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Folding fins are widely adopted in missiles for the efficient use of space during storage and transportation, while nonlinear behavior
of freeplay is inevitable due to the factors such as mismachining tolerance, assembly error, and abrasion. The problem of nonlinear
system identification of folding fins with freeplay is considered in this paper. A direct parameter estimation method which can
identify the nonlinear system with freeplay under base excitation is proposed and subsequently applied to establish the
nonlinear dynamic model of a folding fin. The best set of coefficients is selected by using the significance test, allowing the
proposed method to detect and locate the most relevant nonlinearities of the practical structure. Experimental results
demonstrate that the proposed method is able to decouple the linear and nonlinear dynamics of a nonlinear structure and
estimate natural frequencies of the derived linear system along with nonlinear internal forces in one computational step, even if
no a priori knowledge of the type of nonlinearities is given.

1. Introduction

Folding fins are widely adopted in missiles for the efficient
use of space during storage and transportation. These fins
are packed in folded state before launching and unfolded
immediately after launching. Although most folding fins
have a complex hinge consisting of dowels, torsional springs,
and stoppers, nonlinear behavior of freeplay is inevitable due
to the factors such as mismachining tolerance, assembly
error, and abrasion [1, 2]. Because of the existence of freeplay
nonlinearities, both static and dynamic characteristics of
folding fins are changed, especially the vibration and aero-
elasticity characteristics [3–6]. For example, structural
nonlinearities make the results of ground vibration test
distorted and nonlinear phenomena (such as limited cycle
oscillations, chaotic motions, and bifurcations) occur in
some flight conditions.

To address the demand for flight vehicles with ever-
increasing technological and environmental performances,
researchers try more and more regularly to investigate the

nonlinear dynamic analysis of folding fins/wings [1–8]. On
the one hand, two- or three-degree-of-freedom airfoils with
freeplay nonlinearity were generally used to reveal nonlinear
phenomena and validate corresponding nonlinear analysis
methods [3–6, 9, 10]. These studies can offer useful insights
into what is happening to the folding structures with freeplay,
but they cannot be directly used to solve practical engineer-
ing problems, as real folding structures are flexible compo-
nents with more degrees of freedom. On the other hand,
substructure synthesis methods were used to couple the con-
structed hinge model and the other parts of the folding fins,
and to establish an order-reduced model of the entire struc-
ture [1, 2, 11–13]. However, in most cases the types and
values of nonlinear characteristics of the hinges are unknown
and difficult to obtain.

Due to the complexity of the problem, it is usually diffi-
cult to build the explicit model of a folding fin by exclusively
using mechanism analysis, and there is also no guarantee that
the model will accurately represent its nonlinear dynamic
characteristics. Therefore, nonlinear system identification is
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considered in this work to establish the nonlinear dynamic
model of a folding fin. Nonlinear system identification is
a vast research field and different methods including line-
arization, time- and frequency-domain methods, time-
frequency analysis, modal methods, black-box modeling,
and numerical model updating have been developed in the
past [14, 15]. Time-domain methods exclusively rely on
processing time series and allow users to model the system
in an intuitive way. Typical time-domain approaches com-
prise restoring force surface (RFS) analysis [16, 17], nonlin-
ear autoregressive moving average with exogenous input
(NARMAX) modeling [17–19], and nonlinear subspace
identification methods [20, 21]. Obviously, there is a con-
centrated nonlinearity in the hinge, and the folding fin is
a continuous structure with localized structural nonlinear-
ities. Therefore, direct parameter estimation (DPE) methods
[22], as a class of extended RFS methods, are further devel-
oped to identify the structural nonlinearities of folding fins
in this work.

The remainder of the paper is organized as follows: Section
2 introduces the experimental setup of a folding fin. Section 3
proposes a direct parameter estimation method which can
identify the nonlinear system with freeplay under base excita-
tion. Section 4 presents the identification results and the cor-
responding interpretation. Section 5 summarizes the study.

2. Experimental Setup

2.1. Experimental Folding Fin. The experimental folding fin
with adjustable freeplay, as shown in Figure 1, consists of
an outboard wing, a folding hinge, an inner wing, and a rud-
der shaft. The rudder shaft and the inner wing are manufac-
tured together, and freeplay exists only between the inner
wing and the outboard wing [1]. Six accelerometers are used
to measure the acceleration responses of the structure at six
distributed positions, and they are sequentially numbered
from no. 1 to no. 6, as shown in Figure 1. During the exper-
iment, the bottom of the rudder shaft is fixed on a rigid sup-
port structure by bolts, and the rigid support structure is
fixed on a shaking table, as shown in Figure 2. The base exci-
tation is measured by an accelerometer (no. 0) attached to the
rigid support structure.

2.2. Nonlinear Detection. The frequency response function
(FRF) summarizes most of the information necessary to
specify the dynamics of a structure, and FRF distortions
can be used to provide indications of the structural nonline-
arity. In this section, the base sine-sweep test is adopted to
ascertain if nonlinearity exists in the structural behavior.
Based on the excitation signal and the corresponding
response signal acquired by the no. 1 accelerometer,
Figure 3 shows the frequency response characteristics of
the folding fin without freeplay. The curves of the upward
and downward sweeps are similar to each other and no jump
phenomenon is observed, which indicates that the structure
is linear. Regarding the folding fin with freeplay, significant
differences and jumps can be observed by comparing its
upward and downward sweep curves, as shown in
Figure 4. The jump occurs on the right-hand side of the first

resonance peak, and the system can be referred to as harden-
ing. Similarly, sine-sweep tests of the folding fin with various
forms of freeplay have been carried out. Results demonstrate
that the resonance peaks move to lower frequencies with
increasing freeplay and the freeplay has much larger influ-
ence on the first resonance peak (bending mode) than the
second one (torsional mode).

3. Direct Parameter Estimation

3.1. Identification Theory. For a general mechanical structure,
it can be discretized into lumped masses connected by restor-
ing force links to each other and to the ground [22], as illus-
trated in Figure 5. The mass is assumed to be concentrated at
N measurement points, withmi designating the mass at point
i. Each point i is assumed to be connected to each other point
j by a link lij, and to the ground by a link lii.

The internal forces in the links depend on the relative dis-
placements and velocities of the masses at each end of the
links. Therefore, the force in link lij is f ijðδij, _δijÞ, with δij =
xi − xj designating the relative displacement of mass mi to

mass mj, and _δij = _xi − _xj the corresponding relative velocity.

The force in the link to ground lii is f iiðδii, _δiiÞ, where δii = xi
and _δii = _xi.
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Figure 1: Sketch of the experimental folding fin.

Figure 2: Photo of the experimental set-up.
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If an external force yi is applied to each mass mi, the
equations of motion of the N-degree-of-freedom system
can be obtained as follows:

mi€xi + 〠
N

j=1
f ij δij, _δij
� �

= yi, i = 1,⋯,N: ð1Þ

Furthermore, if the responses of the system are induced
by motions of its base support, then we have

mi
€δii + 〠

N

j=1
f ij δij, _δij
� �

= −mi€x0, i = 1,⋯,N , ð2Þ

with €x0 designating the acceleration of the base support and
€δii = €xi − €x0.

It has been proven that freeplay nonlinearity can be
approximated by a polynomial expansion [10]; in this work,
polynomial representation is used for internal forces f ij and
(2) can be rewritten into the following form:

mi
€δii + 〠

N

j=1
〠
p

k=0
〠
q

l=0
a ijð Þkl δij

� �k _δij
� �l

= −mi€x0, i = 1,⋯,N:

ð3Þ

As the lumped masses concentrated at different mea-
surement points are difficult to obtain, (3) can be further
rewritten as

〠
N

j=1
〠
p

k=0
〠
q

l=0
~a ijð Þkl δij

� �k _δij
� �l

= −€xi, i = 1,⋯,N , ð4Þ

with ~aðijÞkl = ð1/miÞaðijÞkl . Obviously, the coefficients ~aðijÞkl
can be directly estimated by least squares estimation.

As links lij and l ji are the same, the symmetry relation

f ijðδij, _δijÞ = −f jiðδji, _δjiÞ holds, then we have mi~aðijÞklðδijÞk

ð _δijÞ
l = −mj~aðjiÞklðδjiÞkð _δjiÞ

l
. Therefore, the lumped mass mj

can be obtained by
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Figure 3: Frequency response characteristics of the folding fin without freeplay.
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Figure 4: Frequency response characteristics of the folding fin with freeplay.
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Figure 5: Link model of the N-degree-of-freedom system.
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mj = −1ð Þk+l+1 mi~a ijð Þkl
~a jið Þkl

: ð5Þ

Without loss of generality, by assuming that the mass at
the first measurement point is m1 = 1, the mass at other
points can be estimated by using (5). In this way, a priori esti-
mate of the mass is no longer required and an equivalent
identified system of the true structure can be established.
Substituting the estimates of the coefficients ~aðijÞkl and the
corresponding massesmi into (3), we have the matrix motion
equation of the N-degree-of-freedom system in the following
general form:

M€Δ + C _Δ + KΔ + F Δ, _Δ
� �

= −M€X0, ð6Þ

where Δ = ½δ11, δ22,⋯, δNN �, €X0 = ½€x0, €x0,⋯, €x0�, the mass
matrix is M = diag f1,m2,⋯,mNg, the damping matrix C,
the stiffness matrix K , and the nonlinear internal force matrix
FðΔ, _ΔÞ can be assembled based on (3).

The identified model of (6) can represent a system with a
finite number of excited modes. The first N natural frequen-
cies (p1,⋯, pN) of the derived linear system can be computed
by solving the following eigenvalue problem:

K − p2M
�� �� = 0: ð7Þ

3.2. Model Validation. In order to avoid estimating the over-
determined coefficients, a significance test is used to select the
best set of coefficients, as follows:

Significance a ijð Þkl
n o

=
σ2 a ijð Þkl δij

� �k _δij
� �l� �

σ2 ∑N
j=1∑

p
k=0∑

q
l=0a ijð Þkl δij

� �k _δij
� �l� � ,

ð8Þ

with σ2f·g designating the variance of the term in brace.

Generally, the term aðijÞklðδijÞkð _δijÞ
l
can be removed from

the identified model, if SignificancefaðijÞklg is smaller than a
specified tolerance. Otherwise, this term should be consid-

ered during the data-based modeling. The inclusion of differ-
ent terms allows the identified model to detect and locate the
most relevant nonlinearities [17]; for example, if the term

aðijÞ30ðδijÞ3ð _δijÞ
0
appears, one may infer the presence of a

cubic stiffness nonlinearity between measurement points i
and j.

In order to quantify the achievable identification accu-
racy, a normalized mean square error (MSE) [22] is used to
measure the goodness of fit between the estimated accelera-
tion (b€x i) and its experimental counterpart (€xi)

MSEi =
€xi − b€xi			 			2
Lσ2 €xif g , i = 1,⋯,N , ð9Þ

where L is the length of samples.

4. Identification Results and Interpretation

4.1. Measurement and Acquisition. The six accelerometers, as
shown in Figure 1, are used to measure the acceleration
responses of the folding fin with freeplay, and its first two
modes are considered in this work. The base excitation is
white noise band-limited into a 10-80Hz interval to excite
only the first two modes, as shown in Figure 6. The accelera-
tion signals, sampled at 2048Hz, are 4 s long, producing 8192
sample-long versions of the vibration measurements. The
velocity and displacement signals are obtained by integrating
the acceleration measurements using the trapezium rule and
band-pass filtered into a 20-200Hz interval to eliminate spu-
rious components from the integration and retain a sufficient
number of harmonics in the data. Figure 7 shows the filtered
vibration signals of the folding fin at the first measurement
point.

4.2. Two-Measurement-Point Identification Results. The pro-
posed direct parameter estimation method is used to identify
the folding fin based on the excitation signal given in Figure 6
and the corresponding response signals at the first two mea-
surement points. The best set of coefficients are selected by
using the significance test with the predefined tolerance of
0.001 and the identified model is obtained as

1 0

0 −0:2191

 ! €δ11

€δ22

0@ 1A +
21:9153 −17:8562

2:7006 0:6924

 ! _δ11

_δ22

0@ 1A + 104
3:3006 0:3726

1:7110 −2:4871

 !
δ11

δ22

 !

+
159:5266 _δ311 − 1:8400 × 104 _δ211δ11 − 1:8881 × 107 _δ11δ211 + 1:7992 × 109δ311 − 1:1311 × 104 _δ312 + 1:9993 × 1011δ312

−35:0139 _δ322 + 3:0000 × 103 _δ222δ22 + 3:8512 × 106 _δ22δ222 − 2:4542 × 108δ322 + 1:1311 × 104 _δ321 − 1:9993 × 1011δ321

0@ 1A
= −

1 0

0 −0:2191

 !
€x0

€x0

 !
:

ð10Þ
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Furthermore, the mass and stiffness matrices of (10) are
extracted and the first two natural frequencies of the derived
linear system can be computed through (7) as p1 = 30:531Hz
and p2 = 52:718Hz. Figure 8 depicts the experimental accel-
eration signals at the first two measurement points and their
estimated counterparts. The normalized mean square errors
between experimental acceleration signals and their esti-
mated counterparts are MSE1 = 0:3038 and MSE2 = 0:3784.

Similarly, the first two natural frequency estimates of the
derived linear system and the corresponding MSEs are
obtained based on the data from different combinations of
two measurement points, as shown in Table 1. Evidently,
the identification results vary slightly with the choice of data
at different measurement points. Nevertheless, it may lead to
unreliable identification results based on the data at two mea-
surement points located on the inner wing, such as no. 5 and
no. 6. The reason is that freeplay exists only between the
inner wing and the outboard wing, and the base excitation
signal is acquired at the bottom of the rudder shaft. The rel-
ative relationships between the measurement point at the
inner wing and the excitation point at the rudder shaft do
not directly reflect the freeplay nonlinearity, as the rudder

shaft and the inner wing are manufactured together. There-
fore, the information of the freeplay nonlinearity cannot be
well captured by exclusively using measurements from the
inner wing. In other words, some accelerometers should be
placed at the outboard wing in order to better capture the
freeplay nonlinearity, in case base excitation is applied to
the folding fin.

4.3. Comparative Results and Discussions. The identification
results can be further improved by using the data at more
measurement points. In this section, three-, four-, five-, and
six-measurement-point-based identification is sequentially
carried out, and the best set of coefficients is selected by using
the significance test with the predefined tolerance of 0.001.
Table 2 depicts the MSEs of a part of the identification results
by selecting the data at two, three, four, five, and six measure-
ment points. As shown in Table 2, the fitting errors decrease
gradually with the increase of the number of measurement
points. However, as the number of measurement points
increases, the dimensionality of the identified model
increases. In other words, more and more poles will be com-
puted through (7). In order to indicate the number of present
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modes and to select the best estimates for the physical poles,
the idea of a stabilization diagram in traditional modal anal-
ysis is used here [23]. Figure 9 depicts the natural frequencies

of the identified model with an increasing model order
(dots), along with the fast Fourier transform (FFT) spectra
of the six experimental acceleration signals (background).

Table 1: Natural frequency estimates and mean square errors.

Measurement points Natural frequency estimates (Hz) Mean square errors

No. 1 and no. 2 p1 = 30:531, p2 = 52:718 MSE1 = 0:3038, MSE2 = 0:3784
No. 1 and no. 3 p1 = 29:409, p2 = 84:199 MSE1 = 0:2380, MSE3 = 0:2326
No. 1 and no. 4 p1 = 29:180, p2 = 53:865 MSE1 = 0:2716, MSE4 = 0:1292
No. 1 and no. 5 p1 = 30:451, p2 = 73:201 MSE1 = 0:2777, MSE5 = 0:4462
No. 1 and no. 6 p1 = 29:475, p2 = 55:232 MSE1 = 0:2750, MSE6 = 0:5444
No. 2 and no. 3 p1 = 29:405, p2 = 78:525 MSE2 = 0:2790, MSE3 = 0:2886
No. 2 and no. 4 p1 = 28:896, p2 = 60:396 MSE2 = 0:3380, MSE4 = 0:0959
No. 2 and no. 5 p1 = 30:363, p2 = 73:584 MSE2 = 0:3162, MSE5 = 0:4480
No. 2 and no. 6 p1 = 29:310, p2 = 57:650 MSE2 = 0:3648, MSE6 = 0:5145
No. 3 and no. 4 p1 = 32:525, p2 = 56:198 MSE3 = 0:5485, MSE4 = 0:2488
No. 3 and no. 5 p1 = 30:466, p2 = 72:864 MSE3 = 0:3855, MSE5 = 0:4404
No. 3 and no. 6 p1 = 32:977, p2 = 51:764 MSE3 = 0:6263, MSE6 = 0:6759
No. 4 and no. 5 p1 = 34:096, p2 = 76:609 MSE4 = 0:2522, MSE5 = 0:4258
No. 4 and no. 6 p1 = 32:216, p2 = 57:024 MSE4 = 0:1886, MSE6 = 0:5556
No. 5 and no. 6 p1 = 44:720, p2 = 91:888 MSE5 = 0:3265, MSE6 = 0:6153
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Figure 8: Comparison between the experimental and estimated acceleration signals.

Table 2: Mean square errors with increasing number of measurement points.

Measurement points Mean square errors

Nos. 1 and 2 MSE1 = 0:3038, MSE2 = 0:3784
Nos. 1, 2, and 3 MSE1 = 0:2062, MSE2 = 0:2417, MSE3 = 0:1926
Nos. 1, 2, 3, and 4 MSE1 = 0:1742, MSE2 = 0:2041, MSE3 = 0:1467, MSE4 = 0:0567
Nos. 1, 2, 3, 4, and 5 MSE1 = 0:1627, MSE2 = 0:1870, MSE3 = 0:1342, MSE4 = 0:0523, MSE5 = 0:1927
Nos. 1, 2, 3, 4, 5, and 6 MSE1 = 0:0706, MSE2 = 0:0631, MSE3 = 0:0565, MSE4 = 0:0404 MSE5 = 0:0747, MSE6 = 0:1240
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Evidently, the physical poles do not change with an increas-
ing number of assumed poles, and appear as “stable poles”
nearly independent of assumed model orders. In contrast to
physical poles, computational poles will change with an
increasing number of assumed poles in order to model the
noise on the measured signals.

As shown in Figure 9, the second natural frequency can-
not be well estimated when the identified model order is
two. Therefore, data at more measurement points (larger
than two) are needed to consider the first two modes of
the folding fin. The FFT spectra can be used to indicate
the rough values of the natural frequencies, together with
the results of the base sine-sweep test. It should be further
stressed that natural frequencies of the derived linear system
do not agree well with the position where extremum points
of the FFT spectra appear, due to the nonlinear internal
forces of the true system.

5. Conclusions

In this work, the nonlinear dynamic characteristics of a fold-
ing fin are experimentally analyzed by using identification
approaches. A direct parameter estimation method which
can identify the nonlinear system with freeplay under base
excitation is proposed and subsequently applied to establish
the nonlinear dynamic model of a folding fin. The unknown
freeplay nonlinearity of the folding fin is reduced to a poly-
nomial form, and the best set of coefficients is selected by
using the significance test, allowing the proposed method
to detect and locate the most relevant nonlinearities. There-
fore, the method can be used to identify a structure when no
a priori knowledge of the type of nonlinearities is given. Fur-
thermore, the proposed method is able to decouple the lin-
ear and nonlinear dynamics of a nonlinear system, and
estimate natural frequencies of the derived linear system
along with nonlinear internal forces in one computational
step, which are often required in many aerospace and
mechanical structures.
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