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In this paper, an analytical method is proposed to directly obtain the aeroelastic time domain response of the elastic boundary
panel. Based on a modified Fourier series method (MFSM), the vibration analysis of elastic boundary panels is carried out, after
the dynamics equation of the panel is obtained. Then, the vibrational functions are combined with the supersonic piston theory
to establish the aeroelastic equation. The aeroelastic time domain response of the panel is obtained to analyze the flutter speed
of the panel more intuitively. Finally, the flutter speeds of panels with different length-width ratios, thicknesses, and elastic
boundary conditions are discussed in detail.

1. Introduction

Hypersonic aircraft has gradually become a new-generation
aircraft developed by various countries. Hypersonic vehicle
is a frontier research field in aerospace engineering. Up to
now, there are still many problems that have to be overcome.
One of the most common problems of the hypersonic vehicle
is flutter. As early as 1970, Dowell summarized the stability
analysis of the flutter problems for plates and shells [1]. So
far, a large number of scholars have adopted various methods
for flutter analysis.

The piston theory is commonly used in supersonic
aerodynamics. Flutter analysis based on local flow piston
theory was developed by Yang and Song [2], which was
used to calculate a supersonic wing with attack angle. Then,
Zhang et al. [3] summarized and utilized the method of
supersonic flutter analysis based on local piston theory.
The local piston theory was improved by Yang et al. [4]
to analyze aeroelastic behaviors of curved panels. With
the local flow field parameters obtained by CFD technique,
the modified local piston theory is more reliable and
enlarges the application range of piston theory for curved
panels. In recent years, the first-order piston theory was
used by Yao et al. [5] for the high-speed rotating cantilever

rectangular plate. Besides, the third-order piston theory
was used by Shao et al. [6] for a smart laminated panel.
The piston theory has been applied well in supersonic
aerodynamic analysis.

In terms of structure, the finite element method (FEM) is
widely used for panel flutter analysis. Mei [7] developed a
FEM to analyze the flutter behavior of nonlinear plates. Later,
the method was applied to the large-amplitude panel flutter
of thin laminates [8] and composite panels [9]. Then, the
method was used to analyze curved panel flutter [10], and
the use of FEM is gradually well-developed [11–13].

In recent years, orthogonal decomposition methods
have been used for flutter analysis. Xie and Xu [14] first
applied the method for von Karman plate under super-
sonic flow. The method was improved and used for a can-
tilever plate in supersonic flow [15]. The reduced-order
model was proved to be suitable for nonlinear aeroelastic
oscillations [16]. Flutter analysis of a nonlinear panel was
carried out based on proper orthogonal decomposition
method [17].

In addition, the differential quadrature method (DQM)
[18] and other methods have also been used for flutter
analysis of plates. However, the structural models used in
the flutter analysis of plates are usually plates with simple
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classical boundaries, and the study on elastic boundary
plates focuses on free vibration instead of flutter.

By now, there have been many researches on the vibra-
tion analysis of plates but most of them limited to classical
boundary conditions, i.e., fixed boundary, simply supported
boundary, and free boundary. A lot of the studies were
devoted to the vibration of rectangular plates with general
elastic constraints along the edge. Li [19] analyzed the vibra-
tion of rectangular plates with general elastic boundary sup-
ports. Then, Du et al. [20] used a modified Fourier series
method to obtain an analytical solution for the in-plane
vibrations of a rectangular plate with elastically restrained
edges. Li et al. [21] summarized the modified Fourier series
method (MFSM) and proposed a complete set of analytical
solutions for the transverse vibration of rectangular plates
with general elastic boundary supports. Later on, the MFSM
has been applied to solve many problems of plates with elas-
tic boundary restraints, such as free vibration of two elasti-
cally coupled rectangular plates [22], modal analysis of
general plate structures [23], and modeling analysis of elasti-
cally restrained panel [24]. This method is also used well in
triangular plates [25], blades [26], circular plates [27], confo-
cal annular elliptic plates [28], and so on.

In engineering, the boundary conditions of the high-
speed aircraft are much more complicated, which is difficult
to be described accurately with classical boundary condi-
tions. Elastic boundary conditions are more universal and

flexible and can be reduced to classical boundary conditions.
At present, there are just few works directly combining the
vibration analysis and aerodynamic force of the elastic
boundary panel. Zhou et al. [29] presented a method for
supersonic flutter analysis for a Mindlin orthotropic plate
with general boundary conditions and analyzed the factors
that affect flutter characteristics.

In this paper, an analytical method is proposed to obtain
the aerodynamic elastic response of the elastic boundary
panel in time domain directly, so as to study the flutter prob-
lem more intuitively.

2. Structure Model of the Panel with
Elastic Boundary

2.1. Governing Equation of the Plate. The panel is an essential
structural element widely used in aircrafts, missiles and
launch vehicles, and so on. The thickness of the panel is
much smaller than that of the other two directions in prac-
tice, and the panel is usually considered as a thin plate.

Consider a rectangular plate with elastic constraints at
any edge(s), as shown in Figure 1. The middle surface of
the plate is the xy plane, and the z-axis is perpendicular to
the plate. The length of the plate in the x and y directions
are denoted by a and b, and the thickness is h. As shown in
Figure 1, kx0, kxa, ky0, and kyb represent the linear spring
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Figure 1: A rectangular plate with elastic constraints at all edges.
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constants at x = 0, x = a, y = 0, and y = b. Kx0, Kxa, Ky0, and
Kyb represent the rotational spring constants at x = 0, x = a,
y = 0, and y = b, respectively.

The governing differential equation for free vibration of
the thin plate is given by

D∇4w x, y − ρhω2w x, y = 0, 1

where ∇4 = ∂4/∂x4 + 2∂4/∂x2∂y2 + ∂4/∂y4 ,w x, y is the
transverse displacement along z direction, ω and ρ are the
natural frequency and the mass density of the plate, and D
= Eh3/12 1 − μ2 is the flexural rigidity, where E and μ are
the Young modulus and the Poisson ratio, respectively.

In terms of transverse displacements, the bending
moments, twisting moment, and transverse shearing forces
can be expressed as follows:

Mx = −D
∂2w
∂x2

+ μ
∂2w
∂y2

, 2a

My = −D
∂2w
∂y2

+ μ
∂2w
∂x2

, 2b

Mxy = −D 1 − μ
∂2w
∂x∂y

, 2c

Qx = −D
∂
∂x

∇2w +
∂Mxy

∂y
= −D

∂3w
∂x3

+ 2 − μ
∂3w
∂x∂y2

,

2d

Qy = −D
∂
∂y

∇2w +
∂Mxy

∂x
= −D

∂3w
∂y3

+ 2 − μ
∂3w
∂x2∂y

2e

2.2. Elastic Boundary Conditions. The boundary conditions
of the rectangular thin plate with elastic constraints at all
edges are given as follows:

kx0w =Qx, at x = 0, 3a

Kx0
∂w
∂x

= −Mx, at x = 0, 3b

kxaw = −Qx, at x = a, 3c

Kxa
∂w
∂x

=Mx, at x = a, 3d

ky0w =Qy, at y = 0, 3e

Ky0
∂w
∂y

= −My, at y = 0, 3f

kybw = −Qy, at y = b, 3g

Kyb
∂w
∂y

=My, at y = b 3h

The general elastic boundary conditions expressed by
equations (3a), (3b), (3c), (3d), (3e), (3f), (3g), and (3h)
can be reduced to classical homogeneous boundary condi-
tions by setting the corresponding spring constants. For
example, if all the linear spring constants are set to be
extremely large, while the constants of all rotational springs
are set as 0, then it can be reduced to the case of simply
supported ones.

Substituting equations (2a), (2b), (2c), (2d), and (2e)
into equations (3a), (3b), (3c), (3d), (3e), (3f), (3g), and
(3h) leads to

kx0w = −D
∂3w
∂x3

+ 2 − μ
∂3w
∂x∂y2

 at x = 0, 4a

Kx0
∂w
∂x

=D
∂2w
∂x2

+ μ
∂2w
∂y2

 at x = 0, 4b

kxaw =D
∂3w
∂x3

+ 2 − μ
∂3w
∂x∂y2

 at x = a, 4c

Kxa
∂w
∂x

= −D
∂2w
∂x2

+ μ
∂2w
∂y2

 at x = a, 4d

ky0w = −D
∂3w
∂y3

+ 2 − μ
∂3w
∂x2∂y

 at y = 0, 4e

Ky0
∂w
∂y

=D
∂2w
∂y2

+ μ
∂2w
∂x2

 at y = 0, 4f

kybw =D
∂3w
∂y3

+ 2 − μ
∂3w
∂x2∂y

 at y = b, 4g

Kyb
∂w
∂y

= −D
∂2w
∂y2

+ μ
∂2w
∂x2

 at y = b 4h

2.3. Analytical Solution for the Plate with Elastic Boundary.
By using the Fourier series method, the transverse dis-
placement of the plate can be expanded into the follow-
ing form:

w x, y = 〠
∞

m=0
〠
∞

n=0
Amn cos λamx cos λbny

+ 〠
4

l=1
ξlb y 〠

∞

m=0
clm cos λamx

+ ξla x 〠
∞

n=0
dln cos λbny ,

5

where λam =mπ/a, λbn = nπ/b, ξla x , and ξlb y must be
sufficiently smooth and can satisfy the elastic boundary
conditions at four edges. Here, the functions ξla x and ξlb
y are third-order derivable and continuous at any point
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of the plate. With this in mind, here, the supplementary
functions are chosen as the following:

ξ1a x =
9a
4π

sin
πx
2a

−
a

12π
sin

3πx
2a

,

ξ2a x = −
9a
4π

cos
πx
2a

−
a

12π
cos

3πx
2a

,

ξ3a x =
a3

π3 sin
πx
2a

−
a3

3π3 sin
3πx
2a

,

ξ4a x = −
a3

π3 cos
πx
2a

−
a3

3π3 cos
3πx
2a

,

6a

ξ1b y =
9b
4π

sin
πy
2b

−
b

12π
sin

3πy
2b

,

ξ2b y = −
9b
4π

cos
πy
2b

−
b

12π
cos

3πy
2b

,

ξ3b y =
b3

π3 sin
πy
2b

−
b3

3π3 sin
3πy
2b

,

ξ4b y = −
b3

π3 cos
πy
2b

−
b3

3π3 cos
3πy
2b

6b

In equations (6a) and (6b), it is easy to verify that only
dξ1a 0 /dx = dξ2a a /dx = 1, d3ξ3a 0 /dx3 = d3ξ4a a /dx3 = 1, d
ξ1b 0 /dy = dξ2b b /dy = 1, and d3ξ3b 0 /dy3 = d3ξ4b b /dy3 = 1
, and all the other first and third derivatives at the edges
are equal to zero. By choosing the supplementary functions
in such a way, the two-dimensional Fourier series expan-
sions in equation (5) can represent a residual displacement
field which is third-order derivable and continuous over
the entire x − y domain. Such supplementary functions
make the solution expressed in equation (5) to satisfy the
governing equation at every field point and the boundary
conditions at every boundary point. More importantly, it
is now guaranteed to converge uniformly at a substantially
improved speed for any boundary condition [21].

Substituting equation (5) into equations (4a), (4b), (4c),
(4d), (4e), (4f), (4g), and (4h) results in

−
kx0
D

〠
∞

m=0
〠
∞

n=0
Amn cos λbny

+ 〠
4

l=1
ξlb y 〠

∞

m=0
clm + ξla 0 〠

∞

n=0
dln cos λbny

= 〠
4

l=1

∂3ξla 0
∂x3

〠
∞

n=0
dln cos λbny

+ 2 − μ 〠
4

l=1

∂ξla 0
∂x

〠
∞

n=0

− dlnλbn
2 cos λbny , at x = 0,

7a

Kx0
D

〠
4

l=1

∂ξla 0
∂x

〠
∞

n=0
dln cos λbny

= 〠
∞

m=0
〠
∞

n=0
− Amnλam

2 cos λbny

+ 〠
4

l=1
ξlb y 〠

∞

m=0
− clmλam

2

+
∂2ξla 0
∂x2

〠
∞

n=0
dln cos λbny

+ μ 〠
∞

m=0
〠
∞

n=0
− Amnλbn

2 cos λbny

+ 〠
4

l=1

∂2ξlb y
∂y2

〠
∞

m=0
clm + ξla 0 〠

∞

n=0

− dlnλbn
2 cos λbny , at x = 0,

7b

kxa
D

〠
∞

m=0
〠
∞

n=0
Amn −1 m cos λbny

+ 〠
4

l=1
ξlb y 〠

∞

m=0
clm −1 m + ξla a 〠

∞

n=0
dln cos λbny

= 〠
4

l=1

∂3ξla a
∂x3

〠
∞

n=0
dln cos λbny

+ 2 − μ 〠
4

l=1

∂ξla a
∂x

〠
∞

n=0

− dlnλbn
2 cos λbny , at x = a,

7c

−
Kxa

D
〠
4

l=1

∂ξla a
∂x

〠
∞

n=0
dln cos λbny

= 〠
∞

m=0
〠
∞

n=0
− Amnλam

2 −1 m cos λbny

+ 〠
4

l=1
ξlb y 〠

∞

m=0
− clmλam

2 −1 m

+
∂2ξla a
∂x2

〠
∞

n=0
dln cos λbny

+ μ 〠
∞

m=0
〠
∞

n=0
− Amnλbn

2 −1 m cos λbny

+ 〠
4

l=1

∂2ξlb y
∂y2

〠
∞

m=0
clm −1 m

+ ξla a 〠
∞

n=0
− dlnλbn

2 cos λbny , at x = a,

7d

4 International Journal of Aerospace Engineering



−
ky0
D

〠
∞

m=0
〠
∞

n=0
Amn cos λamx

+ 〠
4

l=1
ξlb 0 〠

∞

m=0
clm cos λamx + ξla x 〠

∞

n=0
dln

= 〠
4

l=1

∂3ξlb 0
∂y3

〠
∞

m=0
clm cos λamx

+ 2 − μ 〠
4

l=1

∂ξlb 0
∂y

〠
∞

m=0

− clmλam
2 cos λamx , at y = 0,

7e

Ky0

D
〠
4

l=1

∂ξlb 0
∂y

〠
∞

m=0
clm cos λamx

= 〠
∞

m=0
〠
∞

n=0
− Amnλbn

2 cos λamx

+ 〠
4

l=1

∂2ξlb 0
∂y2

〠
∞

m=0
clm cos λamx

+ ξla x 〠
∞

n=0
− dlnλbn

2

+ μ 〠
∞

m=0
〠
∞

n=0
− Amnλam

2 cos λamx

+ 〠
4

l=1
ξlb 0 〠

∞

m=0
− clmλam

2 cos λamx

+
∂2ξla x
∂x2

〠
∞

n=0
dln , at y = 0,

7f

kyb
D

〠
∞

m=0
〠
∞

n=0
Amn −1 n cos λamx

+ 〠
4

l=1
ξlb b 〠

∞

m=0
clm cos λamx

+ ξla x 〠
∞

n=0
dln −1 n

= 〠
4

l=1

∂3ξlb b
∂y3

〠
∞

m=0
clm cos λamx

+ 2 − μ 〠
4

l=1

∂ξlb b
∂y

〠
∞

m=0

− clmλam
2 cos λamx , at y = b,

7g

−
Kyb

D
〠
4

l=1

∂ξlb y
∂y

〠
∞

m=0
clm cos λamx

= 〠
∞

m=0
〠
∞

n=0
− Amnλbn

2 −1 n cos λamx

+ 〠
4

l=1

∂2ξlb y
∂y2

〠
∞

m=0
clm cos λamx

+ ξla x 〠
∞

n=0
− dlnλbn

2 −1 n

+ μ 〠
∞

m=0
〠
∞

n=0
− Amnλam

2 −1 n cos λamx

+ 〠
4

l=1
ξlb y 〠

∞

m=0
− clmλam

2 cos λamx

+
∂2ξla x
∂x2

〠
∞

n=0
dln −1 n , at y = b

7h

In equations (7a), (7b), (7c), (7d), (7e), (7f), (7g), and
(7h), a total of 4 M + 1 + 4 N + 1 equations can be
obtained by taking m = 0, 1,… ,M, n = 0, 1,… ,N . After
simplifying, these equations can be written in matrix
form as

Hp =Qa 8

In equation (8), H and Q are constant matrices which
are gotten from equations (7a), (7b), (7c), (7d), (7e), (7f),
(7g), and (7h), and vectors p and a are variables which
are given by

p = c10, c
1
1,… , c1M , c

2
0, c

2
1,… , c2M , c

3
0, c

3
1,… ,

c3M , c
4
0, c

4
1,… , c4M , d

1
0, d

1
1,… , d1N , d

2
0, d

2
1,… ,

d2N , d
3
0, d

3
1,… , d3N , d

4
0, d

4
1,… , d4N

T,

9a

a = A00, A10,… , AM0, A01, A11,… , AM1,…… , A0N ,

A1N ,… , AMN
T

9b

The relationship between the two sets of variables p
and a in equation (8) is given by means of the eight
elastic boundary conditions represented by equations
(7a), (7b), (7c), (7d), (7e), (7f), (7g), and (7h).
Substituting the displacement expression equation (5)
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into the governing equation of the thin plate equation
(1) leads to

〠
∞

m=0
〠
∞

n=0
λam

4 + λbn
4 + 2λam

2λbn
2 Amn cos λamx cos λbny

+ 〠
4

l=1

〠
∞

m=0
ξlb y λam

4 − 2
∂2ξlb y
∂y2

λam
2 +

∂4ξlb y
∂y4

clm cos λamx

+〠
∞

n=0
ξla x λbn

4 − 2
∂2ξla x
∂x2

λbn
2 +

∂4ξla x
∂x4

dln cos λbny

−
ρhω2

D
〠
∞

m=0
〠
∞

n=0
Amn cos λamx cos λbny

+ 〠
4

l=1
ξlb y 〠

∞

m=0
clm cos λamx + ξla x 〠

∞

n=0
dln cos λbny = 0

10

Similarly, taking m = 0, 1,… ,M, n = 0, 1,… ,N , after
simplifying, equation (10) can be written as the follow-
ing matrix equation:

Ka + Bp −
ρhω2

D
Ma + Fp = 0 11

The matrices K, M, B, and F are defined in
the appendix.

According to the relationship between p and a which
has been defined by equation (8), equation (11) can be
written as

K −
ρhω2

D
M a = 0, 12

where K =K + BH−1Q and Μ =M + FH−1Q.
By solving the corresponding characteristic equation of

equation (12), the eigenvalues λ2 = ρhω2/D and eigenvectors
a can be obtained as well as a series of natural frequencies ω
and corresponding vectors a and p.

Table 2: Frequencies for S-S-S-S square panel with different
truncate numbers.

M =N
The first 6 natural frequencies (Hz)

1 2 3 4 5 6

5 9.66 24.23 24.23 38.73 48.78 48.99

10 9.70 24.27 24.27 38.81 48.56 48.59

15 9.71 24.28 24.28 38.83 48.55 48.57

16 9.71 24.28 24.28 38.83 48.55 48.57

17 9.71 24.28 24.28 38.83 48.55 48.57

18 9.71 24.28 24.28 38.83 48.55 48.57

19 9.71 24.28 24.28 38.84 48.55 48.57

20 9.71 24.28 24.28 38.84 48.55 48.56

25 9.71 24.28 24.28 38.84 48.55 48.56

30 9.71 24.28 24.28 38.84 48.55 48.56

Table 3: Frequencies for S-S-S-S panel with different aspect ratios.

r = b/a The first 6 natural frequencies (Hz)
1 2 3 4 5 6

1.0

9.710MFSM 24.277 24.277 38.836 48.554 48.566

9.672FEM 24.147 24.147 38.347 48.290 48.290

9.713NAS 24.283 24.283 38.853 48.567 48.567

1.5

7.013MFSM 13.487 21.582 24.280 28.053 38.840

6.996FEM 13.424 21.523 24.148 27.825 38.348

7.015NAS 13.491 21.585 24.283 28.061 38.853

2.0

6.070MFSM 9.711 15.782 20.639 24.279 24.282

6.060FEM 9.674 15.703 20.606 24.148 24.148

6.071NAS 9.713 15.784 20.641 24.283 24.283

2.5

5.633MFSM 7.964 11.849 17.289 20.203 22.533

5.627FEM 7.939 11.796 17.199 20.181 22.447

5.634NAS 7.965 11.850 17.290 20.204 22.535

3.0

5.396MFSM 7.015 9.713 13.491 18.351 19.966

5.391FEM 6.996 9.674 13.425 18.250 19.950

5.396NAS 7.015 9.713 13.491 18.347 19.966

MFSM for results from modified Fourier series method. FEM for results
from finite element method. NAS for results from Navier’s analytical
solution ωmn = π/2 m2/a2 + n2/b2 D/ρh .

Table 1: Physical parameters of the panel.

Parameter Meaning Case 1 Case 2

a Panel length in x-direction 1m 0.4m

b Panel width in y-direction 1, 1.5, 2, 2.5, 3m 0.5m

h Panel thickness 0.002m 0.0015m

ρ Mass density 2700 kg/m^3 2700 kg/m^3
E Young’s modulus 69GPa 69GPa

μ Poisson’s ratio 0.33 0.33
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3. Analysis of Aeroelastic Response

3.1. Aerodynamic Model. The aerodynamic model is based
on the second-order piston theory which can be expressed
as follows:

p
p∞

= 1 + κ
vz
a∞

+
κ κ + 1

4
vz
a∞

2
, 13

where p∞, a∞, and κ are constants, indicating the atmo-
spheric pressure of the incoming flow, the speed of sound
of the incoming flow, and the specific heat capacity ratio,
respectively. The model in equation (13) describes the
relationship between the lateral velocity vz of the panel
and the local pressure p.

Given that the partial derivative of transverse displace-
ments w x, y, t to x is equal to the velocity of flow and
the partial derivative to y is 0, the lateral velocity vz of
the panel can be expressed as follows:

vz =
∂w x, y, t

∂t
=
∂w
∂x

∂x
∂t

+
∂w
∂y

∂y
∂t

+
∂w
∂t

=
∂w
∂x

U∞ +
∂w
∂t

,

14

where U∞ is the flow velocity.
On the basis of equations (13) and (14), the pressure dif-

ference between the upper and lower surfaces of the panel
can be obtained as

Δp = −
2κp∞
a∞

∂w
∂x

U∞ +
∂w
∂t

15

3.2. Aeroelastic Response in the Time Domain. After adding
the aerodynamic force, the vibration equation of the rectan-
gular plate should be rewritten as

ρh
∂2w x, y, t

∂t2
+D∇4w x, y, t = Δp 16

By separating the variables of the transverse displace-
ment and cut at Nth modes, the form of the solution is
assumed as follows:

w x, y, t = 〠
N

i=1
Wi x, y qi t 17

Substituting equations (15) and (17) into equation (16)
leads to

ρh〠
N

i=1
Wi x, y qi t +D〠

N

i=1
∇4Wi x, y qi t

= −
2κp∞
a∞

U∞ 〠
N

i=1

∂Wi x, y
∂x

qi t + 〠
N

i=1
Wi x, y qi t ,

18
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Figure 2: The structural finite element mesh with unified grid cells.
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Figure 3: The 1st, 2nd, 3rd, and 5th frequencies of the C-C-C-C
panel with different widths.
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where qi t represents the second derivative of qi t versus
time, and Wi x, y represents the ith vibration mode func-
tion of the panel.

According to the modal orthogonality, after multiplying
both ends of equation (18) by Wi and integrating the new
equation, the ith order equation can be obtained

Miqi + Kiqi = −
4qd
Ma∞

〠
N

j=1
qj ⋅ ∬

∂Wj

∂x
Widxdy

+
qj
U∞

∬WjWidxdy

19

All of N equations can be rewritten as a form of
state-space equation as follows:

By the MFSM described before, the solution for the mode
function can be obtained

W x, y = 〠
∞

m=0
〠
∞

n=0
Amn cos λamx cos λbny

+ 〠
4

l=1
ξlb y 〠

∞

m=0
clm cos λamx

+ ξla x 〠
∞

n=0
dln cos λbny

21

Without loss of generality, W x, y is used to represent
Wi x, y in equation (21). When given a and p, W x, y
can be reduced to the corresponding Wi x, y . Substituting
equation (21) into equations (20a), (20b), and (20c) results
in q1, q2,… , qN , then the aeroelastic response of the plate
in the time domain can be obtained.

4. Results and Discussion

4.1. Vibration Analysis. The vibration of plates with various
boundary conditions and different aspect ratios is discussed
here. First, consider a panel fully simply supported along four
edges, and the parameters of the panel are shown in Case 1 of
Table 1.

The simply supported boundary can be viewed as a spe-
cial case when the linear spring constants become extremely
large, which is set to be a very large number as 1 0 × 108 N/m,
while the rotational springs set to be 0.

Table 2 presents the first six natural frequencies (for
a = b = 1 m) calculated with different truncate numbers
to verify the convergence of the solution. Since the results
show no difference for M =N larger than 20, the series
expansion will be truncated to M =N = 20 in all the subse-
quent cases.

In Table 3, the first six natural frequencies of the panel
are given for the simply supported panels (S-S-S-S) with
different aspect ratios. The frequencies obtained from

q1

⋮

qN

q1

⋮

qN

=
0 I
A21 A22

q1

⋮

qN

q1

⋮

qN

, 20a

A21 =

− 4qd/Ma∞ ∬ ∂W1/∂x W1dxdy − K1
M1

⋯
− 4qd/Ma∞ ∬ ∂WN /∂x W1dxdy

M1

⋮ ⋱ ⋮

− 4qd/Ma∞ ∬ ∂W1/∂x WNdxdy

MN
⋯

− 4qd/Ma∞ ∬ ∂WN /∂x WNdxdy − KN

MN

, 20b

A22 =

−
4qd

Ma∞U∞
∬W1W1dxdy ⋯ −

4qd
Ma∞U∞

∬WNW1dxdy

⋮ ⋱ ⋮

−
4qd

Ma∞U∞
∬WNW1dxdy ⋯ −

4qd
Ma∞U∞

∬WNWNdxdy

20c
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MFSM are compared with results from FEM and Navier’s
analytical solutions. A unified grid cell of size 0 01m ×
0 01m is used to obtain the converged FEM results, as
Figure 2. Obviously, Table 3 shows that the results of
MFSM are very close to the exact solutions. The analytical

method based on MFSM in this article is precise enough
and even much closer to Navier’s analytical solution than
the results based on FEM.

Figure 3 shows the 1st, 2nd, 3rd, and 5th natural frequen-
cies of the panel with four clamped edges (C-C-C-C). The
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Figure 5: Vibration response of the S-S-S-S panel.
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Figure 4: The 1st, 2nd, 3rd, and 5th frequencies of the panel with different widths.
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clamped boundary can be viewed as another special case
when both the linear and rotational spring constants become
extremely large, which are set to be very large numbers as
1 0 × 108 N/m and 1 0 × 108 N/rad. In Figure 3, the 2nd
and 3rd modes of the panel have the same natural frequency
when b = a = 1 0m, and the frequencies calculated by MFSM
are compared with results obtained by FEM. Furthermore,
Figure 4 shows the 1st, 2nd, 3rd, and 5th natural frequencies
of the panel with S-F-S-F (which are simply supported at x
= 0 and x = a and free at y = 0 and y = b) and C-F-C-F
(which are clamped at x = 0 and x = a and free at y = 0 and
y = b) boundary conditions which are obtained by MFSM
and FEM.

4.2. Aeroelastic Analysis. A specific example involving vari-
ous boundary conditions is discussed here. The boundary
condition is gradually shifted from four simply supported
edges (S-S-S-S) to four clamped edges (C-C-C-C). The
parameters of the panel are shown in Case 2 of Table 1.

First, considering the simplest case, S-S-S-S, the method
is suitable for supersonic aeroelastic calculation, when Mach
number is much larger than 1 (Ma∞ ≫ 1). In this example,
the air density at high altitude is 0.3 kg/m3, and the specific
heat capacity ratio κ is 1.4 typicality. From Figure 5, it can
be clearly seen the panel vibration response of convergence
(Figures 5(a) and 5(b)) and divergence (Figures 5(c) and
5(d)). Naturally, the critical velocity between convergence
and divergence is the flutter speed. The flutter speed in this
example is 869m/s, which is very close to the result calcu-
lated by the V-g method, 867.5m/s, seen in Figure 6. The
V-gmethod introduces artificial damping g into the system.
When the artificial damping g is negative, no flutter will
occur, and the point where g equals 0 is considered as the
critical flutter speed. Figure 7 shows the aerodynamic mesh
of the lifting surface employed in the V-g method. The air-
flow is forward along the x-axis, which is parallel to the
chord. When meshing, the chordwise edge of the grid must
be parallel to the airflow. Considering that the shape of the

panel is rectangular, a unified aerodynamic grid cell of size
0 05m × 0 05m is adopted in this paper, shown in Figure 7.

Figure 8 presents the flutter speeds of the panels with one
side keeps 1.0m and the thickness are h = 0 003 m and h =
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Figure 6: V-g figure of the panel (867.5m/s).
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Figure 8: Flutter speeds of panels in different widths with different
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0 0035 m. In Figure 8, the overall trend is that the flutter
speed decreases slowly as the width increases. Moreover, as
the width-length ratio increases, the flutter speeds predicted
by these two methods match better.

Figure 9 shows flutter speeds of panels, which length is
1.0m and the width is 1.3m. The flutter speed increases
with the increasing of thickness. In addition, the results of
MFSM together with the piston theory are slightly lower
than those of reference values computed by the V-g method
in flutter computation, which is based on FEM for the sim-
ulation of the structural behavior and on lifting surface the-
ory for the aerodynamics.

Figure 10 shows that the flutter speed of the panel
increases gradually when the simply supported boundary
shifts to the clamped boundary. In this case, the simply sup-
ported boundary shifts to the clamped boundary, which
means the linear spring constants keep extremely large which
are set as very large numbers such as 1 0 × 1010 N/m, while

the rotational springs Kx0, Kxa, Ky0, and Kyb change from 0
to 1 0 × 1010 N/rad, shown in Table 4. When the stiffness of
torsional springs reaches 1 0 × 106 N/rad, the boundary con-
dition can be considered as clamped, and the flutter speed
results equal to 1668m/s.

5. Conclusion

An analytical method based on the MFSM is proposed to
obtain the aeroelastic time domain response of the elastic
boundary panel. Compared with the results from FEM and
Navier’s analytical solution, the results based on the MFSM
prove to be accurate and reliable. Based on the supersonic
piston theory, the aeroelastic time domain response of the
panel is obtained to analyze the flutter speed. The flutter
speeds of panels with different length-width ratios, thick-
nesses, and elastic boundary conditions are analyzed in
detail. Obviously, this proposed method based on MFSM
and supersonic piston theory is reliable in flutter analysis of
the panel with elastic boundary conditions.

Appendix

The elements of matrices K and M in equation (11) are
defined as

Kn M+1 + m+1 ,n M+1 + m+1 = λam
4 + λbn

4 + 2λam
2λbn

2,

A 1a

Mn M+1 + m+1 ,n M+1 + m+1 = 1, A 1b

where λam =mπ/a, λbn = nπ/b.
B and F in equation (11) are defined as follows, which are

all simplified from equation (10):

B = Bc1 Bc2 Bc3 Bc4 Bd1 Bd2 Bd3 Bd4 , A 2a

F= Fc1 Fc2 Fc3 Fc4 Fd1 Fd2 Fd3 Fd4 ,
A 2b

where

Bcln M+1 + m+1 , m+1 = ξlb y λam
4 − 2

∂2ξlb y
∂y2

λam
2 +

∂4ξlb y
∂y4

,

A 3a
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Figure 10: Flutter speed of different boundary conditions.

Table 4: Boundary conditions.

Case 1 2 3 4 5 6 7 8

Linear springs
(N/m)
kx0, kxa, ky0, kyb

1010 1010 1010 1010 1010 1010 1010 1010

Rotational springs
(N/rad)
Kx0, Kxa, Ky0, Kyb

10 102 103 104 105 106 108 1010

0.0030 0.0032 0.0034 0.0036 0.0038 0.0040
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Figure 9: Flutter speeds of panels in different thicknesses with
width b = 1 3 m.
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Bdln M+1 + m+1 , n+1 = ξla x λbn
4 − 2

∂2ξla x
∂x2

λbn
2 +

∂4ξla x
∂x4

,

A 3b

Fcln M+1 + m+1 , m+1 = ξlb y , A 3c

Fdln M+1 + m+1 , n+1 = ξla x , A 3d

ξ1a x =
9a
4π

sin
πx
2a

−
a

12π
sin

3πx
2a

,

ξ2a x = −
9a
4π

cos
πx
2a

−
a

12π
cos

3πx
2a

,

ξ3a x = a3

π3 sin πx
2a

−
a3

3π3 sin 3πx
2a

,

ξ4a x = −
a3

π3 cos
πx
2a

−
a3

3π3 cos
3πx
2a

,

A 3e

ξ1b y =
9b
4π

sin
πy
2b

−
b

12π
sin

3πy
2b

,

ξ2b y = −
9b
4π

cos
πy
2b

−
b

12π
cos

3πy
2b

,

ξ3b y =
b3

π3 sin
πy
2b

−
b3

3π3 sin
3πy
2b

,

ξ4b y = −
b3

π3 cos
πy
2b

−
b3

3π3 cos
3πy
2b

A 3f
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