE 3: Design variable of Finocyl grain limitation and optimum
values after optimization.

Parameters Sym. Unit LB UB Opt.
Number of fins N — 6 13 13
Middle bore F5 mm 220 280 247.4
Fin thickness H2 mm 30 50 33.6
Fin length L6 mm 180 350 233.8
Fin angle a deg 25 50 32
Fin fillet R1 mm 25 95 57
Fin height H1 mm 500 580 553.4
Motor front bore F1 mm 80 120 90.2
Motor rear bore F3 mm 350 400 387.5
Front web L2 mm 80 130 97.1
Front cone L3 mm 80 120 96.8
Rear cone L4 mm 80 120 88.1
Rear cylinder L5 mm 180 270 238
x 10°

’%,uﬂ.g =S

Burning surface (mm?)
(=) N W [N | AN NN e

0 50 100 150 200 250 300 350 400 450 500

Web burned (mm)
= Optimum burn-back by SolidWorks

Optimum burning surface by GA
—e— Desired burning surfacea

FiGUure 9: Comparing desired burning surface vs. web-burned &
optimum burning surface vs. the web-burned from ABFC &
SolidWorks

~ —l)
<
oy
2 4
2
2
g 21
[=9
0 T T T T T T
0 10 20 30 40 50 60 70

Time (sec)
................ Optimum pressure

=6~ Desired pressure
F1GUre 10: Comparing desired pressure & optimum pressure
burning surface vs. web-burned are presented in Table 3.

Figure 9 illustrates the burning area vs. web-burned; in order
to validate this method, grain burnback analysis is done by

International Journal of Aerospace Engineering

x 10°
S e —Y —O
g
E
E
(') 1'0 2'0 3'0 4'0 5'0 6'0 70
Time (sec)
—©~ Desired thrust
----------------- Optimum thrust
F1GURE 11: Comparing desired thrust & optimum thrust
TABLE 4: Propellant and nozzle parameters [10].
Throat diameter D, mm 150
Expansion ratio € — 16
Characteristic velocity c (m.S_l) 1550
Propellant density Py (kgm™) 1750
Burning rate i (mm.s™") 6.5
Propellant HTPB/AP/AL

SolidWorks. Figures 10 and 11 show the pressure and thrust
histories for the optimal grain design and the desired pres-
sure and thrust histories based on propellant and nozzle
parameters from Table 4. Grain burnback analysis of opti-
mum grain variant is illustrated in Figure 12.

Here, N is number of Fins, which is an integer design
variable. So, N is a discrete variable; in order to use it in
GA, it is mapped to a continuous variable then mapped to
a discrete variable using floor function.

7. Conclusions

In this paper, a procedure is proposed to perform a solid
propellant motor grain design. The sequence of the task con-
sists of several sections: the first step of this method was to
create a module that creates initial grain geometry. To do
this, first a DOE program is used to appoint design points
in the design space. A central composite sampling method
is employed for this purpose. Second, a MATLAB code is
used to create geometric parameters of each grain configura-
tion, and third, an application programming interface (API)
toolkit code is used to create initial grain configuration after
the grain geometry model is generated. Now, it is time for
grid generation and then meshed geometry is ready to per-
form grain burnback analysis by the level-set code. A dataset
will be created by these level-set code runs. Using the
level-set code is one of the important parts of this research
because of its accuracy and capability to do the burnback
analysis for any grain configuration. The training grain
burnback analysis is done, using a meta-model based on
Adaptive Basis Function Construction. This method in com-
parison with the level-set method greatly decreases the run
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FIGURE 12: Optimum grain variant burnback from left to right at 0 mm, 120 mm, 220 mm, and 320 mm web-burned

time, and it is possible to perform burnback analysis for any
grain configuration in this design space. The level-set code
takes 14 hours to execute a single variant compared with
the meta-model which only takes 0.3 seconds for each vari-
ant. A genetic algorithm is used for optimization, and a sur-
rogate model is used to evaluate objective function instead of
the level-set code. The most important part of this research
was to train grain burnback analysis, using the surrogate
model based on adaptive basis function construction, espe-
cially when using population-based optimization methods.
Run time decreases greatly, and one can rapidly use this sur-
rogate model for any optimization objective. The advantages
of the meta-model in this research are its ability to connect
expensive simulation codes (level set, CAD, grid generators,
internal ballistic codes, etc.), ability in parallel simulations in
multiple design points (level set codes can be run indepen-
dently and parallel and the meta-model can be used in opti-
mization), ability to make filter noises better than
gradient-based methods, ability to represent a general view
of the design space, and, since the entire domain of design
is analyzed, ease in detecting errors in simulation. Finally,
a Finocyl grain geometry is used to validate this method.
Modeling results confirm that the proposed algorithm can
be used instead of level-set grain burnback analysis.

Glossary

N: Number of fins

F1 [mm]: Motor front bore
F2 [mm]: Grain radius

F3 [mm]: Motor rear bore

F5 [mm]: Middle bore

H1 [mm]: Fin height

H2 [mm]: Fin thickness

L1 [mm]: Grain length

L2 [mm]: Front web

L3 [mm]: Front cone

L4 [mm]: Rear cone

L5 [mm]: Rear cylinder

L6 [mm]: Fin length

o [deg.]: Fin angle

R1 [mm]: Fin fillet

P... [MPa] Maximum chamber pressure
P_[MPal: Chamber pressure
P, {MPa] Nozzle exit pressure
P, {MPa] Ambient pressure
m, [kg]: Propellant mass

At [sec] Time step

F [mm/s] Velocity orthogonal to boundary

Level set function

Ax, Ay, Az: Cartesian grid steps
fi(x): Basis function

A, [mm?: Throat area

A,[mm?]: Burning area

p, [kg/m?: Propellant density

a [mm/(sec.bar")]: Burning rate coefficient
n: Burning rate index

& Expansion ratio

c* [m/s]: Characteristic velocity

y: Specific heat ratio

SSE: Sum of squared error
MSE: Mean squared error
RMSE: Root mean squared error
STD: Standard deviation
RRMSE: Relative root mean squared error
VAR: Variance
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