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Inflatable membrane reflectors are widely used in space and terrestrial deployable antennas. The mechanical properties of the
inflated membrane reflector, however, are often a limiting factor in the level of the surface accuracy that can be achieved. In this
study, membrane structural analysis is combined with sizing optimization to tailor the thickness of the membrane to improve
surface accuracy of an axisymmetric parabolic inflated membrane reflector. Two reflector surface accuracy evaluation methods
are employed in the optimizer and researched about their effect on the sensitivity analysis. Gradient-based optimization is
employed together with a simplified sensitivity analysis, and the resulting algorithm is demonstrated on a membrane reflector
case study. A linear thickness filter is used to avoid checkerboard patterns, and optimized solutions are computationally shown

to achieve a feasible level of surface accuracy.

1. Introduction

Inflatable reflector concepts have been considered and
employed for the space and terrestrial deployable antennas,
including QUASAT [1], IN-STEP [2], ARISE [3], NEXRAD
[4], and other missions [5], due to their ultra-lightweight
and high package ratio. These characteristics allow the scale
of antennas to expand substantially while reducing the cost
for launch, as compared with other types of deployable
antennas. However, the mechanical properties of inflatable
membrane structures restrict the range of the microwave
bandwidth that can be achieved and, therefore, the range of
application of these antennas [5].

The surface accuracy of the reflector is one of the most
important factors influencing the gain and microwave band-
width of the antenna, attracting the attention of previous
research [6]. The so-called W-profile error, defined as the
deviation from a parabolic profile due to the inflation, leads
to a reduction in surface accuracy of the inflated membrane
reflector. Jerkins and Marker [7] have studied the reflector
figure error from plane sheet to curved surface, while

Greschik et al. [8-11] have studied the structural properties
of the flat and curved axisymmetric membranes for the
inflated reflectors and the initially approximate and exact
parabolic shape design with different parametric assembling.
In particular, in Ref. [10], the sensitivity study of the mem-
brane reflectors has been conducted and stated that nonuni-
form thickness perturbations have effects on reflector surface
errors. Naboulsi [12] has investigated geometric imperfec-
tions associated with inflated structures using geometric non-
linear finite element (FE). Kitano and Ishida [13] have
obtained the discrete distribution of optimum thickness
for circular membrane reflector. In order to decrease the
W-profile error, DeSmidt et al. and Hill et al. [14, 15] have
developed active control of the reflector using optimized gor-
e/seam cable-actuated shape control. Coleman et al. [16]
have studied the effects of the elastic tendon boundary sup-
port and reflector dimensions on surface accuracy of the
inflatable antenna by an ideal parabolic form and two differ-
ent flat panel design patterns. Bouzidi and Lecieux [17] have
optimized the shape parameter design of initial geometry
for a space inflatable membrane reflector by a numerical
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downbhill simplex method. Wang et al. [18] have employed
a kind of support ribs stretched by the tension system to
improve the surface accuracy of the inflatable deployable
reflector. Huang and Guan [5] have proposed an iterative
method working from the initial profile solution for reflec-
tor precision improvement.

There is no gainsaying that these methods have improved
surface accuracy, but error magnitudes are still relatively
large. Meanwhile, 3D printing technology is being processed
in the manufacturing industry, but this application is not
used in membrane reflector and relative sensitivity study is
seldom carried on deeply. This has motivated the current
study focusing on membrane reflector sensitivity and using
optimization to tailor the membrane thickness to further
enhance surface accuracy. There are many optimization
methods for wrinkle-free design of membrane structures
such as stress-based topology optimization [19], multimater-
ial topology optimization approach [20], and global shape
optimization [21]. Although wrinkles are avoided in mem-
brane reflector by engineering means such as changing bor-
der forms, the thoughts and methods of optimization and
sensitivity analysis can be referred. In particular, we use the
Method of Moving Asymptotes (MMA) by Svanberg [22],
an optimizer that is widely used by the topology optimization
community [23], together with the adjoint method for much
more specific sensitivity analysis compared with Ref. [10].
The design variables are the thicknesses of membrane ele-
ments, and the objective function is the minimum surface
accuracy of inflated reflector. The inflated reflector deforma-
tion is computed by using the finite element method.

The remainder of this paper is organized as follows. The
importance and foundation of two surface accuracy evalua-
tion methods for the objective function are discussed in
Section 2. The sizing optimization formulation is stated in
Section 3, and the sensitivity analysis based on two methods
is presented in Section 4. A membrane reflector case study is
used to illustrate the method in Section 5, with concluding
remarks following in Section 6.

2. Surface Accuracy

One of the most important parameters for the antenna is the
antenna gain, defined as the ratio of the power transmitted by
the antenna to the power of an ideal isotropic radiator. With
the mean phase plane chosen as the phase reference plane
and the simplification during the prediction of the gain
reduction and pattern degradation, the reflector gain of the
Ruze equation [24] is given as

. D\* :
G= Goef(? — r](”T) 67(47'[(7/A) , (1)

where G, is the no-error gain axial value as 7(mD/A)%, 8 is a
statistical phase error calculated from the mean phase plane,
1 is the aperture efficiency, D is the diameter of the reflector
aperture, A is the wavelength, and o is the effective reflector
tolerance as the structural parameter to approximately quan-
tify the reflector surface efficiency.
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When the effective gain is described in units of decibels
(dB), the equation can be expanded as [6]

D\’ 4o\ ?
G =10 log,,n (%) —4.3429 <%0> . (2)

From this expression, it is clear that the effective gain can
be kept large if o is kept as low as possible. Therefore, the
evaluation of this effective reflector tolerance ¢ is important
and plays a significant role in the objective function and sen-
sitivity analysis of reflector optimization.

2.1. HPL-E Method. Generally, the interpretation of the
parameter o is presented as the Root Mean Square Half-
Path-Length Error (HPL-E) Method of the microwave rays
distributed over and reflected by the surface [6]. This is con-
sidered to be the most significant of all these separate effi-
ciency terms and consequently motivates the use of root
mean square (RMS), familiarly surface accuracy, as the objec-
tive function for the optimization formulation.

Based on the surface tolerance mentioned in Ref. [6], the
HPL-E ¢ of an arbitrary point i (i = 1, 2, -+, n) on the reflector
can be derived by the geometric path length analysis as

& =1 0, (3)

where n; is the normal vector on the point i as [r;,, 7;,, 7]
(assume axis Z is the focus axis), d; is the displacement vector
of the point i as u; = [u;, v;, w;] ", and r,_ is the value of normal

[N A
vector in the axial direction. It means that the HPL-E is the
product of the normal value of displacement vector and the
value of normal vector in the axial direction.

There is a best-fit parabolic profile, namely, the mean
phase plane, of each deformed surface as the phase reference
plane during the tolerance theory deriving [6]. Depending on
this phase reference plane, a new half-path-length error &*
can be computed as

u; Au;
g" =ryn(u+Aw)=[a; b ¢ v, | + | Av, ,
w Aw

(4)

2

where a;, b;, and ¢; are r;, r;,, r;,1;, and r;,%, respectively,

as aforementioned; the vector Au;=[Au,Av, Aw,|" =
[~ug — 28,, ~vo — 20, ~wy —kz - y0, + xGy]T is the displace-
ment difference between the best-fit parabolic profile and
the original parabolic profile. Thereinto, the best-fit parabolic
profile usually can be determined by six parameters, i.e.,
translations u, v, and w; in three axes, rotations 6, and 0,
along the axis X and Y, respectively, and focus-length change
parameter k= F/F, - 1.



International Journal of Aerospace Engineering

Thus, there is a Root Mean Square HPL-E ¢ depending
on the best-fit parabolic profile as

o= Z?:l}(fi*)z’ (5)

where 7 is the total number of the points on the reflector.
This o, the so-called RMS, is an important indicator for
structural engineers to evaluate the reflector efficiency as
aforementioned in this section.

2.2. BFP-E Method. The HPL-E Method is a kind of tradi-
tional method to evaluate the reflector efficiency. It is appar-
ently dependent on the displacement vector u which is
supposed to be tiny as shown in equation (4). When it comes
to high-precision reflector, this HPL-E Method should be
reconsidered to discuss its effectivity for the reflector surface
accuracy evaluation.

The membrane reflector loaded by the inflation pressure
has large displacements that cause the geometry nonlinear
property. In other words, it might be improper to use the
HPL-E Method with this large displacement vector to indi-
cate the reflector efficiency of membrane structures. One
more problem is the parameter, specifically the thickness
here in the following sensitivity analysis, influencing the
structural property and displacement, which means that it
might be not comparable for each optimal result by using
the HPL-E Method.

Therefore, another method, namely, the Best-Fit-Profile
Error (BFP-E) Method, is stated here to evaluate the reflector
surface accuracy. The fundamental theory of the BFP-E
Method is to find a best-fit parabolic profile for a deformed
reflector and get the RMS of the deviation error between
the deformed reflector and the best-fit profile. It could indi-
cate the surface roughness for the deformed surface without
the displacement vector.

The specific steps of the BFP-E Method are explained as
follows. Firstly, it is easy to get the best-fit profile computed
from the deformed reflector by several algorithms, like the
least square method. Secondly, a best-fit-profile error &#
can be defined as the norm of deviation vector for each point
and shown as

& = |Ax;| = |x°F - x>, (6)

where x,°Y and x,®'* are the coordinates of the deformed
profile and the best-fit profile. Finally, a Root Mean
Square BFP-E ¢ can be calculated by substituting & into
equation (5).

It is obvious that this method is not exactly precise as
the HPL-E Method since the BFP-E Method is based on
the concept of geometry surface instead of phase plane. How-
ever, this method can indicate the deformation state for any
reflectors with the uniform quantification standard. It is con-
venient to conduct the following sensitivity research by uti-
lizing this evaluation of the reflector efficiency.

3. Optimization Model

The optimization formulation uses surface accuracy, namely,
the RMS ¢ based on two methods (HPL-E Method and BFP-
E Method), as the objective function. The thickness t, of each
membrane element is the (dependent) design variables,
which are expressed as a function of the independent design
variables ¢ as described below. The considered reflector is
assumed to be an axisymmetric parabolic reflector made of
isotropic membrane material and loaded by inflation pres-
sure. The final deformed shape of the reflector under this
pressure is influenced by the stiffness and therefore the thick-
ness of the membrane. The optimization problem can be
written as

find  @=[p, 9 9]

minimize =/===
t,(9) n (7)

subjectto  K(t,(@), u)u—F(u)=0

tmin < te(¢) < tmax’

where m is the number of independent design variables, f;
and . are the lower and upper bounds on the thickness of a
membrane element, respectively, K is the global stiffness
matrix for the membrane structure, u is the nodal displace-
ment vector, and F is the nodal load vector. Note that the
stiffness and applied pressure loads are functions of the dis-
placement field u, and thus, we have a geometrically nonlin-
ear problem that is solved iteratively herein using the
Newton-Raphson Method [25].

Here in equation (7), ¢ will be separately discussed as
HPL-E ¢* and BFP-E ¢ by the HPL-E Method and the
BFP-E Method, respectively, to conduct two optimization
models. The results of the best RMS oyp; _ and oppp_p can
be computed for each optimization model to evaluate the
optimal surface accuracy.

It is well known in the structural topology optimization
community that using low-order finite elements, such as lin-
ear three node triangles, may lead to artificial solutions
known as checkerboards. The checkerboard pattern consists
of alternating solid and void elements or equivalently alter-
nating elements with high and low thickness. The stiffness
of this pattern is overestimated with low-order finite ele-
ments [26]. Density filters in topology optimization [25, 27,
28] are a popular means for circumventing this effect, in
addition to eliminating a related issue of solution mesh
dependency. We employ this idea here to relate the indepen-
dent design variables ¢ to the thickness of membrane ele-
ments t° and refer to it as thickness filtering, although the
logic is exactly the same as the density filter.

Defining r,;, as the radius of the thickness filter (over
which the smoothing occurs), we denote the neighborhood
set of an element e as N° and define it as [28]

JENS if][x; = x| < T (8)



where x; is the location of design variable j and x° is the loca-

tion of the centroid of e.
These new design variables ¢; are then filtered onto the

elemental thickness as

T Tl x)

©)
where w is the linear distance-based weighting function

. M, if j € N¢,
w(x;-x°) = T imin (10)

0, otherwise.

The Method of Moving Asymptotes [22] is used to solve
this problem with sensitivities computed as described in the
following section.

4. Sensitivity Analysis

The adjoint method is used to estimate the sensitivities of
objective function [23]. The equilibrium condition is added
to the objective function as

¢y = 0(u) = AT [K(t(¢), w)u - F(w)), (11)

where A" is any arbitrary vector.
The derivatives of the adjoint function in equation (11) is
given as

[y

ot, o(ul)dt, o(uT)dr, o,
du OF du
E‘ma]'

(12)

Grouping like terms gives
Ocy 0K oo r[ 0K OF du
=-A — -A K- —,
ot att {a(uT) {a(uT)‘” a(uT)} } ar,
(13)

e e

where we note

0K LK O0F  OKu+ Kou - OF
)" dT) o) 14
_oKu-B)
O
u=lu v w up v
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and define K; the geometric stiffness matrix at the last itera-
tion of the structural analysis [25].
In order to eliminate the last term in equation (13), the

arbitrary adjoint variables A" are chosen to solve

do

3T = ATK. (15)

The derivative then simplifies to

dc, 10K
5 - A T (16)

e e

where the derivative of the stiffness matrix with respect to the
membrane thickness is given as

OK(t,)
ot

= KeO’ (17)

e

where K, is the element stiffness matrix for element e having
unit thickness. This provides all of the terms needed to com-
pute the derivatives in equation (16).

The derivatives of equation (16) with respect to the inde-
pendent optimization variables, which are needed by the
optimizer, are then simply given by the chain rule [27] as

oc, dc, Ot,
9~y %Ot 1
09; ;) ot, 0¢; 18)
where
ot, w(x; —x°)

(19)

0, B Zjewa(Xj _Xe) '

When computing adjoint variables A” in equation (16),
the left term of equation (15) should be considered. Hence,
the RMS o based on the HPL-E Method and the BFP-E
Method has different expression shown as the following.

4.1. HPL-E Derivative. The partial derivatives of RMS HPL-E

o with respect to the displacements u are needed to solve A,
as indicated in equation (15). This can be computed as

Qv

. Z (81'*) (20)

= 0(u”) ’

Q

|

o(ul)

I B 1)
00 ypL g _ [Zi—l(si )2] .
n

where the displacement vector u is listed in sequence as

n wﬂ ] (21)
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where d is the displacements listed by the order of the degree
of freedom (DOF) and has the mapping relationship with
u; = [u;, v, wi]T

Here in equation (4), it is also noted that the six parame-
ters for each best-fit parabolic profile are unique so that the
vector Auw, = [Au,, Av, Aw;]" can be determined by the
parameters and have no relationship with the displacement
vector u. So equation (20) can be rewritten more simply
according to the DOF for each element as

1 n
00 ypr £ _ 9HPLE Z o(a;u; + by, + cw;)

ad, n ad,

_ Opprp Zn: d(a;ds;, + bds g +cidy;)
n adk '

=1 (22)

i=1

This simplification shows that the displacement has no
relationship with the original profile and the best-fit para-
bolic profile. It is linear in this derivative.

4.2. BFP-E Derivative. The partial derivatives of RMS BFP-E
o with respect to the displacements u can be computed as

; -12
00gpp.g _ Zi:l(si#)z . 9 (&)

B(uT)
s I )

n 2 a(ul)

i=1

Q=
D1+

I
—_

o(ul) B n

(23)

Considering equation (21), equation (23) can be rewrit-
ten more simply according to the DOF for each element as

-1 n DP
00 ppp g _ Opppg DP BEPy O%;
= (xi — X )

ad;, no = od,,
ay.DP az'DP
DP BEP\ 9); DP BEPY O%;
+(J’i —Yi )a—dk+(zi -z )a—dk
(24)
An assumption is introduced here as
P 1, ifk=3i-2,
9d, 0, otherwise,
P (1, ifk=3i-1,
S . (25)
k 0, otherwise,
oz (1, ifk=3i,
d, 0, otherwise,

which means that the displacement has no relationship with
the best-fit profile geometry and it is approximately linear in
this derivative.

4.3. Optimization Process. The flowchart of this optimization
is shown in Figure 1. Here, two optimization models are sep-
arately built by using the HPL-E Method and the BFP-E

Method to evaluate the inflated reflector surface accuracy as
the objective function.

Hence, the HPL-E Model uses equations (4) and (20) for
the optimization part while the BFP-E Model uses equations
(6) and (23). But the results of each model can output the
RMS oyp;_g and oppp_g as the characterization of surface
accuracy.

5. Case Study

5.1. Model Parameters. The proposed approaches are demon-
strated on a reflector with target axisymmetric parabolic pro-
file, which is utilized in its working state. The geometry
parameters and the material properties of the target mem-
brane reflector are listed in Table 1.

The finite element mesh is shown in Figure 2. The pres-
sure load P is 20 Pa applied on the concave side of the reflec-
tor, and the black points in this figure are assumed fixed
nodes with all displacements set to zero.

The nodal coordinates for the initial profile are obtained
from the Initial Profile FE Iterative Method, a trial-and-error
approach, as described in Ref. [5]. The RMS BFP error of the
deformed reflector based on this initial profile is 0.1489 mm.

The optimization parameters are listed in Table 2. The
radius r,;, in this case is treated as the minimum radius of
circle that can cover the biggest elements and it is addition-
ally considered in Section 5.3 which is initially set to
65.789 mm.

5.2. Result Comparison between Two Methods. As aforemen-
tioned, two different methods for reflector surface accuracy
evaluation are employed in the reflector thickness optimiza-
tion. Here, the optimal results by these two method models
(using HPL-E ¢* and BFP-E & in equation (7)) are compared
and discussed. The results of this case study optimized by the
HPL-E Method and the BFP-E Method without considering
the filtering are stated.

The results of best RMS op; _ and oppp_g optimized by
the HPL-E Model are 0.1067 mm and 0.4281 mm, respec-
tively. On the contrary, the results of best RMS opyp;_ and
Oppp_g Optimized by the BFP-E Model are 0.4508 mm and
0.0370 mm, respectively. From the data, both two results
improve its objective RMS 0pyp; _p and oppp_g by the relevant
method, respectively, and keep the other reference oppp_g
and opyp;_g stable. It is also indicated that the optimization
based on the BFP-E Model is reasonably better than that
based on the HPL-E Model.

Thus, the result of the BFP-E Model is more precise and
suitable for reflector surface accuracy in this study. The sec-
tion profile of inflated reflector based on this result is drawn
in Figure 3. It is illustrated that the RMS ogpp_ (0.0370 mm)
is significantly small so that the inflated reflector surface
almost coincides with its best-fit profile parabolic surface. It
is meant that the BFP-E Model solves the W-profile error
of inflated reflector in Ref. [5] by optimal thickness distribu-
tion in this study.

The optimal reflector based on the BFP-E Method is
mainly focused on the thickness distribution of this mem-
brane reflector. The Von Mises stress distribution and
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Ficure 1: Optimization process.

TaBLE 1: Geometry parameters and material properties.

Geometry parameters

Diameter D =3200mm

Focus length f=1500 mm

Ratio of focus to diameter fID =0.46875
Material properties

Initial thickness t, =0.025 mm

Elastic modulus E =2500 MPa

Poisson’s ratio v=0.34

thickness distribution of the inflated reflector are drawn in
Figures 4(a) and 4(b), respectively. It is shown that the stress
decreases quickly then increases slightly from the center to
circumference along the radial direction in Figure 4(a). The
thickened elements at the middle ring in Figure 4(b) affect
the stress distribution and the deformation of inflated reflec-

tor so as to substantially get rid of the W-profile error as
shown in Figure 3 compared with Figures 3 and 4 in Ref.
[5]. In addition, there are sudden changes among the outer-
most elements in Figure 4 since the outermost nodes are fixed
as the boundary constraints so that there is stress concentra-
tion in these elements.

It is shown that the distribution range of Figure 4(b)
approaches the initial thickness 0.025mm of the original
model while the thickness only in the separated blue parts
is concaved nearly to the initial thickness. The displacement
vector u in equation (4) is taken into consideration during
each iteration of the optimizing based on the BFP-E Method.
On the one hand, the thick membrane can keep the displace-
ment possibly little to get a small RMS 05p; . On the other
hand, the optimizer decreases the thickness to search the
potentially optimal solution. It is obviously contrary so that
the final result becomes highly checkerboard but reasonable
[27] for the optimization based on the MMA and without
the filtering.
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TaBLE 2: Optimization parameters.

Lower bound of thickness tomin = 0.020 mm
Upper bound of thickness tomax = 0.500 mm
Initial asymptote parameter asyinit = 0.25
1000 -
. 500 A
g /’\
£
N 04
-500 +— T T T T T T
-1500  -1000 -500 0 500 1000 1500
X (mm)

—— Inflated reflector surface of BFP-E Method
- -~ Best fit profile parabolic surface

FIGURE 3: Section profile of inflated reflector of optimal result by the
BFP-E Method.

Compared with the BFP-E Method, the Von Mises stress
distribution and thickness distribution of optimal reflector by
the HPL-E Method are shown in Figures 5(a) and 5(b),
respectively. It is shown that the optimization converges on
this highly checkerboard thickness distribution and the aver-
age thickness is much bigger than the BFP-E solution. The
objective function opp_ calculated by € in equation (4)
has a direct relationship with the structural displacement u,
and the best-fit parabolic profile is fixed so that the displace-
ment difference vector Au; assumption in equation (22) leads
to the constant derivative. This kind of surface accuracy def-
inition by the HPL-E Method precipitates the optimizing

convergence on an abnormal solution. Hence, the HPL-E
Method is not suitable for this kind of reflector surface accu-
racy evaluation.

5.3. Effect of Thickness Filter Radius. As shown in the results
above, the thickness of reflector distribution matches quite
well with the W-error profile feature. But one of the disadvan-
tages of this solution is that the thickness varies somewhat rap-
idly over the radius of the membrane (ie., the gradient of
thickness in the radial direction is relatively large).

The filter radius r,;,, however, offers a direct avenue to
influence the gradient of the membrane thickness. On the
basis of the BFP-E Method optimization, the corresponding
RMS oppp_ and oyp;_p magnitudes of optimal results are
shown in Table 3 and the iteration curves of the optimization
are drawn in Figure 6. It is illustrated that the surface accu-
racy oppp_p becomes worse with largening the filter radius
and the oscillation of iteration tends to be smaller.

Figure 7 shows the optimized thickness distributions
using several different magnitudes of the filter radius r, .
The thickness distributions of Figure 7(a) clearly indicate
that minimizing RMSogpp_g is achieved by varying thickness
radially across the reflector. The thickness is smallest at the
center of the reflector, then increases to form a stiff inner
“ring,” and then decreases until the boundary is reached,
where thickness again increases to connect to the support
structure.

From Figure 7 and Table 3, it is clearly seen that as the
filter radius is increased, the membrane thickness distribu-
tion becomes smoother (smaller radial gradient in mem-
brane thickness) and the optimized RMS ¢ values increase.
As the definition of r ;, in Section 5.1, the bigger r;, is,
the more elements are related to smooth the thickness
because of radiant element distribution in this case. There
is thus a direct tradeoff between the degree of thickness var-
iation and the performance. Finally, we note that a filter
radius of r,,, =358.376 mm leads to a near uniform thick-
ness distribution. From another perspective, the reasonable
element size can improve the whole computation accuracy
but has little effect on the optimal results of thickness distri-
bution study.

6. Conclusions

This paper has used a gradient-based optimizer to substan-
tially improve the surface accuracy of an axisymmetric para-
bolic inflated membrane reflector. Two methods, namely,
Half-Path-Length Error Method and Best-Fit-Profile Error
Method, are employed to evaluate the reflector surface accu-
racy and used in the derivatives of the optimizer. The thick-
ness of the membrane elements was designated as the
design variables using root mean square error based on these
two evaluation methods as the objective function to be min-
imized. Sensitivities were computed via the adjoint method,
with a geometrically nonlinear finite element analysis used
to predict the deformed state under a pressure load. The
thickness filtering was applied to research its effect.

Results demonstrated that the traditional HPL-E Method
is not feasible here to evaluate the reflector surface accuracy.



International Journal of Aerospace Engineering

1500
0.03
10007 0.029
»

500 1 v, ‘\“\ 0.028

Vi s SR
0 WM}V}@J* {E{V{;“' 0.027
%"“'ﬂﬁf, i S AV #A‘m 0.026

S AN SN\

~500 1 Ko, SoromasSiSio oA v
Ko, S o0 oozs

VA anras A V)
~1000 s 0.024
0.023
~1500

500 500 1000 1500 2000

(b) Thickness distribution

22000 -1500 1000

FIGURE 4: Stress and thickness distribution of optimal reflector by the BFP-E Method.

8
1500
1.45
1000 14
A\
500 R x 1.35
1
0 } 1.3
i
\
-500 }
o
d
V.
-1000 ’d"
i'—‘(
~1500 S
-2000 -1500 -1000 -500 0 500 1000 1500 2000
(a) Von Mises stress distribution
1500 0.06
1000 0.05
500 0.04
01 0.03
-500 0.02
—-1000 A 001
—-1500 A
-2000 -1500 -1000 -500 0 500 1000 1500 2000

(a) Von Mises stress distribution

1500

1000

500

0.

-500

-1000 -

-1500
-2000 -1500 -1000 -500 0

500 1000 1500

FIGURE 5: Stress and thickness distribution of optimal reflector by the HPL-E Method.

TaBLE 3: Result summary of the BFP-E Method by different
parameter ;..

Tmin (MM) Ogpp_g, (Mm) Opr_g (Mm)
65.789 0.0326 0.4503
98.684 0.0366 0.4492
131.578 0.0435 0.4502
197.368 0.0508 0.4515
358.736 0.0544 0.4545

Instead, the BFP-E Method can be relatively reasonable in the
membrane sensitivity research. Even though the surface
accuracy is not so sensitive to the reflector thickness in Ref.
[10], the ogpp_g based on the BFP-E evaluation method can
be decreased substantially over the standard trial-and-error
design approach, from 0.1489 mm to 0.0370 mm for the con-
sidered reflector profile. And the optimal objective of surface
accuracy can be further improved with the development of
element mesh refinement.

(b) Thickness distribution
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FIGURE 6: Iteration curves of reflector thickness optimization based
on different filter radii.
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FiGURE 7: Effect of filter radius on the optimized reflector thickness distribution.

Thickness filtering controlled the degree of thickness
variation, with larger filter radius giving solutions that may
be more readily manufacturable at the expense of ogpp_p per-
formance. Even though there is little difference between the
maximum and minimum thickness in the optimal thickness
distribution, this small change can largely develop the surface
accuracy of the membrane reflector.

Future work is aimed at improving the manufacturability
of the reflector further based on the additional manufactur-
ing technology, for example, using integer magnitudes of

thickness through projection methods [29], and considering
additional objectives, such as stiffness and dynamic factors.

Data Availability

Figure2.fig is used to support Figure 2 in the manuscript. Fig-
ure7(a).fig is used to support Figure 7(a) r,,;, = 65.789 in the
manuscript. Figure7(b).fig is used to support Figure 7(b)
Toin = 98.684 in the manuscript. Figure7(c).fig is used to
support Figure 7(c) ., =131.578 in the manuscript.
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