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The paper proposes a global optimization algorithm employing surrogate modeling and adaptive infill criteria. The surrogates are
exploited to screen the design space and provide lower-fidelity predictions across it; on the other hand, specific criteria are designed
to suggest new points for high-fidelity evaluation so as to enrich the optimizer database. Both Kriging and radial basis function
network are used as surrogates with different training strategies. Sequential design is achieved by introducing several infill
criteria according to the realization of the exploration-exploitation trade-off. Optimization results are provided both for scalable
and analytical test functions and for a practical aerodynamic shape optimization problem.

1. Introduction

The trade-off between high fidelity and short response time is
an essential part of today’s real-world engineering design
applications. On the one hand, the industrial request to shift
the focus and part of the costs from experimental to numer-
ical design and analysis leads to the introduction of more and
more physics modeling into numerical simulation codes. On
the other hand, the price to pay is related to increasing com-
putational time of single analyses and design cycles which is
detrimental for the purpose of reducing the time to market.
This trade-off is even more evident when computational fluid
dynamics (CFD) is involved in the design loop as the need to
accurately evaluate very complex configurations and the
required high number of CFD simulations represents a
further issue. The engineering computational design process
may be speeded up by either accelerating the high-fidelity
evaluation or reducing/accelerating the steps of the numeri-
cal algorithm used for exploring the design space. In the first
group, High-Performance Computing (HPC) methods are
numbered to increase the global performance of a single call
to the CFD solver (through code parallelization, vectoriza-
tion, and profiling). With reference to the second group,
several research trends are focused on reducing the problem
dimensionality (hence, the iterations needed to find the

solution), improving the search algorithms for achieving fas-
ter and better solutions, and tuning the algorithm parameters
to automatically and efficiently adapt to the response. An
interesting alternative branch is represented by surrogate-
based or metamodel-assisted optimization (SBO) which was
originally conceived to relieve the computational loading
associated with the usage of black box response functions.
SBO consists in replacing the high-fidelity model (or “truth”
model, e.g., the CFD simulation) with a fast, lower-fidelity
model which has preliminarily “learned” from high-fidelity
data. Since the pioneering work by Jones et al. [1], several
theoretical studies [2–18] have been published on the topic.
The proposed methods differ for one of the following items:
the employed surrogate model (e.g., model type and single
or multiple models), the training approach (e.g., optimizing
the prediction error, the cross-validation error, the general-
ized cross-validation error, and the likelihood function), the
model updating strategy (e.g., usage of surrogate minimizers,
infill criteria, and random criteria), and the optimization
method adopted to find the model parameters and to explore
the surrogate (e.g., heuristic, gradient-free or gradient-based,
and global or local). SBO has been successfully applied in the
aerospace engineering field [19–27]. In continuity with other
works by the author [28–31], the present paper proposes an
adaptive SBO framework for design optimization with
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different updating strategies and optimization algorithms.
A sketch of the main building blocks is provided in
Figure 1. A choice of surrogate models is also available
for selection. The main novelty of the paper is in the pro-
posal of two groups of diverse infill strategies and in the
capability to apply many of them during the adaptive sam-
pling cycle by defining activation probabilities. Moreover,
the usage of two different optimization libraries (public
domain NLopt and in-house ADGLIB) allows performing
both hyperparameter optimization for surrogate model
training and objective function minimization with a variety
of approaches. Finally, while previous investigations focused
only on aerodynamic optimization cases, here an extensive
study is carried out on analytic test functions in order
to quickly assess the performance of the algorithm on
known data. The paper is structured as follows: the first
section is devoted to the surrogate model definition and
to the training methods; then, the sequential design by
means of various infill criteria is discussed and some
examples on a basic test function are proposed; further-
more, having introduced all the computational pieces, the
whole surrogate-based sequential optimization algorithm
is described in detail and interactions between subphases
are highlighted; finally, the experimental test campaign
on multidimensional scalable test functions is discussed
as well as the results obtained by using different setups;
an example of real-world application is given in the very
final section where a benchmark aerodynamic shape opti-
mization case is faced and results are compared with a
previous work by the same author [31].

2. Surrogate Models

2.1. Kriging Model. The Kriging model assumes that the
function value at each point in the domain is represented
by a separate random variable correlated with all the other

points. Given that f x is the function response of interest,
a Kriging surrogate is defined as a realization of a regression
model h and a stochastic process z having zero mean, process
variance σ2k, and covariance model R θ, x1, x2 between z x1
and z x2 with parameter vector θ [32]:

f x = h β, x + z x , 1

h β, x = hβ, 2

E z x1 , z x2 = σ2kR θ, x1, x2 , 3

where β is the regression coefficient vector and h is the
regression vector. The correlation between training sites
x j j=1,⋯,M is condensed within the covariance matrix

and given by Kij = R θ, xi, x j . In multidimensional cases,
the covariance is obtained as a tensor product of one-
dimensional covariance functions:

R θ, xi, x j =
D

p

Kr
xip − xjp

θp
, 4

where D is the dimension of the problem, θp is the
length scale in the p-th dimension, xip is the p-th compo-
nent of the vector xi, and Kr is the one-dimensional
Matern function:

Kr d = exp − 2vd Γ t + 1
Γ 2t + 1 〠

t

i=0

t + 1
i t − 1 8vd

t−i
,

5
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Figure 1: Surrogate-based optimization suite.
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with Γ the Gamma function, v = t + 1 /2, and three possible
values of the parameter t:

Kr d =

exp −d , for t = 0,

1 + 3d exp − 3d , for t = 1,

1 + 5d + 5
3 d

2 exp − 5d , for t = 2

6

In practice, the covariance matrix may become ill-
conditioned or regression features are required to handle
noisy functions. As a consequence, “nugget” or noise terms
are plugged in the covariance matrix diagonally which
becomes Kij = R θ, xi, x j + λδij, where the Kronecker con-
vention has been used and λ is the noise ratio. Predic-
tions at a generic location x are obtained by using the
following expression:

f̂ x =HTβ + kTK−1 f −HTβ , 7

where H is the linear regression matrix and β is the
generalized least square estimate of β, K is the covari-
ance matrix, k is the covariance vector between the
generic design site x and the training sites, and f =
f1, f2,⋯, f M

T is the vector of function values. The stochas-
tic nature of the Kriging model allows the obtainment of an
estimate of the prediction variance in the form:

ŝ2 x = σ2
k 1 − kTK−1k + uT HTK−1H −1u , 8

where σ2k is the estimated process variance, u =HTK−1k − h,
and h = h1, h2,⋯, hM T . The prediction and its variance are
both functions of the hyperparameters, i.e., the length scales
θp, the process variance σ

2
k, and the noise magnitude λ. The

hyperparameters have to be tuned in order to make the
model output more “likely” against a given set of training
data. In other words, the aim is to maximize the probability
that the observed data follows the Gaussian process assumed
with a specific set of hyperparameters. This is typically
achieved by optimizing the maximum likelihood estimator
(MLE) [33]. In the following, two optimization strategies
are proposed and hereinafter referred to as “full optimiza-
tion” and “partial optimization.” The first is required when
the function noise has to be fitted, while the second is
required when ill conditioning of the covariance matrix is
likely to occur. In both cases, the optimization algorithms
are called from the NLopt library (available online at
http://ab-initio.mit.edu/nlopt) in a loosely coupled global-
local approach: first, a global exploration is performed with
the evolutionary strategy ESCH algorithm [34]; then, the best
solution is taken as the starting point of a local refinement
by using a reviewed version of the Nelder-Mead simplex
algorithm [35].

2.1.1. Full Optimization. In this approach, the regression
parameters are found by imposing an optimality condition
and given by

β =A−1HK−1f 9

All the hyperparameters (length scales, process variance,
and noise level) are obtained through the maximization of
the likelihood function given by

log p f x ; θp = −
1
2 f

TK−1 f −HTβ −
1
2 log K

−
1
2 log A −

M − S
2 log 2π,

10

whereM is the number of training points, S is the number of
terms in the regression, and the regression matrix A is
defined as

A =HK−1HT 11

2.1.2. Partial Optimization. In this formulation, the process
variance and regression parameters are both computed
thanks to the optimality condition; hence, the optimization
process involves only the covariance length scales θp. The
optimal process variance is set to the value which cancels
the partial derivative of the likelihood function with respect
to σk, given by

σ2
k =

f −HT β
T
K−1 f −HT β

M
12

The likelihood function to be maximized reduces to

log p f x ; θp = −
M
2 log σ2

k −
1
2 log K̂ −

M
2 −

M
2 log 2π,

13

K = σ2
kK̂ 14

This final formula is a function of the length scales θp and
the noise level ratio λ. The optimization is performed only
over the length scales, and the noise level ratio is fixed
throughout the optimization. A typical choice is to set the
noise level λ to a small fraction of the process variance σk
to avoid ill conditioning.

2.2. Radial Basis Function Network. Radial basis functions
(RBF) are a powerful tool for data interpolation and regres-
sion. The response depends on the location of centres and
on the Euclidean distance from the centres. By appropriately
defining M centres and weighting the contribution of each
RBF, a RBF network is obtained as

f̂ x, θ1,⋯, θM , λ = 〠
M

i=1
ki λ r x − xi , θi 15
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Here, the centre of each RBF is xi and the weights are ki
(which, in turn, depend on a regularization parameter λ).
The amplitude of the radial basis functions is controlled
by means of the width parameters θi. The type of the

RBF kernel r may assume various mathematical forms;
here, the following types are considered (d = x − xi is the
Euclidean distance from the centre):

Great emphasis has been put in the RBF literature on the
choice of the width parameters. Gutmann [36] showed that
both the interpolation error and the solution matrix condi-
tioning are highly sensible to the value of θ: in particular,
theta should be low enough to improve stability; however,
the highest approximation accuracy is often found for large
θ value which may lay in the unstable region. As a conse-
quence, a conflict arises between accuracy and stability,
sometimes referred to as the “trade-off principle” [37]. This
is solved by using state-of-the-art optimization techniques
and considering a unique scalar width θ for each RBF centre.
The optimization algorithm autonomously chooses the ker-
nel function type and optimizes the width parameters taking
the leave-one-out cross-validation error as the objective
function to be minimized. Similar to Tenne and Armfield
[23], the procedure works as follows:

(1) All the kernel functions are trained on the current
training set

(2) The leave-one-out (LOO) error norm is computed as

εLOO x1, x2,⋯, xM , θ, λ = 1
M

〠
M

j=1
f j − f̂ −j x j, θ, λ

2
,

17

where f j is the value of the function at the jth training

site x j and f̂ −j is the RBF prediction at x j when the

model is trained without x j and f j. The computation

of theM terms f̂ −j does not require the training ofM
RBF models; indeed, it can be computed effortlessly
thanks to Rippa’s formula [38]

(3) The combination of the RBF kernel and width
parameter which gives the lowest LOO error norm
is sought by solving, for each kernel, the optimization
problem:

min
θ,λ

εLOO x1, x2,⋯, xM , θ, λ 18

Two options are available:

(i) Grid search: a grid of discrete couples θ, λ is
generated, all the possible combinations of
parameter values are evaluated, and the best
combination (in terms of minimum εLOO) is
retained

(ii) Numerical optimization: the minimization prob-
lem (18) is solved considering the hyperpara-
meters as continuous variables and using the
same algorithms for searching the Kriging
hyperparameters

Once the optimal width parameters were found, the
weights ki have to be computed. A regularization parameter
λ (also known as ridge regression parameter in the RBF
literature) is introduced to avoid overfitting and improve

r d, θ =

exp −
d2

θ2
, Gaussian,

1 + d2

θ2
, multiquadric,

1
1 + d2/θ2

, inversemultiquadric,

d
θ

2
ln d

θ
, thin plate spline,

1 − 30 d
θ

2
− 10 d

θ

3
+

+45 d
θ

4
− 6 d

θ

5
− 60 d

θ

3
log d

θ
,

WendlandC2 thin plate spline

16
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the interpolation matrix conditioning. By imposing the
interpolation condition [37] on the training set, the weights
are the solution of the linear system:

Rk + λI = f, 19

where

R =

r 0, θ1 ⋯ r x1 − xM , θM
r x2 − x1 , θ1 ⋯ r x2 − xM , θM

⋮ ⋮ ⋮

r xM − x1 , θ1 ⋯ r 0, θM

20

k = k1, k2,⋯, kM T are the unknown RBF weights, and f =
f1, f2,⋯, f M

T are the function values at the training sites.
The prediction variance is estimated as

ŝ2 x = σ2RBF 1 − rR−1rT , 21

where r = r x − x1 , θ1 ,⋯, r x − xM , θM , σ2
RBF = 1/

M − 1 ΣM
i=1 f i − fmean

2, and fmean = 1/M ΣM
i=1 f i.

3. Sequential Design and Infill Criteria

This section will give details about the sequential enrichment
of a surrogate model assisting the optimization task. Indeed,
once a surrogate model is trained, a basic and simplistic
approach would be to optimize the surrogate and find the
model minimizers. A further step could be to reevaluate the
suggested points with the high-fidelity model, update the
training dataset, build a new surrogate, and then optimize
again in an iterative manner to drive to true optimality
quickly. However, feeding the surrogate back with no
information about its error measure and no tendency to
exploration would easily lead the updating process to get
trapped in local minima. The weak point lies in considering
the model prediction as the only source of “knowledge” for
increasing the quality of the approximation (“exploitation”).
An advanced solution is obtained by mixing the information
coming from the available data, the surrogate prediction, and
the estimation of the predictive behaviour away from the
training set (“exploration”): this could drive to a “smarter”
selection of new points and, thus, improve the surrogate.

The aim is to obtain a model that cleverly supports the
optimization path, being ideally very accurate near the glo-
bal/local optimal location and acceptably rough elsewhere.
Of course, the updating strategy has to take into account
the specific surrogate model at hand, so that the adaptive
sampling criteria should be designed upon its features (e.g.,
vector or scalar data, availability of an estimated prediction
error, and interpolation/regression character). Adaptivity is
another key point in view of inserting new points depending
on the samples and response function values collected so far.
The exploration/exploitation trade-off usually drives the
adaptation by mixing the contribution of high prediction
error areas (exploration) with potentially promising regions

(exploitation). Indeed, explorative search is a cornerstone
for global optimization; however, it may lead to the continu-
ous unveiling of poor regions of the design space; on the
other hand, exploitation induces to trust the surrogate pre-
diction, which surely improves the local accuracy but may
also lead to being stuck in local minima. Only a proper and
balanced combination of both components will be effective
in leading to an efficient global optimization.

By way of example, Figure 2 illustrates the addition of a
new point obtained, respectively, by employing pure exploi-
tation, pure exploration, and balanced approaches. The
picture shows the set of training points (black-filled circles),
the true function (solid black line), and the surrogate predic-
tion (dashed black line) built on the training points. Starting
from this, a pure exploitation criterion places a new point at
the surrogate global minimum, i.e., very close to one of the
training points (triangle mark); by pursuing pure explora-
tion, instead, the new point is located very far from the
training set (circle mark), thus sampling is performed where
the prediction uncertainty is highest; finally, the new point
predicted with a balanced exploration/exploitation approach
(square mark) is located in an interesting position very close
to the true optimum: a new surrogate model trained on the
old training set plus the new point will surely lead to the
detection of the global optimum quickly.

Infill criteria are here referred to as means for adding
new samples to the training set by designing auxiliary
functions for generic surrogate models. Let us say x is
the design vector which defines a generic location in the
design space, f x is the objective function to be minimized,
Xn = x1, x2,⋯, xn is the set of n available training

points, FXn
= f x1 , f x2 ,⋯, f xn is the correspond-

ing set of true objective function values, and f̂ x is the
response at x of the surrogate model built on Xn , FXn

.
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)
Figure 2: Exploitation vs. exploration, 1D example (from Iuliano
and Pérez 2016 [30]).
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An infill criterion is defined as finding a new sample xn+1
which maximizes an auxiliary function v called the potential
of improvement: xn+1 = arg maxxv x, f̂ x , Xn, FXn

.
Hereinafter, the maximization of v is not achieved by

using numerical optimization techniques, but rather by
hugely sampling the design space (e.g., five hundred times
its dimension) with a Latin hypercube sampling method
and selecting the point at which the maximum value of v is
met. Despite the size of the test dataset, the evaluation
of ν requires limited computational effort as the function
evaluation involves the surrogate prediction, which is fast
to compute, and the true objective function values
(already collected). An important point is related to the
fact that, as the test dataset is generated many times
along with multiple updating iterations, duplication of
the selected sample may occur. In order to avoid this, the
seed of the Latin hypercube is changed unambiguously at
each iteration.

As concerns the type and nature of the potential of
improvement function v, previous investigations [30]
showed that error-driven infill criteria may lead to the inten-
sive exploration of the design space in order to reduce the
prediction error, but, conversely, this resulted in a lack of
efficiency of the whole optimization process at fixed total
computational budget. Hence, in the following section, the
discussion will focus on approaches which proved to be more
suitable to global optimization. In particular, two sets of
criteria will be proposed: the first is based on the factorization
of the potential of improvement in order to explicitly realize
the trade-off between exploration and exploitation and the
second is defined according to the expected improvement
concept.

3.1. Factorized Infill Criteria. The first proposal of adap-
tive infill criterion is aimed at combining exploration and
exploitation by means of a generic factorization as follows:

v x, f̂ x , Xn, FXn
= g x, Xn h f̂ x , FXn

22

The functions g and h measure the exploration and
model trust contribution, respectively. In particular, the
exploration function g should estimate how strong the
influence of the set of already collected samples Xn on a
generic candidate x is. One of the preferred approaches is
to make the function dependent on the Euclidean distance
d x, xi between the generic design space location x and the
i-th element of the training set Xn:

g x, Xn = g d x, x1 , d x, x2 ,⋯, d x, xn 23

On the other hand, the exploitation function h should
take into account how the surrogate prediction f̂ compares
with the available set of true objective function values FXn

.
In particular, this contribution should put emphasis on
trusting the model prediction; hence, the h function should
exhibit its maxima in correspondence with some identified
features of f̂ (e.g., minima, discontinuities, or local strong

nonlinearities). Of course, different infill criteria can be
designed by properly defining the functions g and h. A set
of choices is presented here.

3.1.1. Leave-One-Out Error Criterion. The leave-one-out
error (LOOE) criterion is aimed at individuating the regions
where the surrogate model lacks accuracy and is much more
sensible to the insertion of new designs. The factorization
functions are as follows:

g x, Xn =
minxi∈Xn

d x, xi
maxxix j∈Xn

d xi, x j
,

h f̂ x , FXn
=

f̂ −i xi − f xi
Σn
j=1 f̂ −j x j − f x j

,
24

where, given a generic location x, xi is the location of the
nearest training sample. Of course, as this criterion will tend
to select new candidates around training samples exhibiting
the highest LOO error, the clustering of points around
specific regions will be avoided.

3.1.2. Weighted Leave-One-Out Error Criterion.As the LOOE
criterion may be too much exploratory and ignore the
information given by the surrogate model, an alternative
is given by weighting the function with a term which mea-
sures the trust in the surrogate prediction. The weighted
leave-one-out error (WLOOE) criterion modifies the h
function as follows:

h f̂ x , FXn
=

f̂ −i xi − f xi
Σn
j=1 f̂ −j x j − f x j

exp −σ
f̂ x − fmin
fmax − fmin

,

25

where σ is a tuning parameter, fmin = min f x1 ,⋯, f xn ,
and f max = max f x1 ,⋯, f xn . This choice of the h function
provides two main features:

(1) The value of h approaches the LOOE prediction
when f̂ x approaches fmin

(2) For f̂ x < fmin, the value of the h function is higher
than the LOOE

With respect to the LOOE criterion, the multiplicative
exponential term augments the error-minimizing term with
a goal-oriented exploitation term: hence, “bad” candidates
(according to the surrogate prediction) will be filtered out,
while “good” candidates will be recognized and rewarded
with higher rank.

3.1.3. Lipschitz Constant Criterion. This criterion (LC) is
aimed at selecting new design samples where the local com-
plexity of the function is high. The Lipschitz constant is con-
sidered here as an indicator of the local complexity. Given a

6 International Journal of Aerospace Engineering



domain D and a function f defined in D, the Lipschitz
constant denotes the smallest constant L > 0 in the Lipschitz
condition, namely, the nonnegative number:

Lf ,D ≔ sup
x1,x2∈D

x1≠x2

f x1 − f x2
x1 − x2

26

Such a constant is usually employed to bound the nonlin-
ear character of the function f : for instance, it gives an upper
bound on the number of oscillations of a given amplitude or
it limits the maximum and minimum value a function can
assume in a given range. Of course, it has a local character;
hence, a function may exhibit subregions with either small
or large values of the constant. In the present context, the
Lipschitz constant has to be estimated at every possible
location within the design space. This is done by computing
the K-means clusters of Xn and considering the variation of
f between the nearest training sample and the set of all nodes
belonging to the cluster. Algorithm 1 details the estimation of
the Lipschitz constant.

The effective number of clusters r is the result of an
iterative cluster solution: indeed, it is required to have at
least two candidates in each cluster in order to be able to
compute the Lipschitz constant and, in some cases, this
may not occur naturally (e.g., strong aggregation of training
samples). As a consequence, r is initialized to int n/d , but
it is downgraded every time a single-component cluster is
found. According to the algorithm, a Lipschitz constant
value is associated with each training sample: at a generic
location x, it is assumed that the Lipschitz constant is the
same as the nearest training sample, i.e., L x = L xnn ,
where xnn = arg minxi∈Xn

xi − x .
The functions g and h for the LC criterion are defined as

g x, Xn = min
xi∈Xn

d x, xi ,

h x, Xn, FXn
= L x

fmax − fmin
exp −γ

maxxi ,x j∈Xn
d xi, x j

minxi∈Xn
d x, xi

,

27

where the division by fmax − fmin has been introduced for
normalization purposes and the exponential term provides

for a tuned decay weight (through parameter γ) of the h
function. In fact, when the design candidate x is near to
a training point, the term minxi∈Xn

d x, xi is small and
the weight of the local Lipschitz constant is accordingly
decreased with respect to a design candidate belonging to
the same cluster and located farther.

3.1.4. Weighted Distance Criterion. The weighted distance
(WD) criterion is based on the following definitions for
functions g and h:

g x, Xn =
minxi∈Xn

d x, xi
maxxi ,x j∈Xn

d xi, x j
,

h f̂ x , FXn
= exp −σ

f̂ x − f min
fmax − fmin

,
28

where the nomenclature is the same as described above.
Again, the exploitation is given by the exponential term
which gives confidence in the surrogate prediction, while
the exploration element is represented by how far the
candidate x is from the nearest training sample. Analogous
to the WLOOE criterion, candidates with a surrogate
prediction lower than the current function minimum will
be more likely to be selected. However, if they are too close
to samples stored in Xn, they will be penalized by the g
function. Hence, a trade-off is realized between surrogate
prediction and location in the design space.

3.2. Expected Improvement-Based Infill Criteria. Another set
of infill criteria is defined to accomplish the exploration-
exploitation trade-off from a different point of view. The
expected improvement algorithm by Schonlau et al. [39]
and Jones et al. [1] represents a standard design strategy to
add one new sample aimed at achieving the global optimum
of the response surface. In the following, the original crite-
rion and some variants of it are presented.

3.2.1. Expected Improvement (EI) Criterion. The sequential
algorithm is based on the notion of “improvement”
defined by

I x =
f min − F x , if F x < fmin,
0, otherwise,

29

1: compute the K-means clusters Kj,j=1,r of the set Xn = x1,⋯, xn with r ≤ int n
d

2: for all sample xi ∈ Xn do
3: Say Ki the cluster containing xi
4: for all sample x j ∈ Ki, x j ≠ xi do
5: compute Lij =

f xi − f x j
xi − x j

6: end for
7: Set L xi =maxjLij
8: end for

Algorithm 1. Lipschitz constant estimation.
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where the function F x is here supposed to be a random
variable as for the Kriging model (see equation (1)). After
integration with respect to the conditional distribution
F x ∼N f̂ x , ŝ2 x , the expected improvement (EI)
function is expressed as

v x, f̂ x , Xn, FXn
= E I x

= f min − f̂ x Φ fmin − f̂ x
ŝ x

+ ŝ x ϕ
fmin − f̂ x

ŝ x ,

30

where f̂ x is the Kriging predictor (equation (7)), ŝ2 x
is the corresponding prediction variance (equation (8)),
and Φ x and ϕ x are, respectively, the N 0, 1 cumula-
tive distribution and probability density functions. The
search for the global minimum is enriched by finding
the point x that maximized the EI function. Two addi-
tive contributions are clearly evident:

(i) The first term gives importance to sample points
having predicted values much less than fmin (thus
exploiting the surrogate model)

(ii) The second term enhances samples with high
uncertainty about the prediction (thus fostering
global search)

Both terms are weighted by the probability measure
of the standard normal distribution defined in the modi-
fied variable fmin − f̂ x /̂s x : hence, depending on this
ratio, the EI landscape is usually featured with many
sharp peaks and wide regions where its value is almost
zero. Equation (30) may be used even if the prediction
model is not stochastic in nature: for example, the pre-
diction function and the associated variance coming from
a RBF network (equations (15) and (21)) may be plugged
in it and adopted as EI infill criterion for choosing new
points.

3.2.2. EI-Like Criterion. This criterion has been designed
trying to mimic the same rationale of the expected
improvement criterion, which was originally conceived
for a Gaussian process surrogate. The present approach,
referred to as “EI-like” hereinafter, represents a generaliza-
tion of that algorithm: indeed, for a generic surrogate
model, the information about the prediction uncertainty
may not be available as in the case of Kriging or RBF
network model. The idea is to define a model for the
prediction error which is theoretically applicable to any
function and any surrogate and to link it to the local com-
plexity of the true function. The potential of improvement
function is designed to have the same form of the

expected improvement function (equation (30)), but here
the prediction error is estimated as follows:

ŝ x = L x max
xi∈Xn

d x, xi exp −γ
maxxi ,x j∈Xn

d xi, x j
minxi∈Xn

d x, xi
,

31

where γ is a tuning parameter and L x is the local Lipschitz
constant estimated as in Section 3.1.3. The ŝ function is
related to the order of magnitude of the local maximum
difference of f : indeed, the Lipschitz constant is multi-
plied by a distance so as to make the ŝ quantity similar
to Δf from a dimensional point of view. The prediction
variance has been designed in order to increase with
increasing distance from an available sample. The nega-
tive exponential term and the γ parameter in it allow
for adjusting the rate of change of ŝ while moving away
from known points: for low values of γ, the variance
quickly increases and plateau-like regions are generated
between samples, while for high values of γ, the rise is
milder and a series of hills (midsamples) and valleys
(near-samples) are generated. An example will be provided
at the end of the section to better explain the landscape of
the EI-like function.

3.2.3. Expected Improvement for Global Fit (EIGF) Criterion.
A modified version of the expected improvement criterion
is here considered as proposed by Lam [10]. Instead of
locating the global optimum, the aim is to add new points
which are located in regions with significant variation of
the response function and to improve the global fit of
the model. In other words, the rationale is close to the
Lipschitz criterion. Similar to the EI criterion and adopt-
ing the same notation, the improvement function is here
defined as

I x = F x − f xnn 2, 32

where xnn = arg minxi∈Xn
xi − x is the training site closest

(in distance) to x. After taking the expected value of
equation (32) and recalling that F x ∼N f̂ x , ŝ2 x ,
the expected improvement for global fit function is
derived as

v x, f̂ x , Xn, FXn
= E I x = f̂ x − f xnn

2
+ ŝ2 x

33

Again, this potential of improvement function consists
of two components, one local and one global. The first
(local) is large where the predicted response varies signif-
icantly with respect to the nearest sample. The second
(global) increases when the uncertainty in the prediction
is high, i.e., far from the sampled points.

3.2.4. Generalized EIGF Criterion. Starting from equation
(32) and taking the expected value of I2 x , the
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generalized expected improvement for global fit function is
obtained as

v x, f̂ x , Xn, FXn
= E I2 x

= f̂ x − f xnn
4

+ 6 f̂ x − f xnn
2
ŝ2 x + 3ŝ4 x

34

The main difference with respect to equation (33) is
that now the change in response f̂ x − f xnn and the

prediction uncertainty ŝ2 x are not separated as they
interact with each other. This should drive the search to
regions where both terms are important as their combined
effect would be amplified.

3.3. Test Example. A simple illustrative example is given here
by considering the one-dimensional function:

f x = sin 12x − 4 6x − 2 2, 35

defined for x ∈ 0, 1 . A set of 5 training points Xn =
0 1, 0 3, 0 5, 0 7, 0 9 with associated set of function values
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FXn
= −0 656577,−0 015577, 0 909297,−4 605754, 5 711950

has been extracted by uniformly sampling the design space
D = 0, 1 : Figure 2 shows the function f x , the surrogate
prediction f̂ x (here, a Kriging model is used), and the
training samples. Figure 3 shows the potential of improve-
ment functions obtained by applying the criteria described
so far for two values of the tuning parameters. It can be
observed that, apart from the LOOE criterion where no
tuning parameter is introduced, the levels of v are globally
reduced with increasing σ or γ; indeed, a different scale of
the y-axis is used.

The effect of the σ parameter is clearly observable by
comparing the WLOOE curves: indeed, for σ = 1, the

maximum value of the WLOOE criterion is located at x =
0 8 and the v function is quite peaky, while for σ = 10, the
peak shifts to x = 0 65 and the function is null almost every-
where. This occurs because the relative importance of the
exploitation term (equation (25)) decreases rapidly with
increasing σ, thus raising the exploration contribution within
the factorization (equation (22)). The same behaviour is
observed also for theWD criterion. The LC criterion, instead,
suffers only a global and uniform damping of the peaks;
hence, the location of high-ranking candidates is not altered
by changing the tuning parameter.

Figure 4(a) shows the potential of improvement
functions for EI-based criteria. The test function, the number
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Figure 5: Surrogate prediction after 5 infill points: factorization criteria.

10 International Journal of Aerospace Engineering



and location of the initial training samples, and the surrogate
model are the same as in the previous section. Due to the
different orders of magnitudes of the v function values,
two scales are reported on the y-axis: the EI and EI-like
functions have to be read on the left axis (ranging from
0.0 to 2.0), while the EIGF and GEIGF have to be read
on the right axis (ranging from 10−2 to 104 in a logarithmic
scale). Both EI and EI-like functions have a global maxi-
mum around x = 0 65 (similar to WD and WLOOE cri-
teria) and a lower peak around x = 0 72. The main
difference between the two criteria is observable in the
interval x ∈ 0, 0 6 , where the EI function exhibits three
local maxima while the EI-like function is null. To better
clarify this, Figure 4(b) shows the prediction variance as
provided by the EI criterion (Kriging predictor variance,

equation (8)) and by the EI-like criterion (equation (31))
for γ = 0 1. In fact, the EI-like prediction error is smaller
where the variation in f is limited, as for 0 < x < 0 6, and
larger where significant gradients are present, while equa-
tion (8) depends only on the correlation between points,
i.e., on distance and spatial distribution of points. EIGF
and GEIGF criteria privilege the point at x = 0 8 (as LC
and LOOE criteria) and show 5 more local maxima (cor-
responding to the interval end points and to the midpoints
between the sample data) that may be selected in successive
iterations of the method. This characteristic of placing
samples “close to the midpoint” has been highlighted also
by Lam who suggests to start with a small number of points
from an LHS sampling in order to feed the EIGF function
with a smooth predicted response.
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Figure 6: Surrogate prediction after 5 infill points: EI-based criteria.
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Figure 5 shows the result of 5 repeated updates of the
surrogate model with each of the proposed criteria. The
new 5 points are depicted with black circles, while the initial
training points (the same set for every criterion) are repre-
sented by light gray circles. Each plot shows the test function
and the surrogate prediction after the infill process. All
proposed criteria manage to capture the location of the global
optimum and to minimize the prediction error in the sur-
rounding region. A strong clustering is observed for WLOOE
and WD criteria, a clear effect of the exponential weight built
on the surrogate prediction. On the other hand, LC and
LOOE criteria are naturally more explorative as they place
new points where the prediction error is high or where the
function derivative is large.

Figure 6 shows the results of 5 iterations with each of
the EI-based criteria. The EI-like criterion rapidly detects
the global minimum and tends to cluster points around
it, thus showing an “optimizer” behaviour. Similar results
are obtained with the EI criterion, even if the final location
of the global optimum is approximated. As predicted,
EIGF and GEIGF provide a rather dispersed distribution
of samples; however, a global optimization would take
advantage of this as the region around the minimum is
well captured.

4. Surrogate-Based Sequential Optimization

The workflow of the surrogate-based optimization is
depicted in Figure 7. The method is built around the training

database which is progressively fed and updated throughout
the surrogate enrichment. Three major stages are conceived
and designed, answering different needs in surrogate training
and optimization: the space-filling initialization, the adaptive
infill, and the sequential optimization infill. Each stage will be
discussed and detailed in the following sections.

4.1. Space-Filling Initialization Stage. As a first step, the
training database has to be initialized in order to build the
first instance of the surrogate model. This stage is aimed at
providing basic information about the objective space and
selecting napr samples to maximize the informative level. This
stage is usually referred to as a priori sampling because it does
not require any detail about the response function. A space-
filling design of the experiment technique is deemed
appropriate to this aim, e.g., Latin hypercube sampling or
Latinized central Voronoi tessellation techniques. Typically,
according to literature results and the author’s experience,
the number of initial samples napr produced in this stage
should not exceed one-third of the total computational bud-
get. Moreover, as multiple and explorative infill criteria may
be applied in the second stage, the number of initial samples
has to be kept as lowest as possible. Generating multiple
training samples all together has the great advantage that
they can be evaluated simultaneously; thus, this stage can
be executed in parallel to speed up the simulation. Once the
evaluation process has finished, the selected surrogate model
can be built as described in Section 2.

A priori samples

Adaptive samples

SBO optimal samples
Evolutionary algorithm
+surrogate training

Adaptive criteria+
surrogate training Candidate database

Space-filling criteriaInitialization

Design space

Metamodel optimization

Smart exploration

Figure 7: Workflow of surrogate-assisted optimization (from Iuliano, 2017 [31]).

Table 1: Global optimum of the Michalewicz function.

d f xtarget xtarget
2 -1.8013034101 {2.2029, 1.5708}

5 -4.6876581791 {2.2029, 1.5708, 1.2850, 1.9231, 1.7205}

10 -9.6601517156 {2.2029, 1.5708, 1.2850, 1.9231, 1.7205, 1.5708, 1.4544, 1.7561, 1.6557, 1.5708}

20 -19.6370135993
{2.2029, 1.5708, 1.2850, 1.9231, 1.7205, 1.5708, 1.4544, 1.7561, 1.6557, 1.5708, 1.4977, 1.6966, 1.6301, 1.5708, 1.5175,

1.6661, 1.6163, 1.5708, 1.5289, 1.6475}
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Table 2: Type of surrogate models.

Name Model Hyperparameters Notes on training

rbf-grd RBFN θ, λ εLOO minimization, grid search

rbf RBFN θ, λ εLOO minimization, numerical opt.

krig-hp Kriging θp,p=1⋯d MLE maximization (equation (13)), numerical opt.

krig-all Kriging θp,p=1⋯d , σk, λ MLE maximization (equation (10)), numerical opt.
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Figure 8: Boxplot of Δf for the Ackley test function.
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4.2. Design Exploration via Sequential Adaptive Sampling.
The training of the initial surrogate is not driven by optimi-
zation purposes neither by considerations concerning the
prediction error. Being a pure space-filling exercise, the aim
is to evenly distribute the samples across the design space:
as a consequence, the metamodel cannot be as accurate as
required by the optimization task as (1) no control over the
prediction errors has been introduced and (2) the proper
identification of global minima is not investigated. The
second stage of the SBO process (here referred to as “smart
exploration” or sequential adaptive sampling stage) reflects
the need to provide the optimizer with an improved and
reliable surrogate model. The cycle iterates to update the

training database with nadpt new samples suggested by infill
criteria as described in Section 3. The iterative procedure is
structured as follows:

(1) Initialization step: the number npar of new samples to
be inserted at each infill iteration is defined and the
infill criterion is chosen among the available ones.
Two options are implemented: (1) the single prede-
fined criterion or (2) the criterion is chosen randomly
at each iteration according to a given activation prob-
ability for each criterion. The current training sample
set is Xn of size n = napr
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Figure 9: Boxplot of Δf for the Michalewicz test function.
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(2) Testing step: a huge space-filling testing dataset Xt is
generated. The number of test samples is nt = 1000d,
with d being the dimension of the design space. The
Latin hypercube is used with different seeds each time
in order to avoid sample duplication issues. Accord-
ing to the selected criterion, the potential of improve-
ment function v is evaluated at each point of the
testing dataset and a vector Vt of size nt is obtained

(3) Infill step: a single-point npar = 1 or multipoint
1 < npar < nadpt + napr − n selection is available—in
the first case, each infill iteration produces a single

candidate to be evaluated; hence, a complete sequen-
tial infill approach is realized and the surrogate has to
be built nadpt times; in the second one, multiple
samples are simultaneously selected, so that the true
function can be evaluated in parallel before refitting
the surrogate model. In the latter case, a batch
sequential selection is performed. However, the two
approaches pose different issues: the single-point
approach gives the possibility to update the surrogate
many times and to select more criteria during the
sequential process, but of course it is much
slower; on the other hand, by selecting the

Surrogate type

krig−hpkrig−all rbf−grdrbf

Δ
f

m
in

10−1

100

101

(a) d = 2
Surrogate type

krig−all krig−hp rbf−grdrbf

Δ
f

m
in

100

101

(b) d = 5

Surrogate type

krig−all krig−hp rbf−grdrbf

Δ
f

m
in

101

102

(c) d = 10

Surrogate type

krig−all krig−hp rbf−grdrbf

Δ
f

m
in

101

102

(d) d = 20

Figure 10: Boxplot of Δf for the Rastrigin test function.
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multipoint approach, the best scoring candidates
will probably lead to cluster points in a specific
area with no diversity and hamper the surrogate
adaptation. To overcome this issue, the following
procedure is followed. The Vt vector is ranked
according to the score represented by the value
of the v function. If npar = 1, the highest scoring

candidate xh = arg maxxi∈Xt
v xi, f̂ xi , Xn, FXn

is
selected; if npar > 1 and a multipoint selection is
requested, the highest scoring candidate xh is again
selected and included in the batch selection set
Xh = xh . The scores of the remaining npar − 1

are reweighted according to the distance penaliza-
tion introduced by Maljovec et al. [40]. For xi ∈
Xt \ Xh, the distance from the nearest training
sample x∗i is d xi, x∗i ; the mean value of those dis-
tances over Xt \ Xh is

d0 =
1

nt − nh
〠
nt=nh

i=1
d xi, x∗i , 36

where nh is the dimension of the batch selection
set (equal to 1 at this point). A reweighted score
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Figure 11: Boxplot of Δf for the Schwefel test function.
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function v∗ is then assigned to each test sample xi
and defined by using a penalization term ρ:

v∗ = vρ
ρ = 1, if d xi, x∗i > d0,
ρ = 1 5d xi, x∗i − 0 5 ∗ d3 xi, x∗i , if d xi, x∗i ≤ d0

37

Finally, the new candidate is chosen by selecting
xh+1 = arg maxxi∈Xt\Xn

v∗ xi, f̂ xi , Xn, FXn
. The

batch selection set is now increased by the new sam-
ple Xh = xh, xh+1 . By repeating the reweighting
process and the highest score selection npar − 2 more
times, a set Xh = xh, xh+1,⋯, xh+npar−1 of npar new

candidates is obtained and passed to the parallel eval-
uation with the true model. Note that the new sam-
ples are selected by using the same surrogate
prediction f̂ and the same training set Xn, FXn

;
hence, the associated computational cost is negligible

(4) New candidate evaluation step: the parallel evalua-
tion of the candidates in Xh is performed and the cor-
responding set of response values FXh

is created

(5) Surrogate update step: the surrogate model is refitted
over the updated training set Xn ∪ Xh, FXn

∪ FXh
,

and the training set size is updated n = n + npar

(6) Check step: if the infill computational budget is not
over n < nadpt + napr , a new iteration is started by
going back to point (2); otherwise, the sequential
infill process is terminated

4.3. Sequential Metamodel Optimization. The last phase of
the surrogate optimization process is devoted to the

Table 3: Summary of optimization results. The best performance
for each case is highlighted in bold character.

Function d Surrogate Mean Δf min (st. deviation)

Ackley 2 rbf 0.116533 (0.0257383)

Ackley 2 krig-hp 1.00747 (1.61502)

Ackley 2 krig-all 0.8108 (0.218127)

Ackley 2 rbf-grd 2.02785 (2.10997)

Ackley 5 rbf 0.411399 (0.690997)

Ackley 5 krig-hp 7.45165 (2.22059)

Ackley 5 krig-all 4.56971 (0.730813)

Ackley 5 rbf-grd 4.61211 (3.76136)

Ackley 10 rbf 2.17479 (0.859483)

Ackley 10 krig-hp 10.1923 (2.88222)

Ackley 10 krig-all 9.77272 (1.38084)

Ackley 10 rbf-grd 8.51475 (6.56961)

Ackley 20 rbf 5.19498 (1.65741)

Ackley 20 krig-hp 9.9218 (1.70257)

Ackley 20 krig-all 10.8946 (1.60441)

Ackley 20 rbf-grd 14.507 (7.185)

Michalewicz 2 rbf 0.117523 (0.262639)

Michalewicz 2 krig-hp 3 01527e − 05 (2 02407e − 05)
Michalewicz 2 krig-all 4 53489e − 05 (3 15939e − 05)
Michalewicz 2 rbf-grd 0.718937 (0.731796)

Michalewicz 5 rbf 0.735592 (0.496583)

Michalewicz 5 krig-hp 0.0268443 (0.0163042)

Michalewicz 5 krig-all 0.0484547 (0.0593555)

Michalewicz 5 rbf-grd 2.24357 (0.243358)

Michalewicz 10 rbf 3.04617 (0.835715)

Michalewicz 10 krig-hp 0.0594693 (0.023635)

Michalewicz 10 krig-all 0.205087 (0.141132)

Michalewicz 10 rbf-grd 5.4596 (0.98433)

Michalewicz 20 rbf 9.48643 (1.54065)

Michalewicz 20 krig-hp 1.29464 (0.676393)

Michalewicz 20 krig-all 0.946973 (0.348265)

Michalewicz 20 rbf-grd 12.5354 (1.19365)

Rastrigin 2 rbf 1.94421 (1.41502)

Rastrigin 2 krig-hp 0.599841 (0.459052)

Rastrigin 2 krig-all 0.6528 (0.460209)

Rastrigin 2 rbf-grd 10.4104 (7.95429)

Rastrigin 5 rbf 10.615 (3.95991)

Rastrigin 5 krig-hp 2.64103 (0.490439)

Rastrigin 5 krig-all 1.54429 (1.11499)

Rastrigin 5 rbf-grd 34.425 (11.2453)

Rastrigin 10 rbf 12.9831 (4.36657)

Rastrigin 10 krig-hp 4.40714 (1.50647)

Rastrigin 10 krig-all 4.34432 (2.61069)

Rastrigin 10 rbf-grd 75.4175 (6.69515)

Rastrigin 20 rbf 53.2498 (64.2505)

Rastrigin 20 krig-hp 6.44738 (1.75453)

Rastrigin 20 krig-all 7.31605 (1.99999)

Rastrigin 20 rbf-grd 193.518 (68.0271)

Table 3: Continued.

Function d Surrogate Mean Δfmin (st. deviation)

Schwefel 2 rbf 90.8759 (92.1036)

Schwefel 2 krig-hp 0.212514 (0.206381)

Schwefel 2 krig-all 0.155094 (0.0721013)

Schwefel 2 rbf-grd 135.79 (180.733)

Schwefel 5 rbf 544.699 (318.065)

Schwefel 5 krig-hp 3.73618 (1.79745)

Schwefel 5 krig-all 7.2895 (1.91919)

Schwefel 5 rbf-grd 1114.49 (91.4709)

Schwefel 10 rbf 1367.87 (338.242)

Schwefel 10 krig-hp 3.04829 (0.975737)

Schwefel 10 krig-all 9.36727 (7.5394)

Schwefel 10 rbf-grd 2022.02 (500.381)

Schwefel 20 rbf 4549.91 (211.859)

Schwefel 20 krig-hp 73.7412 (24.4627)

Schwefel 20 krig-all 36.9454 (6.95312)

Schwefel 20 rbf-grd 3883.12 (511.637)
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Figure 12: Continued.
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exploitation of the effort spent so far in fitting an accurate
and improved metamodel. The training database of design
solutions is here enriched with nopt samples suggested by
many sequential optimizations on the metamodel: at the
end of each optimization, the best candidate is evaluated with
the high-fidelity model and appended to the database for a
new model fitting. This leads to the generation of a sequence
of suboptimal candidates which continuously improves the
objective function and approaches the design space region
where the “true” optimum resides. The iterative procedure
is structured as follows:

(1) Surrogate minimization step: given f̂ x the current
metamodel built over the training set Xn, FXn

, the
new suboptimal candidate is found by solving the
optimization problem xopt = arg minx f̂ x . The
optimizer may be chosen among a wide range of
options: the in-house genetic algorithm library
ADGLIB [41], the CMA-ES algorithm [42], or a com-
bination of global and local algorithms by the open-
source library NLopt. Typically, as the metamodel
evaluation is very quick, launching even the most
computationally demanding algorithm does not
represent an issue

(2) New candidate evaluation step: the new candidate
xopt is evaluated with the high-fidelity objective
function, and the value of f xopt is obtained

(3) Surrogate update step: the surrogate model is
refitted over the updated training set Xn ∪ xopt ,
FXn

∪ f xopt , and the training set size is
updated to n = n + 1

(4) Check step: if the computational budget allocated
for sequential optimization is not over n < nrun =
nadpt + napr + nopt , a new iteration is started by

going back to point (1); otherwise, the sequential
optimization process is terminated

5. Experiments with Analytical Test Functions

5.1. Experimental Setup. A numerical campaign has been set
up to experimentally test the optimization method. Despite
the fact that the method is naturally conceived to reduce
the computational load in engineering-based design cases,
in the present section, representative test functions for global
optimization are used to investigate the algorithm capabili-
ties and limits. A simple and practical application is pre-
sented in the next section. Performances are evaluated in
terms of Δf = f target − f opt, where f target is the known function
value at global optimum and f opt is the numerical optimum
function value found by the algorithm. Each run is launched
at fixed computational budget nrun which, in turn, is a
function of the design space dimension d. Recalling that
nrun is a sum of single-stage contributions, the relation
between nrun and d is given by nrun = napr + nadpt + nopt =
10d + 25d + 15d = 50d. This means that 50% of the total
computational budget is devoted to the adaptive explora-
tion: this is not surprising as goal-oriented infill criteria
are used in combination with error-driven infill criteria
to realize a high-level exploration-exploitation trade-off.
The test functions are described in the following sections.

5.1.1. Ackley Function. The Ackley function is defined as

f x = f x1,⋯, xd = −a exp −b
1
d
〠
d

i=1
x2i

− exp 1
d
〠
d

i=1
cos cxi + a + exp 1 ,

38
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Figure 12: Ackley function, progress of the Pearson correlation coefficient.
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where a = 20, b = 0 2, and c = 2π. It is characterized by a
nearly flat outer region, where many local minima are
located, and a large hole at the centre. The function is
continuous, nonconvex, multimodal, and scalable on the
d-dimensional space. The input domain is xi ∈ −13, 33
for all i = 1,⋯, d. The function has one global minimum
at f xtarget = 0 at xtarget = 0,⋯, 0 .

5.1.2. Michalewicz Function. The Michalewicz function is
defined as

f x = f x1,⋯, xd = −〠
d

i=1
sin xi sin2m ix2i

π
, 39

wherem = 10. The function is featured with alternating steep
valleys and ridges and has d local minima. The function is
continuous, nonconvex, multimodal, and scalable on the
d-dimensional space. The input domain is xi ∈ 0, π for
all i = 1,⋯, d. As the global minimum and its location
vary with the input dimension, Table 1 reports the corre-
sponding values for d = 2, 5, 10, 20 .

5.1.3. Rastrigin Function. The Rastrigin function is defined as

f x = f x1,⋯, xd = 10d + 〠
d

i=1
x2i − 10 cos 2πxi 40

The function is continuous, convex, and scalable on
the d-dimensional space, has several local minima, and
is highly multimodal. However, the locations of the min-
ima are regularly distributed. There is one global minimum
f xtarget = 0 at xtarget = 0,⋯, 0 . The function is evaluated
on the hypercube xi ∈ −5 12, 5 12 for all i = 1,⋯, d.

5.1.4. Schwefel Function. The Schwefel function is defined as

f x = f x1,⋯, xd = 418 9829d − 〠
d

i=1
xi sin xi 41

The function is continuous, nonconvex, multimodal,
and scalable on the d-dimensional space. Many local
minima are irregularly distributed in the input space,
and one global minimum is present. Moreover, with
respect to the global minimum, the nearest local minimum
in the objective space is the farthest in the input space. These
features make the Schwefel function very hard to solve by an
approximated approach. The function is evaluated in the
hypercube xi ∈ −500, 500 for all i = 1,⋯, d, and the global
minimum is f xtarget = 0 at xtarget = 420 9687,⋯, 420 9687 .

5.1.5. Details of Surrogate Models under Testing. Despite the
fact that the surrogate models are two (RBFN and Kriging
model), some differences may arise according to the method
chosen for training, i.e., for selecting good values for the
hyperparameters. Table 2 shows four types of surrogates that
have been used for testing purposes. The search for the
hyperparameters must have a global character as often the
associated cost function may have more than one extremum
and being trapped in a local minimum/maximum may sig-
nificantly impact the model accuracy. The hyperparameter
bounds are fixed as follows:

(i) For RBFN models: θ, λ ∈ 0 01rmin, 1 5rmax ×
10−5, 10 with rmin and rmax being the minimum
and maximum Euclidean distance, respectively,
between training samples

(ii) For Kriging models: θp, σk, λ ∈ 0 001rmean,
1000rmean

d × 10−5, 105 × 10−10, 10 , with rmean
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Figure 13: Michalewicz function, progress of the Pearson correlation coefficient.
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being the average Euclidean distance between
training samples

5.2. Results and Discussion. As the surrogate-based optimiza-
tion package discussed so far offers several choices, this
section is dedicated to the investigation of the effect of
selecting among the available alternatives. In particular, the
influence of the type of surrogate model, infill criteria,
and computational budget allocation will be studied and
discussed.

5.2.1. Influence of Surrogate Model Selection.Asmentioned in
Section 5.1.5, four types of surrogates can be trained accord-
ing to the mathematical nature (Gaussian or RBF) and
optimal hyperparameter selection. All models have under-
gone a first experimental campaign to underline differences
and draw up a ranking. The EI, EI-like, and WLOOE criteria
are activated with probabilities of 50%, 30%, and 20%,
respectively.

Figures 8–11 show the boxplot distribution of Δfmin over
5 repetitions for each surrogate and dimension. Outliers are
highlighted by grey-filled circles, and all repeated points are
plotted as small grey circles. The Gaussian-based models
clearly outperform in average the RBFN except for the Ackley
function. Table 3 reports a summary of optimization results,
highlighting in bold character the best performing model for
each case. By taking into account also the standard deviation
of Δfmin for ranking purposes, Gaussian-based approaches
seem to be more robust in that they offer better results with
less variability. For RBFN, optimizing the hyperparameters
instead of grid searching is by far the preferred approach.
For Kriging, there is no clear evidence about the best training
strategy as krig-hp and krig-all show similar performances
and trends.

In order to provide a more comprehensive insight into
the optimization data, Figures 12–15 depict the evolution of

the Pearson correlation coefficient R for all cases and rbf
and krig-hp models. In the present case, it is used to compute
the correlation between n samples of the “true” objective
function f i, i = 1,⋯, n and the leave-one-out prediction
by the surrogate f̂ −1, i = 1,⋯, n . It is defined as

R = nΣf i f̂ −i − Σf iΣ f̂ −i

nΣf 2i − Σf i 2 nΣ f̂ 2−i − Σ f̂ −i
2

42

Each plot does not start from zero because the first
training of the surrogate is done after those napr samples have
been computed. It can be observed that all simulations start
with low correlation between data and surrogate prediction.
This is much more evident for high-dimensional function
cases, where in some cases negative correlation is even found.
As a general consideration, all methods achieve to reach
very high correlation at the end of the optimization process,
but with different paths. In particular, Gaussian-based
approaches present a constant and continuous increase of R
throughout both the adaptive sampling phase and the
sequential optimization process. On the other hand, RBF
methods tend to stagnate during the infill phase while the
correlation gets better with the addition of the last nopt points.
This would seemingly suggest that infill criteria are not
effective in reducing the prediction error of RBF methods.
However, it should be also considered that trends are quite
the opposite if considering only the Ackley function; hence,
the test function characteristics play a major role. Hence, it
derives that a more extended suite of test functions should
be considered for further investigation.

5.2.2. Influence of the Infill Criterion. This section is devoted
to testing different infill criteria and combination of them
with the aim of assessing which infill solution is more capable
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Figure 14: Rastrigin function, progress of the Pearson correlation coefficient.
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Figure 15: Continued.
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Figure 15: Schwefel function, progress of the Pearson correlation coefficient.

Table 4: Infill strategies.

Strategy ID
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Criterion Activation probability

LC 1.0 — — — — — — — — — — — 0.3 0.5 — —

LOOE — 1.0 — — — — — — — — 0.3 — — — 0.5 —

WLOOE — — 1.0 — — — — — — — — 0.3 — — — —

WD — — — 1.0 — — — — — — — — — — 0.5 —

FMIN — — — — 1.0 — — — — — — — — — — 0.5

EIL — — — — — 1.0 — — — — — 0.7 0.7 — — —

EI — — — — — — 1.0 — — 0.7 0.7 — — 0.5 — —

EIGF — — — — — — — 1.0 — 0.3 — — — — — —

GEIGF — — — — — — — — 1.0 — — — — — — 0.5
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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Figure 16: Boxplot of Δf for the Schwefel function d = 5 with infill strategies defined in Table 4.

25International Journal of Aerospace Engineering



to provide an improved surrogate function from the opti-
mizer’s point of view. In order to ease the understanding of
the results, two models (krig-hp and rbf) and a single test
function (Schwefel function with d = 5) have been used. 16
infill strategies have been defined, and Table 4 summarizes
all of them. The first 9 strategies exploit each single criterion
without combination. On the other hand, the last 7 strategies
have been designed by coupling a factorization-based
criterion with an expected improvement-based one. 10 repe-
titions have been carried out for each infill strategy in order
to extract reliable mean values. The optimization setup is
identical to that in the previous section. Results are shown
in Figure 16 as boxplot distribution and reported in Table 5
in terms of mean and standard deviation of Δfmin (over 10
repetitions). By considering both mean values and outliers,
the best strategies are 3, 5, 6, 9, 10, and 11 for the Kriging
model and 0, 2, 6, 8, 9, and 13 for the RBFN model. Thus,
as a general consideration, Gaussian-based models benefit
from a blend of expected improvement-based criteria
(EI, EI-like, EIGF) and error-driven ones (mainly LOOE
and WLOOE). Conversely, RBFN models work well with
global fit-oriented criteria (EIGF, GEIGF, and LC) and
pure EI search.

5.2.3. Influence of the Computational Budget Allocation. In
this section, the influence of the optimization setup is inves-
tigated in terms of computational budget allocation to the
infill and sequential optimization phases, having fixed the
total budget nrun = 50d . Table 6 reports the base setup used
so far as setup no. 1, while setup no. 2 refers to the new one to
be studied. The main difference is found in a more extended
search with adaptive sampling to the detriment of the
optimization iterations which are reduced. On the other
hand, a more pronounced emphasis is put on infill criteria
(EI and EI-like) specifically devoted to global optimization
purposes. Results obtained with the new setup are depicted
in Figures 17–20. All test functions have been considered,
but only the best models (namely, krig-hp and rbf) from
previous investigations have been used. The pictures are the
analog of Figures 8–11 and must be compared with them in
order to draw conclusions. In particular, a general worsening
of the algorithm performance is highlighted by employing
the new setup. Table 7 shows the new results and compares
them with setup 1. The bold character is used to underline
improvements with respect to setup 1. Setup 2 is beneficial
in reducing the standard deviation in several cases and in
average offers meaningful improvement only for the Rastri-
gin function. This observation confirms that results may vary
significantly depending on the selection of the set of test
functions as well as on the methodology and setup.

6. Aerodynamic Shape Optimization Problem

In order to test the present approach in a real-world and
representative case, a benchmark problem has been
selected from those proposed within the AIAA Design
Optimization Discussion Group (ADODG), namely, the
RAE 2822 airfoil optimization case. This section proposes
a critical analysis of the results obtained and represents a

sort of prosecution of a previous work [31] which will be
taken here as a reference.

6.1. RAE 2822 Airfoil Shape Optimization. The shape optimi-
zation problem is formulated as a drag (total drag coefficient
Cd) reduction task while keeping the lift level (lift coefficient
Cl), trim control of the pitching moment coefficient Cm, and
minimum airfoil area constant. It reads as follows:

minimize
x

Cd x

subject to Cl x = Cl,base = 0 824
Cm x ≥ Cm,base = −0 092
A x ≥ Abase = 0 7787m2

43

Table 5: Summary of infill screening results. The best 5 results for
mean and standard deviation of Δfmin are highlighted in bold
character.

Model Strategy ID Mean (st. deviation) Ranking

krig-hp 0 37.3834 (44.7018) 15

krig-hp 1 43.2214 (36.1784) 16

krig-hp 2 4.92186 (3.8269) 6

krig-hp 3 3.9667 (2.58573) 4

krig-hp 4 9.0102 (6.11787) 11

krig-hp 5 3.12821 (3.71955) 2

krig-hp 6 3.9207 (2.72528) 3

krig-hp 7 33.8321 (47.1973) 14

krig-hp 8 16.6604 (9.96748) 13

krig-hp 9 4.71286 (3.38458) 5

krig-hp 10 2.86443 (1.84513) 1

krig-hp 11 5.21631 (2.96662) 7

krig-hp 12 5.5616 (3.78726) 8

krig-hp 13 7.32145 (7.05348) 10

krig-hp 14 5.70416 (4.13261) 9

krig-hp 15 15.937 (10.4347) 12

rbf 0 465.682 (285.574) 5

rbf 1 558.279 (253.342) 11

rbf 2 425.5 (245.187) 3

rbf 3 565.885 (297.147) 12

rbf 4 516.356 (270.008) 9

rbf 5 493.261 (253.584) 7

rbf 6 464.977 (295.829) 4

rbf 7 639.904 (289.831) 16

rbf 8 476.606 (186.693) 6

rbf 9 373.97 (175.277) 1

rbf 10 571.658 (161.376) 13

rbf 11 529.976 (174.897) 10

rbf 12 598.873 (198.174) 15

rbf 13 388.035 (249.365) 2

rbf 14 496.935 (165.558) 8

rbf 15 583.905 (298.24) 14
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where x is the generic design vector representing an airfoil
shape, A x is the total area enclosed by the airfoil, and
Abase is the corresponding value for the baseline RAE 2822
airfoil. The lift constraint is explicitly satisfied by performing
the flow simulation at fixed lift by varying the angle of attack.
The pitching moment and the geometric constraint are
treated by using a penalization approach; hence, the objective
function is defined as

f x = 1
Cd,0

Cd x + 0 2 max 0, Cm,base − Cm x

+ 0 1 max 0, Cl,base − Cl x +max 0, Abase − A x ,
44

with Cd,0 being the drag coefficient of the RAE 2822 air-
foil. According to this position, the baseline airfoil has a
unit objective function value f xRAE = 1 , while feasible
design solutions “better” than the baseline shape will be
rewarded with f x < 1. A unit airfoil chord is assumed,

the pitching moment is evaluated at the quarter-chord,
the Mach number is 0.734, and the Reynolds number is
6 5 × 106.

6.1.1. Parameterization. In the reference paper [31], the
Class-Shape Transformation (CST) by Kulfan [43] was
used to make the RAE 2822 shape parametric using 14
design variables. In the present work, the open-source
SU2 code capabilities [44–46] are exploited and the FFD
(free-form deformation) approach is used to arbitrarily
change the geometry and, consequently, the volume mesh.
In particular, 20 FFD control points (CPs) are defined
around the RAE 2822 airfoil, as depicted in Figure 21,
and the vertical displacements of the control points are
employed as design variables. The two CPs on the leading
edge and on the trailing edge are constrained to have the
same displacement, so the total number of design variables
is reduced to 18.

6.1.2. Optimization Studies. Three optimization studies
have already been performed employing different methods

Table 6: Optimization setup.

Setup ID napr nadpt npar nopt Criteria (% act. prob.)

1 10d 25d (d) 15d EI (50%) + EI-like (30%) +WLOOE (20%)

2 10d 35d (2d) 5d EI (30%) + EI-like (70%)
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Figure 17: Boxplot of Δf for the Ackley test function with setup 2.
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Figure 18: Boxplot of Δf for the Michalewicz test function with setup 2.
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Figure 19: Boxplot of Δf for the Rastrigin test function with setup 2.
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and computational loads [31]. Details are reported in
Table 8, together with information about the present
optimization studies. In all cases, RANS simulations are
launched to evaluate the objective function when high
fidelity is required, e.g., to validate the samples suggested
by infill criteria or by optimizing on the surrogate. Prac-
tically, the CFD approach is different: reference cases
employed the in-house multiblock structured ZEN code
[47], the k − ω TNT turbulence model, and a fine mesh
selected after a detailed mesh convergence analysis; as
already mentioned, new cases take advantage of the
unstructured SU2 suite running with the Spalart–Allmaras
turbulence model on a coarser mesh. Hence, any com-
parison between cases should take into account such
differences.

SBOSA (Surrogate Based Optimization with Sequential
Adaptation) was similar to the present one, but considered
a lower dimensional space (14 instead of 18 design vari-
ables, CST parameterization instead of FFD) and a surro-
gate model based on proper orthogonal decomposition
(POD) and RBF interpolation of coefficients. EGO (Effi-
cient Global Optimization) refers to the classical Kriging-
based approach made popular by Jones et al. [1] and
implemented within the Dakota package [48]. PGA (Plain
Genetic Algorithm) consisted in a pure, intensive evolu-
tionary optimization where no surrogate model was used
and all evaluations were performed by using the high-
fidelity CFD approach. Here, two further approaches are

added for benchmarking: SU2AO and SU2SBO. SU2AO
uses the adjoint gradient-based optimization method
embedded within the SU2 code which includes the flow
solution, continuous adjoint flow solution, geometry mod-
ification, mesh deformation, and gradient optimization
(SLSQP method). SU2SBO, instead, involves the presented
surrogate-based approach and the SU2 tools for flow solu-
tion, airfoil shape modification, and mesh deformation.
Table 9 reports the setup used for this simulation which
reflects the experimental knowledge gained with the test
functions in the previous sections.

As for Table 8, the number of CFD evaluations needed by
the SU2AO approach comprises the calls to the adjoint flow
solver (one for each objective/constraint, 3 in total according
to the problem statement in Section 6.1), as each additional
adjoint evaluation has approximately the same cost of a
single CFD solution. However, the number of gradient
evaluations (and, hence, the calls to the adjoint flow solver)
is smaller than CFD ones (30 out of 70) as the gradient vector
is not updated at each iteration.

Figure 22 shows the progress of the minimum value
of the objective function found through the sequential
optimizations SU2SBO and SU2AO. A log scale for the
x-axis is used to make the picture clearer. The local
approach (SU2AO) is much faster to reach feasible and
optimal regions of the design space; indeed, the objective
function drops down to approximately 30% with respect
to the baseline after only 30 design cycles. The global
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Figure 20: Boxplot of Δf for the Schwefel test function with setup 2.
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approach (SU2SBO) takes more CFD effort to accurately
train the surrogate model: after the initial design space
sampling by LHS (180 samples), the objective function
has been decreased to just 8%. From that point on, the
global approximation starts to predict the objective func-
tion landscape and the adaptive sampling provides new
insight into unknown regions: their combined effect causes
a significant performance improvement at around 300

design solutions. The last 100 solutions are sequentially
introduced in the database by optimizing the surrogate
with an in-house genetic algorithm [41]. A further drop
is observable in the very last stages which pushes the
obtained performance beyond the SU2AO best result.

Figure 23 depicts a geometric and aerodynamic com-
parison of baseline and optimized airfoil shapes. The
shock wave intensity reduction and the consequent
improvement of the boundary layer behaviour past the
flow discontinuity are highlighted by the redesign of the
front airfoil region (to increase the flow expansion peak)
of the whole pressure side (to recover lift and pitching
moment) and of the rear part of the suction side (to con-
trol the shock). Similar results have been found in the
reference paper. Figure 24 depicts the Mach number con-
tour map and shows how the supersonic region has been
greatly reduced and moved upstream. Finally, Table 10

Table 7: Summary of optimization results with setup 2. The best performance for each case is highlighted in bold character.

Function d Surrogate Mean Δfmin (st. deviation) Δ wrt setup 1

Ackley 2 rbf 0.249896 (0.241126) 0.133363 (0.215388)

Ackley 2 krig-hp 1.32697 (0.848681) 0.3195 (-0.766339)

Ackley 5 rbf 0.492401 (0.492681) 0.081002 (-0.198316)

Ackley 5 krig-hp 7.81666 (1.68073) 0.36501 (-0.53986)

Ackley 10 rbf 4.78755 (1.44069) 2.61276 (0.581207)

Ackley 10 krig-hp 12.3338 (1.11724) 2.1415 (-1.76498)

Ackley 20 rbf 4.96913 (0.991267) -0.22585 (-0.666143)

Ackley 20 krig-hp 11.4171 (0.906291) 1.4953 (-0.796279)

Michalewicz 2 rbf 0.00722741 (0.015901) -0.110296 (-0.246738)

Michalewicz 2 krig-hp 0.000340437 (0.000231793) 0.000310284 (0.000211552)

Michalewicz 5 rbf 1.21836 (0.74276) 0.482768 (0.246177)

Michalewicz 5 krig-hp 0.0229353 (0.0157477) -0.003909 (-0.0005565)

Michalewicz 10 rbf 4.89782 (1.46853) 1.85165 (0.632815)

Michalewicz 10 krig-hp 0.121063 (0.0631468) 0.0615937 (0.0395118)

Michalewicz 20 rbf 11.4368 (1.0426) 1.95037 (-0.49805)

Michalewicz 20 krig-hp 1.44886 (0.467794) 0.15422 (-0.208599)

Rastrigin 2 rbf 1.58798 (1.34542) -0.35623 (-0.0696)

Rastrigin 2 krig-hp 0.346518 (0.490664) -0.253323 (0.031612)

Rastrigin 5 rbf 16.5176 (5.89206) 5.9026 (1.93215)

Rastrigin 5 krig-hp 2.45519 (0.672031) -0.18584 (0.181592)

Rastrigin 10 rbf 24.3131 (7.10916) 11.33 (2.74259)

Rastrigin 10 krig-hp 4.15407 (1.95796) -0.25307 (0.45149)

Rastrigin 20 rbf 52.845 (21.9848) -0.4048 (-42.2657)

Rastrigin 20 krig-hp 11.0539 (2.19551) 4.60652 (0.44098)

Schwefel 2 rbf 47.4495 (64.8173) -43.4264 (-27.2863)

Schwefel 2 krig-hp 0.194305 (0.0612316) -0.018209 (-0.145149)

Schwefel 5 rbf 584.147 (221.872) 39.448 (-96.193)

Schwefel 5 krig-hp 4.19794 (2.67233) 0.46176 (0.87488)

Schwefel 10 rbf 1907.19 (388.003) 539.32 (49.761)

Schwefel 10 krig-hp 8.52275 (2.52773) 5.47446 (1.55199)

Schwefel 20 rbf 5006.46 (374.814) 456.55 (162.955)

Schwefel 20 krig-hp 162.681 (106.106) 88.9398 (81.6433)

Figure 21: FFD control point definition.
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provides quantitative figures about the optimal solutions
from the reference paper and present simulations. The
baseline airfoil drag coefficients obtained with both ZEN
and SU2 codes have been reported as they represent the
reference performance for corresponding cases: indeed,
the percentage ΔCd change is also shown in the
rightmost column. The present results are fully in line
with previous studies as the optimized airfoils satisfy all
constraints and feature drag reductions of the order of
35%–40% with respect to the baseline shape.

7. Conclusions

A framework for surrogate-assisted optimization has been
presented, featuring design exploration, adaptive sampling,
and sequential global search. A series of infill criteria have
been proposed to adaptively choose new points to be added
to the surrogate database: most of them pursue the
exploration-exploitation balance and are aimed at provid-
ing an improved version of the surrogate to the final opti-
mization stage. A new feature has been added which
allows triggering several criteria during the sampling phase
according to activation probabilities. Gaussian-based and
radial basis function network models are used as surrogates
of the objective function. Two experimental test campaigns
have been performed: the first has involved analytic test
functions with multidimensional and scalable character in
order to quickly analyze the performance of the method
and the second campaign is a prosecution of a previous
work as it deals with the aerodynamic shape optimization
of an airfoil profile in transonic viscous flow conditions.
The open-source SU2 package has been exploited in most
of its functionalities related to aerodesign. Results have
been compared to the reference and to an adjoint
gradient-based optimization. The work confirmed that
approximate solutions, close to the global optima, can be
found with the proposed surrogate-assisted optimization.
Simulations with test functions highlighted that the proper
combination of surrogate and infill criteria can be quite
sensible to the function type and suggested that, by having
multiple surrogates and criteria available, probably the best
option is to exploit them in an ensemble approach. This
will be the main topic of a future research study. Concern-
ing the aeroshape optimization case, the achievements are
in line with previous investigations as all the basic (geomet-
ric and aerodynamic) features of the optimal shape have
been captured by the present approach. In the context of
global and real-world optimization, the adoption of surro-
gate models is essential to reduce the computational bur-
den. The proposed example clearly indicates the benefits
associated with their usage in terms of cost/performance
trade-off. Further application will deal with more complex
cases, e.g., three-dimensional benchmark problems defined
within the AIAA Aerodynamic Design Optimization Dis-
cussion Group and interference drag reduction of wing/
pylon/nacelle configuration.

Table 8: Summary of optimization studies for the RAE 2822 case.

Run ID
Reference [31] Present

SBOSA EGO PGA SU2AO SU2SBO

Opt. method SBO EGO GA Adjoint gradient-based SBO

CFD code ZEN SU2

Parameterization CST FFD

Design parameters 14 18

Fitness eval. POD Kriging CFD CFD Kriging

Total CFD eval. 300 224 6400 160 = 70 CFD + 3∗30 (adjoint) 660

Table 9: SU2SBO optimization setup.

napr nadpt npar nopt Criteria (% act. prob.)

180 480 (36) 100 EI (30%) + EI-like (70%)
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Figure 22: History of minimum objective function values for
SU2SBO and SU2AO optimizations.
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