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In a bid to take advantage of natural characteristics of the proportional navigation guidance (PNG) in practical engineering, the
PNG-based impact time control guidance (ITCG) continues to be a popular alternative for achieving the desired impact time of
a missile. For most such ITCG, the performance is dependent on the accuracy of the time-to-go estimation. Along the lines of
the development of PNG-based ITCG in earlier studies, a nonsingular ITCG is proposed on the basis of nonlinear formulations.
It is demonstrated that, by theoretical analysis and numerical simulation, this proposed ITCG is shown to be advantageous in
certain circumstances. By deriving a novel additional acceleration command, the proposed law is of lower dependence on time-
to-go estimate and is capable of eliminating some singularities, leading to wider adjustable range of the desired impact time and
better adaptability to more conditions. This research is expected to be supplementary to those presented in the current research
literature.

1. Introduction

In recent years, the impact time control guidance (ITCG) law
has been widely studied to meet various requirements of
modern battlefield missions and tasks. Because the ITCG
enables a missile or a group of missiles, to hit the target at a
desired impact time, this guidance law can be used to address
the issues associated with salvo attack and cooperative attack.
The first appearance of the ITCG was in [1], where the
authors successfully derived a linear-formulation-based
closed form solution comprising the proportional navigation
guidance (PNG) law and the feedback of the impact time
error. Since then, a raft of ITCG laws in various forms have
been developed.

Moreover [1], a number of ITCG laws presented in the
current research literature [2–17] are also dependent on the
time-to-go estimation, although they may be designed based
on different theories or techniques. For instance, the studies
presented in [1–10] were performed in terms of the principle
of PNG, among which several widely used formulas for esti-
mating the time-to-go are also derived in the framework of

PNG. A sliding-mode-based ITCG law was derived in [11]
with a simple time-to-go estimate that uses the range divided
by the closing speed. Three specific ITCG laws based on
sliding mode technique were proposed in [12–14], using
the same time-to-go approximation proposed in [2]. The
Lyapunov-based ITCG law as presented in [15] uses the
time-to-go formula derived in [1]. The concept of polyno-
mial trajectory guidance was developed in [16, 17] to
address the impact time control. In [16], the time-to-go
was obtained by solving the nonlinear equations of motion
for missiles, while Ref. [17] presents an improved calcula-
tion of time-to-go via deriving a closed-form solution of
arc length. It has been demonstrated by the results of the
above studies that the performance of the ITCG that
requires time-to-go is significantly affected by the accuracy
of the time-to-go estimation.

To avoid considerable effort to time-to-go, the ITCG law
without using time-to-go has been developed in recent stud-
ies [18–31]. Tekin et al. [18–22] proposed a series of notable
guidance laws under various conditions using polynomial
shaping of the look angle and range and the feedback
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linearization technique. Gutman [23] discussed a novel guid-
ance law for impact time control using the concept of the
zero-effort miss vector. Saleem and Ratnoo [24] derived a
closed-form expression for the impact time and then
achieved the desired impact time. In [25], an ITCG law in
the form of PNG was proposed by calculating the time-
varying navigation gain instead of estimating time-to-go.
Several sliding-mode-control-based ITCG laws that do not
involve time-to-go were designed in [26–28]. A Lyapunov-
based ITCG with an exact solution for impact time instead
of time-to-go estimate was proposed in [29]. The optimal
control theory can also be used to achieve the impact time
control without using time-to-go estimation, as presented
in [30, 31].

It can be seen from the aforementioned references that
most proportional-navigation-based ITCG laws require the
time-to-go estimation and the time-to-go estimation derived
in the framework of PNG can also be incorporated into the
ITCG law that depends on other theories or techniques
rather than PNG. For the proportional-navigation-based
ITCG laws, because these guidance laws closely approach
the PNG as the impact time error goes to zero, the trajectory
eventually evolves into a PNG trajectory regardless of the
design method. From information requirement perspective,
the ITCG law that does not involve time-to-go estimation
seems to be superior over that needs time-to-go since it
eliminates the effect of time-to-go estimation error on the
guidance performance. From practical point of view, to
make use of excellent characteristics of PNG that has already
been widely validated in practical engineering over the past
several decades, the proportional-navigation-based ITCG
law is worthy of being developed in certain aspects such as
how to reduce its dependence on the accuracy of the time-
to-go estimation.

The main motivation for the results of this paper came
from [6], where the authors derived a novel ITCG with gen-
eralized proportional navigation based on nonlinear formu-
lations and provided a quite accurate higher-order time-to-
go estimate having significant effect on the ITCG perfor-
mance. As stated in [6], despite its rigorous form and effec-
tiveness, the ITCG of [6] still has an operational limitation
in that the desired impact time must be larger than the
impact time of the PNG trajectory. This effort reported here
is along the lines of the study on ITCG in [6] and develops
a nonsingular proportional-navigation-based ITCG with
lower dependence on the time-to-go estimation. The pro-
posed ITCG allows the desired impact time to be larger or
smaller than the impact time of the PNG trajectory and is
capable of eliminating the singularity driven by inaccurate
time-to-go estimate, resulting in broader controllable range
of desired impact time and augmented adaptability to more
conditions. In addition, this study shows that by using a
switching logic pertinent to the additional acceleration
command, the proposed ITCG can address the field-of-
view constraint efficiently and still be effective for some
extreme conditions.

The organization of this paper is as follows. In Section 2,
a brief description of this problem is given. Section 3 covers
the derivation of the nonsingular proportional-navigation-

based ITCG law with the seeker’s field-of-view limit in
detail. Significant characteristics of the presented ITCG such
as the convergence, the dependence on time-to-go estimate,
and the controllable range of the desired impact time are
theoretically analyzed in Section 4. A numerical simulation
study is presented in Section 5, and Section 6 presents con-
cluding remarks.

2. Problem Statement

The problem studied in this paper is parallel to that presented
elsewhere [6]. For the sake of completeness, this section is
aimed at introducing the necessary notations and equations
used in the subsequent sections. We consider a two-
dimensional missile-target engagement scenario for a sta-
tionary target with the seeker’s field-of-view constraint,
which means that this problem can be described as a scalar
system. In the interest of convenience, it is assumed that
the speed of the missile V is constant and the autopilot lag
is neglected. The engagement geometry is shown in
Figure 1, where R is the distance between the missile and
the target; γ and θ represent the flight path angle and the
line-of-sight angle, respectively; ϕ, ϕ0, and ϕmax denote the
heading error, the initial heading error, and the boundary
of the field-of-view angle, respectively; am represents the
acceleration command, and the coordinate ðx, yÞ can be used
to describe the trajectory of the missile.

The governing differential equations are expressed as
follows:

_R = −V cos ϕ, ð1Þ

_θ = −
V sin ϕ

R
, ð2Þ

_γ = am
V

, ð3Þ

ϕ = γ − θ, ð4Þ
where the dot over the variant denotes the first derivative
with respect to the time t.

Like in [6], the total acceleration command am consists of
two parts, i.e.,

am = ab + aξ, ð5Þ

where ab is a feedback acceleration command that is used to
minimize the missed distance as much as possible and aξ is
an additional acceleration command that is responsible for
controlling the impact time.

The heading error rate can be written as follows:

_ϕ = _γ − _θ = ab + aξ
V

+ V sin ϕ

R
: ð6Þ

To accomplish the engagement, the heading error must
satisfy the condition jϕj ≤ ϕmax over the total trajectory.
For convenience, it is assumed that jϕmaxj < π and ϕmax ≠ ±
π/2. By using Equations (1), (2), (3), (4), (5) and (6) and

2 International Journal of Aerospace Engineering



introducing a variable η = sin ϕ, the following Equations
(7) and (8) can be obtained:

dη
dR

+ η

R
= −

ab + aξ
V2 , η ∈ −1, 1ð Þ: ð7Þ

The boundary condition of Equation (7) is ηðR0Þ =
η0 = sin ϕ0 and ηð0Þ = ηf = 0, where R0 is the initial distance
between the missile and the target. Note that the subscripts
“0” and “f ” denote the initial and final states, respectively.

dt
dR

= −
1

V
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p : ð8Þ

The boundary condition of (8) is tðR0Þ = 0 and tðRf Þ = t f ,
where Rf is the final distance between the missile and the
target and t f is the desired impact time.

Therefore, the total acceleration command ðab + aξÞ
depending on nonlinear Equations (7) and (8) is the desired
command that can effectively control the impact time of
the missile.

3. Derivation of Impact Time Control
Guidance Law

The derivation of the proposed ITCG starts from transform-
ing the problem of solving nonlinear Equations (7) and (8)
into an optimal control problem, which is parallel to the
approach used in [6]. For completeness, this section intends
to briefly restate the derivation which is similar to [6] and
focus on the finally obtained results which differ from that
of [6] in essence.

Assumed that the additional command aξ is constant, the
control effort to be minimized subject to Equation (7) can be
chosen as follows:

J = 1
2

ðR0

0

ab
2

Rm dR, ð9Þ

where m is an integer.
To solve the optimal control problem comprising

Equations (7) and (9), a Hamilton function H is constructed
as follows:

H = ab
2

2Rm + λη −
ab + aξ
V2 −

η

R

� �
, ð10Þ

where λη is a Lagrange multiplier to be determined.
According to the minimum principle in the optimal con-

trol theory, it yields

dλη
dR

= −
∂H
∂η

=
λη
R
, ð11Þ

∂H
∂ab

= ab
Rm −

λη
V2 = 0: ð12Þ

Combining Equations (11) and (12) with Equation (7)
and then performing a series of algebraic operations with
the boundary conditions ηf = 0 and Rf = 0, the mathematical
relation between ab and aξ is obtained as follows:

ab = −N
η

R
V2 −

N
2 aξ, ð13Þ

where the constant N is defined as N = 3 +m and m>−1.
Obviously, this equation becomes the PNG as aξ converges
to zero.

Substituting Equation (13) into Equations (7) and (8) and
integrating, a quadratic equation with respect to the addi-
tional command aξ can be obtained as follows:

−
N − 2ð Þ2R3

12 N + 1ð Þ 2N − 1ð Þ
aξ
V2

� �2
+ N − 2ð ÞR2η

2 N + 1ð Þ 2N − 1ð Þ
aξ
V2

� �
+ ξT = 0,

ð14Þ

where the impact time error is denoted as ξT = t f d − tgoPN , in
which tgoPN and t f d represent the estimated time-to-go and
the real time-to-go, respectively.

By solving the quadratic Equation (14) directly and
making some corrections, a novel closed form solution is
given as follows:

aξ =
3V2

N − 2
η

R
− h ξTð Þ

⋅ δ ηð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3V2

N − 2 ⋅
η

R

� �2
+ 12 N + 1ð Þ 2N − 1ð ÞV5

N − 2ð Þ2R3 ⋅ ξTj j
s

,

ð15Þ

where δð⋅Þ is a sign function defined as follows:

δ zð Þ =
+1, z > 0,
±1, z = 0,
−1, z < 0,

8>><
>>: ð16Þ

θ

V

x

y

R
am

V

V

Target

Missile

𝜙max

𝜙0

𝜙max𝜙

𝜙

𝛾

Figure 1: Engagement geometry for stationary target with field-of-
view constraint.
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hð⋅Þ is also a sign function defined as follows:

h zð Þ =
+1, z ≥ 0,
−1, z < 0:

(
ð17Þ

It can be seen from Equation (15) that both the cases
ξT ≥ 0 and ξT < 0 are considered in the above closed form
solution, which differs from [6]. Note that when z = 0, either
+1 or -1 can be chosen as the value of δð0Þ. The introduction
of δð⋅Þ is to prevent the second term in the right hand side of
Equation (15) from being eliminated. Moreover, the adding
of the sign function hð⋅Þ can, to some extent, reduce the
effect of time-to-go estimate on the guidance performance.

Combination of Equations (2), (13), and (15) yields

am =NV _θ + 3
2V

_θ + h ξTð Þδ sin ϕð Þ
2
4

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2V

_θ

� �2
+ 3 N + 1ð Þ 2N − 1ð ÞV5

R3 ⋅ ξTj j
s 3

5:
ð18Þ

Equation (18) is the specific acceleration command of the
proposed ITCG in this paper. It is shown in its expression
that because the term jξT j instead of ξT is used, the following
inequality

ξTj j ≥ −
3 sin ϕ2R

4 N + 1ð Þ 2N − 1ð ÞV , ð19Þ

always holds regardless of the sign of ξT . Therefore, Equation
(14) always has real number solutions during the guidance
process.

However, it should be noted that only the use of jξT j can-
not guarantee the effectiveness of the proposed ITCG in the
case of ξT < 0. The sign function hð⋅Þ also plays an extremely
important role in making the proposed ITCG differ from the
ITCG of [6] in essence, which will be analyzed subsequently.

As already mentioned previously, the ITCG law
becomes PNG when the additional acceleration aξ is invalid,
while a nonzero additional acceleration command generates
a neighboring path perturbed with respect to the base tra-
jectory generated by PNG. The combination of Equations
(7) and (13) gives

η = η0 ⋅
R
R0

� �N−1
+ aξR0 ⋅ g

R
R0

� �
, ð20Þ

where gð⋅Þ represents a shaping function of the trajectory,
defined as follows:

g
R
R0

� �
= R

2V2R0

R
R0

� �N−2
− 1

" #
: ð21Þ

Since the acceleration command aξ can be considered as
a proportional factor multiplied to gð⋅Þ, as shown in Equa-

tion (20), the perturbed shaping trajectory (i.e., the result
of impact time control), to a large extent, relies on the value
of aξ. To perform analysis, we remove the sign function hð⋅Þ
from Equation (18) and replace jξT j by ξT , obtaining the
same expression as that of [6]. And then by using Equations
(2) and (6), the heading error rate can be written as follows:

_ϕ = −
N − 1ð ÞV sin ϕ

R
+ −

3V sin ϕ

2R + δ sin ϕð Þ
2
4

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
3V sin ϕ

2R

� �2
+ 3 N + 1ð Þ 2N − 1ð ÞV3

R3 ⋅ ξT

s 3
5:
ð22Þ

For the case ξT > 0, according to Equation (22) with the
consideration of ϕ ∈ ð0, πÞ, it yields

_ϕ > −
N − 1ð ÞV sin ϕ

R
= N − 1ð ÞV _θ: ð23Þ

On the other hand, considering ϕ ∈ ð−π, 0Þ, it gives

_ϕ < −
N − 1ð ÞV sin ϕ

R
= N − 1ð ÞV _θ: ð24Þ

We can see from Inequalities (23) and (24) that for the
case ξT > 0, the perturbed trajectory is longer than that of
PNG. In contrast, in the case of ξT < 0, the perturbed trajec-
tory should be shorter than that of PNG. Obviously, the
result of replacing ξT (i.e., ξT < 0) with jξT j is equivalent
to the case of ξT > 0, making Inequalities (23) and (24) still
hold, which implies that the perturbed shaping trajectory
that corresponds to the case ξT < 0 cannot be achieved.
Therefore, using the term jξT j instead of ξT can only avoid
the appearance of the complex command, which is the
essential reason for the limitation of ITCG of [6] in the case
of ξT < 0.

On the contrary, by introducing the function hð⋅Þ, the
ITCG law proposed in this paper is effective for both cases
ξT > 0 and ξT < 0. According to Equation (18), the heading
error rate can be expressed as follows:

_ϕ = −
N − 1ð ÞV sin ϕ

R
+ −

3V sin ϕ

2R + h ξTð Þδ sin ϕð Þ
2
4

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
3V sin ϕ

2R

� �2
+ 3 N + 1ð Þ 2N − 1ð ÞV3

R3 ⋅ ξTj j
s 3

5:
ð25Þ

For the case ξT < 0, considering ϕ ∈ ð0, πÞ, it yields

_ϕ < −
N − 1ð ÞV sin ϕ

R
−
3V sin ϕ

R
= N + 2ð ÞV _θ: ð26Þ
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For the case ξT < 0, assuming ϕ ∈ ð−π, 0Þ, it gives

_ϕ > −
N − 1ð ÞV sin ϕ

R
−
3V sin ϕ

R
= N + 2ð ÞV _θ: ð27Þ

It can be easily found from Inequalities (26) and (27) that
the perturbed trajectory driven by Equation (18) is shorter
than that induced by PNG, which corresponds to the require-
ment of the case ξT < 0. For the case ξT > 0, the performance
of Equation (18) is as effective as that of [6].

In practical engineering, the seeker’s target look angle can
usually be considered as the heading error as long as the angle
of attack of the missile is sufficiently small over the trajectory,
which implies that the constraint on the look angle can be
treated as the constraint on the heading error. Due to the lim-
itation of the seeker’s field-of-view, the heading error should
satisfy the condition ϕ ∈ ½−ϕmax, ϕmax� during the engagement
(i.e., t ∈ ½0, t f �). In this paper, a logic that switches the addi-
tional acceleration commands when once the heading error
exceeds the boundary is proposed. As a result, Equation
(18) can be revised as follows:

am =NV _θ + s ϕmax − ϕj jð Þ 3
2V

_θ + h ξTð Þδ sin ϕð Þ
2
4

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2V

_θ

� �2
+ 3 N + 1ð Þ 2N − 1ð ÞV5

R3 ⋅ ξTj j
s 3

5,
ð28Þ

where sð⋅Þ is the switching logic function which is chosen
as follows:

s zð Þ = 2 1
1 + e−αz

−
1
2

� �
, z ≥ 0,

0, z < 0,

8><
>: ð29Þ

in which α is a positive constant (i.e., here we set α = 20).
Note that this switching logic function is used to make the
switching process smoother for practical applications. Due
to the continuous variation of ξT and sin ϕ during the guid-
ance process, it is unnecessary to smooth hð⋅Þ and δð⋅Þ using
some certain logic functions.

4. Theoretical Analysis

In this section, theoretical analysis of the performance for the
proposed ITCG will be preliminarily conducted, including
the convergence of this guidance law, the dependence on
time-to-go estimation, and the controllable range of the
desired impact time, which is considered as the supplement
to the preceding derivation.

4.1. Convergence. To explore the convergence of the pro-
posed ITCG law with seeker’s field-of-view constraint, we
assume that the initial heading error satisfies ϕ0 ≤ ϕmax and
then construct a candidate Lyapunov function as follows:

VL ϕð Þ = 1
2 ϕ

2: ð30Þ

Differentiating Equation (30) with respect to time t,
it yields

_VL ϕð Þ = ϕ ⋅ _ϕ = ϕ
am
V

+ V sin ϕ

R

� �
: ð31Þ

Note that from physical perspective, the value of R is cer-
tainly positive during the guidance process, thus the dynam-
ics on R has no effect on the convergence analysis.

Substitution of Equations (2) and (28) into Equation (31)
gives

_VL ϕð Þ = − N − 1ð ÞVϕ sin ϕ

R
+ ϕs ϕmax − ϕj jð Þ

� −
3V sin ϕ

2R + h ξTð Þδ sin ϕð Þ
2
4

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
3V sin ϕ

2R

� �2
+ V

R

� �3
3 N + 1ð Þ 2N − 1ð Þ ξTj j

s 3
5:

ð32Þ

Evidently, for the case ξT < 0, _VLðϕÞ < 0 always holds
because ϕ ⋅ δðsin ϕÞ ≥ 0 and hðξTÞ < 0. For the special case
ξT = 0, the proposed ITCG law evolves into PNG, making
_VLðϕÞ < 0 hold all the time. Thus, for the case ξT ≤ 0, _VLðϕÞ
is always negative definite and, as a result, the value of jϕj
decreasesmonotonically during the guidance process. Accord-
ing to the condition ϕ0 ≤ ϕmax, it is obvious that the proposed
ITCG law is able to deal with the filed-of-view constraint.

For the case ξT > 0, the situation _VLðϕÞ > 0 is likely to
occur at initial stage, making the value of jϕj increases. As
already mentioned, _VLðϕÞ is presented as a function of
the heading error ϕ. When we assume jϕj = ϕmax, the fol-
lowing expression

_VL ϕð Þ ϕj j=ϕmax

��� = − N − 1ð ÞVϕmax sin ϕmax
R

< 0, ð33Þ

can be obtained, which indicates that _VLðϕÞ is negative
definite near the boundary of the seeker’s field-of-view.
Note that because _VLðϕÞ is continuous with respect to ϕ
and _VLðϕmaxÞ < 0, there exists a certain positive constant
μ that can make _VLðϕmax − μÞ = 0 hold. Under this cir-
cumstance, the acceleration command turns to am =V _θ,
which implies that the value of jϕj cannot exceed ϕmax
over the engagement (i.e., t ∈ ½0, t f �) provided that the ini-
tial heading error is smaller than the boundary value (i.e.,
ϕ0 ≤ ϕmax). If and only if ϕ0 = ϕmax, the value of jϕj can
reach the level of ϕmax. Therefore, the presented ITCG
law is capable of controlling the impact time of the mis-
sile under the field-of-view constraint.
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Furthermore, it can be found from Equations (28) and
(29) that even if the initial heading error is greater than the
boundary value (i.e., ϕ0 > ϕmax), _VLðϕÞ < 0 still holds and
the proposed ITCG law turns into PNG, which implies that
the heading error of the missile will decrease to the boundary
within a certain period prior to implementing the impact
time control. In this sense, it allows the presented ITCG law
to adapt itself to some extreme conditions.

4.2. Dependence on Time-to-Go Estimation. As mentioned in
the preceding sections, the additional acceleration command
aξ is expressed as a function of the impact time error that
depends on the time-to-go estimation. For the proportional-
navigation-based ITCG law, an inaccurate time-to-go leads
to an inaccurate neighboring path perturbed with respect to
the base trajectory generated by PNG. Even if the impact time
error is greater than zero (i.e., ξT > 0) at the beginning of the
flight, the practical trajectory will deviate and never come
back to the desired trajectory due to a time-to-go estimation
without sufficient accuracy. Meanwhile, the impact time
error tends to less than zero, making the acceleration com-
mand becomes a complex. In this circumstance, the ITCG
of [6] cannot work over the engagement, which indicates that
the acceleration command is significantly affected by the
time-to-go estimation error. To solve this problem, more
accurate higher-order terms of time-to-go estimate of PNG
were used in [6]. For the proposed ITCG law, the missile is
able to come back to the required trajectory from the devi-
ated one by switching the commands between ξT ≥ 0 and
ξT < 0, resulting in lower dependence on the time-to-go esti-
mation in contrast to that presented in [6], as will be demon-
strated in Section 5. However, the strategy of switching
guidance commands may probably result in an unexpected
tremble. To overcome this deficiency, the guidance law Equa-
tion (28) is improved by introducing a smooth function, i.e.,

am =NV _θ +w ξTð Þs ϕmax − ϕj jð Þ 3
2V

_θ + h ξTð Þδ sin ϕð Þ
2
4

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2V

_θ

� �2
+ 3 N + 1ð Þ 2N − 1ð ÞV5

R3 ⋅ ξTj j
s 3

5,
ð34Þ

where the smooth function wð⋅Þ is defined as follows:

w zð Þ =

0, zj j < k1,
zj j − k1
k2 − k1

, k1 ≤ zj j ≤ k2,

1, zj j > k2,

8>>>><
>>>>:

ð35Þ

where k1 and k2 are small positive constants and k2 > k1. Note
that large values of k1 and k2 should be considered when the
time-to-go estimation is not sufficiently accurate. On the
other hand, the smooth function is unnecessary when the
accuracy of time-to-go estimation is sufficient.

Note that through substituting Equations (2) and (34)
into Equation (31), it can be found that the introduction of
wð⋅Þ has no impact on the convergence that has already been
proved in Section 4.1. For the sake of brevity, the detailed
derivation is omitted here.

4.3. Controllable Range of the Desired Impact Time. Although
the ITCG law proposed in this paper is effective for both
cases ξT > 0 and ξT < 0, the desired impact time cannot be
set arbitrarily. To better understand the characteristics of this
guidance law, it is necessary to analyze the controllable range
of the desired impact time.

Assuming that the time-to-go estimation is sufficiently
accurate, we can see from Equations (23) and (24) that
the minimum available impact time t f min satisfies the fol-
lowing inequality

t f min < tN , ð36Þ

where tN is the time of flight driven by PNG with a naviga-
tion gain of ðN + 3Þ.

Obviously, the minimum impact time that is achievable
in practice must be greater than the time as the missile flies
along the straight line between the missile and the target
(i.e., denoted as tM = R0/V). Thus, the range of the minimum
impact time t f min can be described as follows:

t f min ∈ tM , tNð Þ: ð37Þ

According to Equation (1), when ϕ > 90∘ or ϕ = ϕmax,
_R ≥ 0 always holds. Theoretically, if we do not consider the
seeker’s filed-of-view constraint or the boundary value is
greater than 90 degrees, the maximum available impact time
t f max has no upper bound (i.e., infinity). On the contrary, the
maximum impact time t f max that is achievable is bounded
when the boundary of the field-of-view angle is less than 90
degrees. Sufficient detail of an approach that determines
t f max for the case ϕmax < 90∘ is presented in [7].

5. Numerical Simulation and Results

In this section, the proportional-navigation-based ITCG law
presented in Section 3 is validated by numerical simulations
and its performance is also compared to those obtained in
earlier studies [6, 8]. To this end, the higher-order time-to-
go estimate of PNG given by [6] is restated as follows:

tgoPN = R
V

1 + sin2ϕ
2 2N − 1ð Þ + 3 sin4ϕ

8 4N − 3ð Þ
�

+ 5 sin6ϕ
16 6N − 5ð Þ + 35 sin8ϕ

128 8N − 7ð Þ+⋯
	
:

ð38Þ

In the rest of this section, various forms of Equation (38)
in terms of the order of sin ϕ are used. For instance, the nth-
order approximation (n is an integer) refers to the expression
whose highest-order term is sinnϕ. Note that the zeroth-
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order approximation is the simplest formula that estimates
the time-to-go using the range divided by the closing speed.

5.1. A Specific Case for Validation. As already mentioned,
because the presented ITCG is as effective as that of [6] in
the case of ξT > 0, similar simulations are not repeated here.
Instead, we focus on the case ξT < 0 and consider the follow-
ing conditions: N = 3, R0 = 10000m, V = 300m/s, ϕ0 = 75
deg, θ0 = 0 deg, and the impact time of the PNG trajectory
is 40 s. Moreover, we set the desired impact time as t f = 36 s,
choose k1 = 0:0005 and k2 = 0:001, and apply the sixth-
order time-to-go approximation of Equation (38) to the
ITCG law Equation (34). The simulation results compared
with that of PNG are shown in Figure 2.

As shown in Figure 2, the desired impact time can be
accurately achieved by using the proposed ITCG law. It is
illustrated in Figure 2(b) that the initial acceleration com-
mand provided by Equation (34) is greater than that of
PNG, leading to a heading error rate faster than that of
PNG. As a result, a neighboring path shorter than the trajec-
tory of PNG is generated, as shown in Figure 2(c), and then
the impact time error successfully converges to zero (i.e.,
the desired impact time is achieved). This result corresponds

to the preceding analysis. In addition, we can see from
Figure 2(d) that although the impact time error driven by
PNG cannot converge to zero, it is capable of leveling off at
a constant value (i.e., approximately 4 s). This phenomenon
can be primarily attributed to the fact that the accuracy of
the sixth-order time-to-go approximation of Equation (38)
gradually increases as the look angle decreases.

5.2. Effect of Time-to-Go Estimation on the Proposed ITCG.
This subsection attempts to examine the effect of time-to-
go estimation on the proposed ITCG law through numerical
simulations. To this purpose, we introduce the accurate time-
to-go estimation formula in the framework of PNG expressed
by the incomplete beta function. This accurate time-to-go
formula, as presented in [5], is called the exact solution to
the time-to-go of PNG.

We consider the following simulation conditions: N = 3,
R0 = 10000m, V = 300m/s, ϕ0 = 45 deg, θ0 = 0 deg, and the
impact time of the PNG trajectory is 35.50 s. In the following
simulation, we choose the desired impact time as t f = 50 s.
The results obtained through applying the exact solution,
the fourth- and sixth-order approximations of Equation
(38) to the proposed ITCG law are shown in Figures 3 and
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Figure 2: Simulation results for the case ξT < 0 (t f = 36 s).
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4. Note that because the exact solution is sufficiently accurate,
Equation (28) instead of (34) is used for numerical simula-
tions when the exact solution is adopted. When the fourth-
and sixth-order approximations of Equation (38) are
adopted, Equation (34) is used to perform simulations (e.g.,
we choose k1 = 0:0005 and k2 = 0:001).

As shown in Figures 3 and 4, when the exact solution is
applied, both the ITCG laws proposed in [6] and in this effort
perform well. However, when the fourth- and sixth-order
approximations are adopted, the ITCG law of [6] fails to
achieve the desired impact time whereas the proposed ITCG
law succeeds in controlling the impact time. Due to the defi-
cient accuracy of Equation (38) for estimating time-to-go, the
acceleration command induced by the ITCG of [6] becomes a
complex at some certain moment during the missile’s flight.
it is found from these figures that more accurate time-to-go
estimate results in gently varying acceleration command,
relatively smaller maximum look angle during the guidance
process, and a closer trajectory corresponding to exact
impact time control. For the ITCG of [6], inaccurate time-
to-go estimationmakes the flight path deviates from the exact
trajectory. On the contrary, by using the function hðξTÞ with

respect to the impact time error that appears in Equation
(34), the deviated flight path can be corrected and ultimately
return to the exact trajectory. Therefore, it is demonstrated
that the dependence on the time-to-go estimation of the pro-
posed ITCG is much lower than that of the ITCG in [6],
which is in accordance with the previous analysis.

To make a further examine, the controllable ranges of
the desired impact time are calculated by a trial-and-error
approach for the aforementioned simulation condition using
various approximations of Equation (38) and the exact solu-
tion. Note that for convenience, the impact time is consid-
ered to be controllable when the distance between the
missile and the target is less than 0.2m, and meanwhile, the
magnitude of the impact time error is less than a specified
value. The results of the controllable ranges of the desired
impact time are listed in Table 1.

We can see from Table 1 that the ITCG of [6] does not
work when the zeroth-order approximation of Equation
(38) is used. By using the ITCG of [6], the minimum control-
lable impact time is equal to the impact time of the PNG tra-
jectory (i.e., 35.50 s) and the maximum controllable impact
time grows somewhat as the accuracy of the time-to-go
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Figure 3: Results of ITCG law of [6] using different time-to-go estimation formulas.
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estimate increases. For the second-, fourth-, and sixth-order
approximations of Equation (38), the interval lengths of the
desired impact time obtained by the ITCG of [6] are 5.08 s,
10.67 s, and 13.40 s, respectively. By using the proposed
ITCG, the desired impact time smaller than that of the
PNG trajectory can also be achieved. Correspondingly, the
interval lengths are 18.31 s, 22.54 s, and 24.15 s for the sec-
ond-, fourth-, and sixth-order approximations, respectively,
which demonstrates that the controllable range of the pro-
posed ITCG law is fairly wider than that of [6]. As already

analyzed, with the help of the exact solution, the upper
bounds of the available impact time for these two laws can
be considered as infinity. However, even if the exact solution
is used, the ITCG of [6] still fails to achieve the impact time
smaller than that of the PNG trajectory. According to the
above simulation conditions, the lower and upper bounds
of t f min are tM = 33:33s and tN = 34:30s, respectively. Hence,
all the lower bound values of the impact time achieved by the
proposed ITCG law satisfy Equation (36) except for the case
where the zeroth-order approximation is used.
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Figure 4: Results of proposed ITCG law using different time-to-go estimation formulas.

Table 1: Comparison of controllable ranges of the desired impact time.

Time-to-go estimation formula ITCG law in [6] Proposed ITCG law Impact time error ξT (s)

Zeroth-order approximation of Equation (38) N/Aa 35.09 s~38.80 s <0.4
Second-order approximation of Equation (38) 35.50 s~40.58 s 34.17 s~52.48 s <10-3

Fourth-order approximation of Equation (38) 35.50 s~6.17 s 34.15 s~56.69 s <10-3

Sixth-order approximation of Equation (38) 35.50 s~48.90 s 34.15 s~58.30 s <10-3

Exact solution 35.50 s~infinity 34.15 s~infinity <10-3
aN/A stands for “not applicable.”
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It is also shown in Table 1 that the impact time errors
obtained by using these two laws are less than 0.001 s. Apply-
ing the proposed ITCG law to the issues with regard to salvo
attack and/or cooperative attack, the flexibility may probably
be augmented. It is worth noting that the proposed ITCG law
can even be applicable to the case using the zeroth-order
approximation whereas the ITCG of [6] is not applicable.
In this special case, the desired impact time can also be set
larger or smaller than the impact time of the PNG trajectory,
although the controllable range is relatively narrow and the
impact time error is slightly large (i.e., less than 0.4 s). In this
sense, the proposed ITCG law is able to eliminate the singu-
larity driven by the inaccuracy of the time-to-go estimate.

5.3. Several Cases with Field-of-View Constraint. To validate
the feasibility of the application of the proposed ITCG to
the cases with field-of-view constraint, we consider the fol-
lowing condition: N = 3, the missile’s position ðxM , yMÞ =
ð−10000, 1000Þ, the target’s position ðxT , yTÞ = ð0, 0Þ, V =
300m/s, ϕ0 = 25:7 deg, ϕmax = 45 deg, and the desired
impact time t f = 40 s.

Note that because the acceleration of a missile cannot
be infinite in practice, we set such a saturated accelera-
tion amax = 48m/s2 that any practical acceleration greater
than amax is limited to the value of amax. The simulation
results are shown in Figure 5, where the results obtained
using this proposed ITCG law are compared to those
given by [8].

We can see from Figure 5 that the proposed ITCG law at
least has comparable results to that presented in [8]. The
maximum heading error driven by the proposed ITCG law
appears to be a little greater (i.e., approximately 0.5 s) than
that induced by [8]. However, the duration of the look angle
staying at the field-of-view boundary in [8] is longer, as
shown in Figure 5(a). The initial acceleration command
and the maximum acceleration over the engagement driven
by the proposed guidance law are quite smaller in compari-
son with that in [8], as illustrated in Figure 5(b). At the
beginning, the acceleration driven by [8] is saturated (i.e.,
exceeds 48m/s2) whereas the acceleration of the proposed
guidance law is approximately 12m/s2. Generally speaking,
the variations of the trajectory and the impact time error
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Figure 5: Simulation of ITCG laws with field-of-view constraints.
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provided by these two laws are similar, as illustrated in
Figures 5(c) and 5(d).

To make a deep comparison with the ITCG of [8], here,
we consider another case where the desired impact time
t f = 43 s. As mentioned in [8], the impact time of t f = 43 s
appears to be the boundary value of the controllable range
of the desired impact time. The results obtained using these
two ITCG laws are shown in Figure 6.

As illustrated in Figure 6, the main difference between the
proposed ITCG law and the ITCG of [8] comes from the
acceleration command. Similar to Figure 6(b), the initial
acceleration command driven by the proposed ITCG law is
much smaller. In addition, by using the ITCG of [8], the sat-
uration phenomenon also occurs within a certain period
(e.g., ranging from t = 32 s to t = 36 s), whereas the accelera-
tion of the proposed ITCG in the same period does not
exceed 45m/s2.

As mentioned previously, the ITCG law presented in
[8, 9] does not work when the initial heading error is equal
to zero. To validate that the proposed ITCG is capable of
eliminating this singularity, we perform another simulation
with ϕ0 = 0 deg and t f = 39 s and compare the results with

those obtained in [8]. The simulation results are shown in
Figure 7.

We can see from Figure 7 that because the ITCG of [8] is
not adapted to the case with zero initial heading error, the
acceleration command as well as the look angle is zero from
the beginning to the end of the engagement and, obviously,
the missile flies along the straight line between the missile
and the target. Meanwhile, the proposed ITCG law success-
fully eliminates the aforementioned singularities and, as a
consequence, achieves the desired impact time.

6. Conclusions

This paper presents a nonsingular proportional-navigation-
based impact time control guidance law with the consider-
ation of the seeker’s field-of-view constraint based on nonlin-
ear formulations. Using numerical simulations, it is
demonstrated that the proposed ITCG law is capable of
achieving the desired impact time larger or smaller than the
impact time of the PNG trajectory and alleviating its depen-
dence on the time-to-go estimation by switching the com-
mands according to the sign of the impact time error. In
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Figure 6: Simulation of ITCG laws in the case of t f = 43 s with field-of-view constraint.
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some cases, the proposed ITCG law is shown to be superior
over some other guidance laws presented in earlier studies
in that it guarantees the guided trajectory from divergence
over the engagement, showing its augmented robustness
and flexibility. To address the field-of-view constraint, a
switching logic pertinent to the additional acceleration com-
mand is incorporated into the total acceleration command. It
is also validated by numerical simulations that the ITCG law
is applicable to the constraints associated with the saturated
acceleration command, the initial heading error, and the
seeker’s field-of-view angle. In summary, the PNG-based
ITCG law with lower dependence on time-to-go estimation
extends the controllable range of the desired impact time
and adapts itself to more conditions in comparison with
some other PNG-based ITCG laws in earlier studies. From
practical point of view, this proposed law aids in taking full
advantage of the characteristics of PNG and is expected to
be supplementary to the current research literature.

Notations

ab: Feedback acceleration command
am: Total acceleration command

aξ: Additional acceleration command
gð⋅Þ: A shaping control function, defined as Equation (22)
H: Hamilton function
hð⋅Þ: C sign function, defined as Equation (18)
J : control effort
k1, k2: Positive constants used to determine the smooth

function wð⋅Þ
N : Navigation gain
R: Distance between the missile and the target
R0: Initial distance between the missile and the target
sð⋅Þ: A switching logic function, defined as Equation (30)
t: Time
t f : Impact time
t f d : Real time-to-go
t f min: Minimum impact time
t f max: Maximum impact time
tgoPN : Predicted time-to-go
tM : Time of flight, defined as tM = R0/V
tN : Time of flight driven by PNG
V : Speed of the missile
VLð⋅Þ: Lyapunov function
wð⋅Þ: Smooth function, defined as Equation (36)
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Figure 7: Simulation of ITCG laws with field-of-view constraint (ϕ0 = 0 deg; t f = 39 s).
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x, y: Downrange and crossrange of trajectory
α: A positive constant, shown in Equation (30)
γ: Flight path angle
δð⋅Þ: A sign function, defined as Equation (17)
θ: Line-of-sight angle
θ0: Initial line-of-sight angle
λη: Lagrange multiplier
ξT : Impact time error
ϕ: Heading error
ϕ0: Initial heading error
ϕmax: Boundary of the field-of-view angle.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work is supported by the National Natural Science
Foundation of China (number 11402117).

References

[1] I.-S. Jeon, J.-I. Lee, andM.-J. Tahk, “Impact-time-control guid-
ance law for anti-ship missiles,” IEEE Transactions on Control
Systems Technology, vol. 14, no. 2, pp. 260–266, 2006.

[2] I. S. Jeon, J. I. Lee, and M. J. Tahk, “Homing guidance law for
cooperative attack of multiple missiles,” Journal of Guidance,
Control, and Dynamics, vol. 33, no. 1, pp. 275–280, 2010.

[3] S. Ghosh, D. Ghose, and S. Raha, “Three dimensional PN
based impact angle control for higher speed nonmaneuvering
targets,” in 2013 American Control Conference, Washington,
DC, USA, 2013.

[4] Y. Zhang, X. Wang, and G. Ma, “Impact time control guidance
law with large impact angle constraint,” Proceedings of the
Institution of Mechanical Engineers, Part G: Journal of Aero-
space Engineering, vol. 229, no. 11, pp. 2119–2131, 2015.

[5] N. Cho and Y. Kim, “Modified pure proportional navigation
guidance law for impact time control,” Journal of Guidance,
Control, and Dynamics, vol. 39, no. 4, pp. 852–872, 2016.

[6] I. S. Jeon, J. I. Lee, and M. J. Tahk, “Impact-time-control
guidance with generalized proportional navigation based on
nonlinear formulation,” Journal of Guidance, Control, and
Dynamics, vol. 39, no. 8, pp. 1887–1892, 2016.

[7] D.-K. Sang and M.-J. Tahk, “Guidance law switching logic
considering the seeker's field-of-view limits,” Proceedings of
the Institution of Mechanical Engineers, Part G: Journal of
Aerospace Engineering, vol. 223, no. 8, pp. 1049–1058, 2009.

[8] Y. Zhang, X. Wang, and H. Wu, “Impact time control guid-
ance law with field of view constraint,” Aerospace Science and
Technology, vol. 39, pp. 361–369, 2014.

[9] Y. Zhang, X. Wang, and H. Wu, “Impact time control guid-
ance with field-of-view constraint accounting for uncertain
system lag,” Proceedings of the Institution of Mechanical Engi-
neers, Part G: Journal of Aerospace Engineering, vol. 230, no. 3,
pp. 515–529, 2016.

[10] J. Wang and R. Zhang, “Terminal guidance for a hypersonic
vehicle with impact time control,” Journal of Guidance, Con-
trol, and Dynamics, vol. 41, no. 8, pp. 1790–1798, 2018.

[11] N. Harl and S. N. Balakrishnan, “Impact time and angle guid-
ance with sliding mode control,” IEEE Transactions on Control
Systems Technology, vol. 20, no. 6, pp. 1436–1449, 2012.

[12] S. R. Kumar and D. Ghose, “Impact time guidance for large
heading errors using sliding mode control,” IEEE Transactions
on Aerospace and Electronic Systems, vol. 51, no. 4, pp. 3123–
3138, 2015.

[13] D. Cho, H. J. Kim, and M. J. Tahk, “Nonsingular sliding mode
guidance for impact time control,” Journal of Guidance, Con-
trol, and Dynamics, vol. 39, no. 1, pp. 61–68, 2016.

[14] Y. Zhao, Y. Sheng, and X. Liu, “Analytical impact time and
angle guidance via time-varying sliding mode technique,”
ISA Transactions, vol. 62, pp. 164–176, 2016.

[15] M. Kim, B. Jung, B. Han, S. Lee, and Y. Kim, “Lyapunov-based
impact time control guidance laws against stationary targets,”
IEEE Transactions on Aerospace and Electronic Systems,
vol. 51, no. 2, pp. 1111–1122, 2015.

[16] T. H. Kim, C. H. Lee, I. S. Jeon, and M. J. Tahk, “Augmented
polynomial guidance with impact time and angle constraints,”
IEEE Transactions on Aerospace and Electronic Systems,
vol. 49, no. 4, pp. 2806–2817, 2013.

[17] M. Snyder, Z. Qu, R. Hull, and R. Prazenica, “Quad-segment
polynomial trajectory guidance for impact-time control of
precision-munition strike,” IEEE Transactions on Aerospace
and Electronic Systems, vol. 52, no. 6, pp. 3008–3023, 2016.

[18] R. Tekin, K. S. Erer, and F. Holzapfel, “Polynomial shaping
of the look angle for impact-time control,” Journal of Guid-
ance, Control, and Dynamics, vol. 40, no. 10, pp. 2668–2673,
2017.

[19] R. Tekin, K. S. Erer, and F. Holzapfel, “Control of impact time
with increased robustness via feedback linearization,” Journal
of Guidance, Control, and Dynamics, vol. 39, no. 7, pp. 1682–
1689, 2016.

[20] R. Tekin, K. S. Erer, and F. Holzapfel, “Adaptive Impact Time
Control via Look-Angle Shaping Under Varying Velocity,”
Journal of Guidance, Control, and Dynamics, vol. 40, no. 12,
pp. 3247–3255, 2017.

[21] R. Tekin, K. S. Erer, and F. Holzapfel, “Impact Time Control
with Generalized-Polynomial Range Formulation,” Journal of
Guidance, Control, and Dynamics, vol. 41, no. 5, pp. 1190–
1195, 2018.

[22] S. Kang, R. Tekin, and F. Holzapfel, “Generalized impact time
and angle control via look-angle shaping,” Journal of Guid-
ance, Control, and Dynamics, vol. 42, no. 3, pp. 695–702, 2019.

[23] S. Gutman, “Impact-time vector guidance,” Journal of Guid-
ance, Control, and Dynamics, vol. 40, no. 8, pp. 2110–2114,
2017.

[24] A. Saleem and A. Ratnoo, “A Nonlinear Guidance Law for
Impact Time Control,” in 2015 American Control Conference
(ACC), Chicago, IL, USA, 2015.

[25] I. S. Jeon and J. I. Lee, “Impact-time-control guidance law with
constraints on seeker look angle,” IEEE Transactions on Aero-
space and Electronic Systems, vol. 53, no. 5, pp. 2621–2627,
2017.

[26] X. Chen and J. Wang, “Nonsingular sliding-mode control for
field-of-view constrained impact time guidance,” Journal of
Guidance, Control, and Dynamics, vol. 41, no. 5, pp. 1214–
1222, 2018.

13International Journal of Aerospace Engineering



[27] X. Chen and J. Wang, “Sliding-mode guidance for simulta-
neous control of impact time and angle,” Journal of Guidance,
Control, and Dynamics, vol. 42, no. 2, pp. 394–401, 2019.

[28] Q.Hu, T. Han, andM. Xin, “Sliding-mode impact time guidance
law design for various target motions,” Journal of Guidance,
Control, and Dynamics, vol. 42, no. 1, pp. 136–148, 2019.

[29] A. Saleem and A. Ratnoo, “Lyapunov-based guidance law for
impact time control and simultaneous arrival,” Journal of
Guidance, Control, and Dynamics, vol. 39, no. 1, pp. 164–
173, 2016.

[30] K. S. Erer and R. Tekin, “Impact time and angle control
based on constrained optimal solutions,” Journal of Guidance,
Control, and Dynamics, vol. 39, no. 10, pp. 2448–2454, 2016.

[31] S. Arita and S. Ueno, “Optimal feedback guidance for nonlin-
ear missile model with impact time and angle constraints,” in
AIAA Guidance, Navigation, and Control (GNC) Conference,
Boston, MA, 2013.

14 International Journal of Aerospace Engineering



International Journal of

Aerospace
Engineering
Hindawi
www.hindawi.com Volume 2018

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Active and Passive  
Electronic Components

VLSI Design

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Shock and Vibration

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi
www.hindawi.com

Volume 2018

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

Control Science
and Engineering

Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Sensors
Journal of

Hindawi
www.hindawi.com Volume 2018

International Journal of

Rotating
Machinery

Hindawi
www.hindawi.com Volume 2018

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Navigation and 
 Observation

International Journal of

Hindawi

www.hindawi.com Volume 2018

 Advances in 

Multimedia

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

