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The linear model of an aero engine is effective in a small range of the neighborhood of equilibrium points. According to this
problem, the identification method for the parameter uncertain linear model of the aero engine was proposed. The identification
problem is solved by calculating nonlinear programming. Considering the parameter uncertainty of the model is the critical
point of this research during the optimization process. A parameter uncertain model of an aero engine can be obtained, which
has large use range. This method is used for DGEN380 aero engine. The two parameters, VDD and VE, are defined for
describing error range. Compared with experimental data, the uncertain model of DGEN 380 can simulate the real state of
DGEN380 within 1% error range when ΔPLA < 22%. Compared with another conventional method of identification (recursive
least squares), the parameter uncertain model, established by the method of this research, has a broad application area through
parameter uncertainty of the model.

1. Introduction

The mathematical model describes the relationship among
aero engine state variables and input variables through math-
ematical logic and mathematical language which is often
used for the engineering design of engine control system
and engine fault diagnosis widely [1]. The nonlinear mathe-
matical model is hardly used for the engineering design of
aero engine control system and fault diagnosis on account
of the complicated structure, complex form, and highly non-
linear behavior which can describe the variation of each
parameter in a full envelope range of aero engine [2]. There
is an approximately linear correlation between every param-
eter of aero engine when the state of aero engine approaches
the steady state point. The nonlinear mathematical model is
transformed into a linear model by linearizing at the steady
state point. The linear model is usually used for controller
design. The function of this controller is steady control.
The transient control process between two steady states is
realized by interpolating the gain parameters, namely, gain
scheduling which is a conventional method. Only in this

way, can the control system of aero engine exert the control
function in the full envelope [3].

The aero engine linear model has characteristics of hav-
ing a simple form, fast calculation speed, and others [4],
which are usually used in control system design and fault
diagnosis [1]. However, the difference between the first order
differential of engine state variables and the linear model
slope increases as the distance between the engine state point
and the steady state point increases, which narrows the appli-
cation range of linear model and influences the application
range of the controller and observer near the steady state
point. If the application scope of the aero engine linear model
is more than this limited range, the accuracy of the aero
engine linear model is less than 90%. The small application
range is usually less than 10% of the neighborhood of equilib-
rium point in engineering.

The control problem and diagnosis problem of small-
range fluctuation near the steady state point are the current
research hotspots [5–7]. It not only needs to improve the
control algorithm, the design methods of the observer, and
the estimation method of model uncertainty [8, 9] but also
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needs to improve the model to expand the application range
of the linear model. The purpose of developing the applica-
tion range of the linear model is to make the model more
accurate within a wide range of state parameters. In the con-
troller design process, the influence of uncertainty has been
considered in many types of research. In these researches,
the upper bound of weight, the influence scope of parameter
uncertainty, is added into the control algorithm. The analysis
of influencing parameter uncertainty on the application
range of the linear model is nearly blank in the aero engine
modeling, and a few people studied it.

We focus on the identification model of the aero engine,
which has both a broad application range and a simple form.
The identification model of an aero engine can be obtained
easily. The identification method on the combination of the
least squares with a nonlinear filtering method is developed
by Michael and Farrar, which is used in the model identifica-
tion of F100 aero engine during the early stage of modeling
[10]. The multivariable instrumental variable/approximate
maximum likelihood method of recursive time-series analy-
sis, proposed by Merrill, is used to identify the multivariable
(four inputs-three outputs) dynamics of the Pratt & Whitney
aero engine [11]. Torres et al. [12] attempted to identify the
dynamic of the gas turbine engine offline, mainly at steady
states with stochastic signals. Arkov et al. [13] focused on
real-time identification for transient operations and con-
cluded that an engine system could be averaged to a time-
invariant first- or second-order transfer function by the
extended recursive least squares [13]. The tracking speed
and accuracy for the recursive least squares could be
improved with a different design of forgetting factors. The
effect of using a forgetting factor was to shift the estimating
average toward the most recent data, such as that in the work
of Paleologu et al. [14]. Li et al. [15] have investigated classic
and modified recursive least squares algorithms for online
dynamic identification of gas turbine engines. It seemed that
the recursive least squares algorithm is well known for track-
ing dynamic systems, which is an effective conventional
method of aero engine model identification. However, con-
sidering the parameter uncertainty of the identification
model by recursive least squares is difficult. An identification
method for the aero engine is proposed by this paper which
can evaluate the parameter uncertainty of the aero engine
model. Additionally, this method deals with the identifica-
tion of the model by solving an optimization problem. The
aero engine model may have an extensive application range,
considering the parameter uncertainty of the model.

In this paper, the identification method for the aero
engine parameter uncertain model is proposed. This method
can identify a linear model involving model parameter
uncertainty by solving the optimization problem, which is
detailed in Section 2. The DGEN380 aero engine [16] is
regarded as an object. The parameter uncertain model of
DGEN380 is identified by DGEN380 experimental data in
Sections 3.1 and 3.2. The analysis of the identification of
the DGEN380 model is given in Section 3.3. Meanwhile,
the parameters, VDD and VE, are defined for the error anal-
ysis of the parameter uncertain model, which is stated in Sec-
tion 3.4. An example of comparing a typical least squares

algorithm and the identification method for aero engine
parameter uncertain model is given in Section 3.5. Section 4
is the conclusion of this paper.

2. The Identification Method for the Parameter
Uncertain Model of Aero Engine

The aero engine model can be formulated as follows [17]:

_xabs = f xabs, uabs,H, Ma
� �

,

yabs = g xabs, uabs,H, Ma
� �

,
ð1Þ

where xabs represents the aero engine state vector which con-
cludes shaft speed, temperature, and pressure; uabs represents
the aero engine input vector, including throttle angle corre-
sponding to the fuel flow, the nozzle area, VSV (variable sta-
tor vanes), and VBV (variable bleed valve); yabs represents the
aero engine output vector. H is the flight altitude; Ma is flight
Mach. f and g serve as the nonlinear functions of aero engine
state variables which are vector functions of real values. The
Taylor expansion is used to linearize equation (1) at a par-
ticular steady state point, by which the linear model of
aero engine is obtained. This model can be represented by
as follows:

_x =Αx + Βu,
y = Cx +Du,

ð2Þ

where x represents the state deviation vector of n dimension,
u represents the deviation vector of m dimension, and y rep-
resents the output deviation vector of one dimension. These
deviation variables can be described as follows:

x = xabs − xsta,
u = uabs − usta,
y = yabs − ysta,

ð3Þ

where xsta represents the aero engine steady state vector, usta
represents the aero engine steady input vector, and ysta repre-
sents the aero engine steady output vector. And the steady
variables are used to normalize the deviation variable in
this research.

A steady state point of the aero engine is selected. The
input pulse signal is set, which is the orthogonal vector. The
matrixes A and B in equation (2) are estimated according
to output response.

The static model matrix is discussed first ( _x = 0). The
state of the aero engine is steady. The state deviation vector
and the input deviation vector are formulated as follows:

x =Gu: ð4Þ

The columns of matrix G could be confirmed by the state
response vector of a given input signal u.
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When _x ≠ 0, the state of the aero engine is dynamic.
There is an assumption that matrix A has n eigenvalues,
λ1, λ2,⋯, λn, and n corresponding eigenvectors, v1, v2,
…, vn. Matrix A has m repeated eigenvalue, corresponding
to m linearly independent eigenvectors. Matrix A is diago-
nalized similarly, and equation (5) can be obtained.

Α = TΛT−1, ð5Þ

where T = ½v1, v2,⋯, vn�, Λ = diag ðλ1, λ2,⋯, λnÞ.
The estimate of Matrix A means solving the program-

ming problem (λ1, λ2,⋯, λn and v1, v2, …, vn)

min   〠
N

k=1

Lx kð Þ − NLx kð Þ� �T ⋅W kð Þ ⋅ Lx kð Þ − NLx kð Þ� � Lx kð Þ��( )

=min eTΛT
−1ΔtLx k − 1ð Þ + I − eTΛT

−1Δt
� �

⋅GNLu k − 1ð Þ
n o

,

ð6Þ

where NLxðkÞ represents the discrete values of open loop
state response of the nonlinear system; LxðkÞ represents
equation (2) corresponding to distinct values of state
response of the linear system, accordingly, NLxð0Þ = Lxð0Þ;
NLuðkÞ represents the input vector of the nonlinear system,
which is orthogonal. k = 0, 1,⋯,N , corresponding to t0, t1,
⋯, tN ; and Δt represents the sampling time. In equation
(6), WðkÞ represents the weight matrix, WðkÞ =WTðkÞ,
which is chosen to make the differences between nonlinear
and linear model time responses more similar for all state
variables.

The coefficient matrixes, A and B, of the linear model
are computed using equation (6). Furthermore, the influ-
ence of model parameter uncertainty is considered. Matrix
~A represents matrix A containing parameter uncertainty.
Matrix ~Λ represents diagonal matrix Λ including uncer-
tainty of eigenvalues. If Matrix ~A may be undiagonalized,
Matrix ~Λ represents Jordan matrix Λ including uncertainty
of eigenvalues.

Equation (5) can be formulated as follows:

~A = T~ΛT−1, ð7Þ

where

~λi ∈ ~λi
min, ~λi

maxh i
, i ∈ IR,

Re ~λi
n o

∈ Re ~λi
n omin

, Re ~λi
n omax

� �
, i ∈ IC ,

Im ~λi
n o

∈ Im ~λi
n omin

, Im ~λi
n omax

� �
, i ∈ IC:

ð8Þ

IR means a set of subscript indexes of real characteristic
roots and IC means a set of subscript indexes of complex
characteristic roots. For each of these complex characteristic
roots, there is a complex conjugate one.

The suboptimal estimation of the range of the real parts
and the imaginary parts of the eigenvalues of matrix ~Ameans
that the programming problem is solved again.

~λi
min, ~λi

max, i ∈ IR,

Re ~λi
n omin

, Re ~λi
n omax

, i ∈ IC ,

Im ~λi
n omin

, Im ~λi
n omax

, i ∈ IC ,

min   〠
N

k=1

LUx kð Þ − NLx kð Þ� �T ⋅W kð Þ ⋅ LUx kð Þ − NLx kð Þ� �( )
,

ð9Þ

where NLxð0Þ = LUxð0Þ, k = 0, 1,⋯,N , LUxðkÞ represents the
discrete values of uncertain system state response in equation
(2). The calculation of the objective function in equation (9)
needs N multiple nonlinear programming problems.

LUx kð Þ,

min
M

  〠
N

k=1

LUx kð Þ − NLx kð Þ� �T ⋅W kð Þ ⋅ LUx kð Þ − NLx kð Þ� � LUx kð Þ��( )

=min
M

eT~Λ k−1ð ÞT−1ΔtLUx k − 1ð Þ + I − eT~Λ k−1ð ÞT−1Δt
� �

⋅GNLu k − 1ð Þ
n o

,

M = ~λi
n

k − 1ð Þ ∈ ~λi
min, ~λi

maxh i
, i ∈ IR,

Re ~λi k − 1ð Þ
n o

∈ Re ~λi
n omin

, Re ~λi
n omax

� �
, i ∈ IC ,

Im ~λi k − 1ð Þ
n o

∈ Im ~λi
n omin

, Im ~λi
n omax

� �
, i ∈ IC ,g

ð10Þ
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where

~Λ k − 1ð Þ = diag ~λ1 k − 1ð Þ, ~λ2 k − 1ð Þ,⋯, ~λn k − 1ð Þ
n o

,

W kð Þ =WT kð Þ > 0:
ð11Þ

The weight matrix WðkÞ is used to reduce the difference
between the state response vector of the nonlinear system
and the state response vector of the linear system containing
uncertainty.

The solution of equation (6) is an initial condition to
solve programming problems. The optimal solution of
matrix A and the eigenvalues of matrix A are used as the ini-
tial condition to estimate their uncertain range. The param-
eter uncertain model can be gotten by the calculation of
programming problems in equations (9) and (10). Equations
(9) and (10) are solvable, which means optimization prob-
lem has a nonempty solution set. This problem is proved
in Ref. [18].

3. The Analysis of Identification of
DGEN380 Model

This section is about the application of the identification
method of the parameter uncertain model, which is used to
identify the DGEN380 aero engine model. The start-up
process and shutdown process are ignored. The maximum
continuous power point is selected as a steady state in the
model identification process. The flight altitude is 3048m,
Ma is 0.338, and the throttle angle is 74% at this state point.

The engine state vector x includes the rotation speed of
the high-pressure rotor, the rotation speed of the low-
pressure rotor, the exit pressure of the high-pressure
compressor, and the exit pressure and temperature of the
low-pressure turbine. The engine input variable is fuel flow.
As shown in equation (12), n = 5 and m = 1 can be known.

The state variable N1 represents the speed of the low-
pressure shaft, and the state variable N2 is the speed of the
high-pressure shaft. The state variable P3 represents the
import pressure of the combustor. The state variable P5 rep-
resents the export temperature of the low-pressure turbine,
and the state variable T5 represents the export temperature
of the low-pressure turbine. The input variableWf is the fuel
flow of DGEN380.

xabs = N1,N2, P3, P5, T5½ �T ,
uabs = Wf

� �
:

ð12Þ

A parameter uncertainty model will be obtained. More-
over, a comparison is implemented by experimental data,
the parameter uncertainty model, and another DGEN380
linear model. Then an error analysis is exerted by parameters
VDD and VE.

3.1. DGEN380 Engine Experimental Device. The experimen-
tal device contains a test bench and a control desktop. The

test bench and control desktop are shown in Figures 1
and 2, respectively. The test bench is composed of an
DGEN380 engine, measuring transducers, sensor baron-
esses, and integrators (a blue pillar in Figure 1). The main
functions of the test bench are engine operating, parame-
ter measurement, and signal transmission. The control
desktop is composed of a power lever, a FADEC controller
of DGEN380, and a video screen. The primary functions
of the control desktop are to control the aero engine state
by the power lever, to show engine state and parameter
values, and to monitor the bench state.

The rotor speed of DGEN380 engine is measured by a
magnetoelectric tachometric transducer. N1 speed sensor
locates fan casing. N2 speed sensor determines the motor
starter. P5 is measured by the resonant pressure sensor. The
outlet air of the low-pressure turbine is lead out by a drainage
tube, which flows to the pressure sensor in the testing signal
concentrator. T5 is measured by the thermocouple trans-
ducer. Measured values are transmitted to the testing signal
concentrator by a wiring harness. The detailed description
of the experimental device may be referred to [16].

In the experiment, the parameters are set: N = 1000 and
Δt = 0:025 s.

3.2. The Results of Identification of DGEN380 Parameter
Uncertain Model. The test bench exerts the experiment.
When the DGEN380 is stable at the maximum continuous
power point (PLA = 74%), the pulse-response experiments
are performed.

The experimental data can be used to solve equation (6).
By this method, the linear model of the DGEN380 engine at
the maximum continuous thrust operating point is obtained.
The eigenvalues of this model are shown in Table 1. Matrix A
contains five eigenvalues, among which there are a pair of
conjugate complex features. This model is an initial condi-
tion of the suboptimal estimation.

Capillary interface plate

�ermocouple interfaces

Capillary interfaces

Figure 1: DGEN380 test bench.
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According to Table 1, the suboptimal estimations
(equations (9) and (10)) are solved. By this way, the
DGEN380 parameter uncertain model can be gotten at the
maximum continuous power operating point. The upper
and lower bounds of the eigenvalues of the parameter uncer-
tain model are shown in Table 2.

3.3. Comparison between Simulation Results and Experiment
Results. The purpose of the comparison is (1) to reveal the
error between the state value computed by the parameter
uncertain model and experimental value and (2) to compare
the model behavior between the parameter uncertainty
model and a linear model. This linear model of DGEN380
is selected for comparison that is built at the maximum con-
tinuous power point by NASA Glenn Research Center [17].
This model is often used for DGEN380 controller design
and diagnosis algorithm design which has universality
because of the high accuracy.

The experiment is performed on the test bench. When
the DGEN380 is stable at the maximum continuous power
point (PLA = 74%), the power lever is pushed from PLA =
74% to PLA = 64% suddenly. The experiment may be
recorded. Then, the simulation is implemented by the
parameter uncertain model and the linear model of NASA.
The comparison results are shown in Figures 3–7. It can
be seen from the figures that the trend of each component
of the state vector x is decreasing. The state value
decreases from the steady state value to another value cor-
responding to PLA = 64%. There is a small oscillation in
this dying process.

Compared with those of the linear model, the calculation
results of the parameter uncertain model agree better with
the experimental curve. When ΔPLA = 10%, the trend of
the state variables obtained by the linear model is consistent
with the experimental data. However, there are apparent

55‘’ LCD screen 2 monitoring screens

Cameras’
joystic
control

3 TestLab
screens

TestLab
PC

PLAVGA matrix switcher

FADEC
screen

FADEC
PC

Figure 2: General view of the control desktop.

Table 1: The eigenvalue of the DGEN380 linear model.

Eigenvalue λi λ1 λ2 λ3 λ4 λ5

Value -0.852 -5.605 -14:789 + 0:035j -14:789 − 0:035j -10.210

Table 2: The eigenvalue of the DGEN380 parameter uncertain
model.

Eigenvalue ~λi Lower bound (min) Upper bound (max)

~λ1 -2.175 -0.055

~λ2 -7.520 -2.186

Re ~λ3
n o

-65.125 -8.565

Im ~λ3
n o

0.042 0.068

Re ~λ4
n o

-65.125 -8.565

Im ~λ4
n o

-0.068 -0.042

~λ5 -22.055 -6.311

0.0 0.5 1.0 1.5 2.0 2.5
–0.030

–0.025

–0.020

–0.015

–0.010

–0.005

0.000

N
1

Time (s)

Experimental data
Linear model
Model with uncertainty

Figure 3: The response curve of low-pressure rotor.
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differences between the linear model curve path and the
experimental curve path. The response time and static value
of the linear model are not the same as experimental data.
The simulating results of the parameter uncertain model

are identical with the data obtained from the experiment.
The calculation results of the parameter uncertain model
can reproduce the experimental results with small errors.

The value of state vector change would occur when the
aero engine state moves from one state to another state.
There is not an approximately linear correlation between
parameters of the aero engine when the deviation of the aero
engine state from the steady state is rather significant. At this
time, the f ′ in formula (1) cannot be approximately shown
by the slope of the linear model. There is a large difference
between f ′ and the slope. Therefore, the phenomenon of
model mismatch appears when the aero engine state deviates
from the steady state largely. However, the engine parameter
uncertain model, to estimate the variation range of the coef-
ficient matrix eigenvalues, considers the impact of model
parameter uncertainty, which can offset the influence of the
model mismatch in a field.

Comparing the calculation results of the linear model
with the results of the experiment, the error is more signifi-
cant between the calculation results of the linear model and
experiment data due to linear model mismatch during when
the power lever deviates by 10%. Comparing the calculation
results of the parameter uncertain model with the results of
the experiment, the calculation results of the engine parame-
ter uncertain model agree better with experimental results.

3.4. The Error Analysis of Parameter Uncertain Model.
This section analyzes the applied range of the DGEN380
parameter uncertain model in the maximum continuous
power point.

There are two parameters defined by equations (13)
and (14).

VDD =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
N

k=1

L�x kð Þ−Exp�x kð Þ� �T ⋅W kð Þ ⋅ L�x kð Þ−Exp�x kð Þ� �vuut ,

ð13Þ

VE =max LU�x kð Þ−Exp�x kð Þ�� ��
 �
, ð14Þ

Experimental data
Linear model
Model with uncertainty

0.0 0.5 1.0 1.5 2.0 2.5
–0.030

–0.025

–0.020

–0.015

–0.010

–0.005

0.000

Time (s)

N
2

Figure 4: The response curve of high-pressure rotor.

Experimental data
Linear model
Model with uncertainty

0.0 0.5 1.0 1.5 2.0 2.5
–0.08
–0.07
–0.06
–0.05
–0.04
–0.03
–0.02
–0.01

0.00

Time (s)

P 3

Figure 5: The response curve of the exit of high-pressure
compressor.
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–0.05
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–0.02

–0.01

0.00

0.01

P 5

Time (s)

Experimental data
Linear model
Model with uncertainty

Figure 6: The response curve of the exit of high-pressure turbine.
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Figure 7: The response curve of the exit of low-pressure turbine.
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∃δ > 0,
s:t:  VDD − 0j j < δ,

ð15Þ

where �x represents the relative value, superscript Exp rep-
resents the experiment data, and W represents the weight
matrix. VDD reflects the deviation between the real engine
state and operating state based on the difference between
the calculated results of the linear model and experimental
data. This linear model, built by NASA, has a full applied
range. The smaller the VDD figured, the less distance
between the linear model and real state of aero engine.
When the engine is at the operating point, VDD meets
formula (15). The maximum relative error of the parame-
ter uncertain model can be calculated by VE.

The maximum continuous power point (PLA = 74%) is
regarded as the initial state of DGEN380. VDD and VE are
calculated based on the simulated data and experimental
data, respectively, when ΔPLA is 4%, 7%, 10%, 13%, 16%,
19%, and 22%. Setting WðkÞ = I5∗5, the calculation results
are shown in Figure 8. The red dot line, in Figure 8, indicates
the 1% deviation position.

As the ΔPLA continues to increase, the VDD curve rises
significantly. It manifests that the mismatch of the linear
model is more significant and more substantial as the Δ
PLA increases. When ΔPLA = 7%, the cumulative error of
the state vector x calculated by the linear model reaches 1%;
when ΔPLA > 10%, the cumulative error of the state vector
x exceeds 10%. The farther the PLA is from the steady state
point, the more seriously the linear model mismatches at
the operating position.

As the ΔPLA continues to increase, the VE value gradu-
ally increases. The maximum error between the calculation
results of the parameter uncertain model and experimental
data gradually increases. However, the maximum error
values increase that is no more than 1% slowly. The eight
orange dots, in Figure 8, are all below the, 1% error, red dot
line. When ΔPLA < 22%, the deviation between the calcula-
tion results of the parameter uncertain model and engine real

state is smaller, which can simulate the actual engine state in
1% error range.

3.5. A Simple Example of Comparison of Two Identification
Methods’ Performance. The identification method for the
parameter uncertain model is proposed. Meanwhile, the
parameter uncertain model, obtained by this method, can
keep a small error level in a broad range of engine state devi-
ation from a particular state, from Section 3.3.

The least squares algorithm is well known for model
identification, which is an effective conventional method
of aero engine model identification. The recursive least
squares (RLS) method is a typical representative of the
least squares algorithm. The recursive least squares
method, proposed by Li et al. [15], is an advanced identi-
fication method for an aero engine model. The aero engine
identification model, obtained by the RLS algorithm, has
an excellent performance. So the RLS algorithm and the
identification method for the parameter uncertain model
are both used in aero engine model identification in this
chapter.

The component level model of JT9D of Pratt & Whitney,
a civil high bypass aero engine, is used for the example of this
chapter which is established by NASA Glenn Research Cen-
ter, based on the T-MATS Module of MATLAB/Simulink.
The cruise power point is selected as a steady state in the
model identification process. The flight altitude is 10200m,
Ma is 0.77, and the throttle angle is 54% at this state point.
The engine state vector x includes the rotation speed of the
high-pressure rotor (N2), the rotation speed of the low-
pressure rotor (N1), the exit pressure of the high-pressure
compressor (P3), and the exit pressure and temperature of
the high-pressure turbine (T45). The engine input variable
is fuel flow (Wf ). All of these variables are necessary for
normalization processing.

The experiment is performed on the component level
model of JT9D. An input pulse signal is set. The response
data of the component level model is used for model identi-
fication. Two identification models can be obtained. One is
the parameter uncertain model. Another is the RLS algo-
rithm model.

To compare these models, different ΔPLA values are set.
When the component level model is stable at the cruise
power point (PLA = 54%), (1) the power lever is pushed from
PLA = 54% to PLA = 59% suddenly (ΔPLA = 5%), (2) the
power lever is pushed from PLA = 54% to PLA = 64% sud-
denly ðΔPLA = 10%Þ, and (3) the power lever is pushed from
PLA = 54% to PLA = 69% suddenly (ΔPLA = 15%). The
experimental may be recorded. Then, the simulation is
implemented by the parameter uncertain model and the
RLS algorithm model. The comparison results are shown in
Figure 9. Compared with the RLS algorithm mode, the calcu-
lation results of the parameter uncertain model agree better
with the curve of the component level model.

When ΔPLA = 5%, the curves of the two identification
models agree better with the curve of the component level
model. When ΔPLA > 5%, the difference between the RLS
algorithm model and component level model is more and
more evident. The deviation between the parameter uncertain

0 5 10 15 20 25
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1E-3

0.01
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Figure 8: The relation graph between PLA and VDD, SD.
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model and component level model is tiny. When ΔPLA =
15%, Table 3 describes the value of VDD and VE. From this
table, both VDD and VE values of the RLS algorithm model
are more significant than those of another model. Though the
performance of the RLS algorithm model may be useful, the
performance of the parameter uncertain model is much bet-
ter, especially at ΔPLA = 15%.

The RLS method is a suitable method which is a conven-
tional method in model identification of aero engine. But the
application range of the model identified by RLS is small. The
identification method for the parameter uncertain model can
obtain a linear model by solving the optimization problem.
This method can consider, if it is essential, the parameter
uncertainty of the model, which leads to the parameter
uncertain model having a broad application area.

4. Conclusions

In this paper, an identification method for the aero engine
parameter uncertain model is proposed. This method used
the programming method to deal with the aero engine model

identification problem which considers the influence of
model parameter uncertainty. This method enables obtaining
the bounds for real and imaginary parts of uncertain matrix
eigenvalues of a parameter uncertain model from aero engine
experiment data. Its modeling errors meet the current con-
trol requirements. The method uses nonlinear programming
and can consequently consider any constraints for the esti-
mated bounds for real and imaginary parts of uncertain
matrix eigenvalues.

Based on the DGEN380 aero engine experimental data,
the parameter uncertain model of the DGEN380 engine at
the maximum continuous power point is identified. The dif-
ferences between the parameter uncertain model and the lin-
ear model of DGEN380 used to design controller extensively
can be compared by calculating. The comparison results
indicate that the parameter uncertain model can simulate
the DGEN380 aero engine real state at the maximum contin-
uous power point when ΔPLA = 10%. Then the error range
of the parameter uncertain model is analyzed by the defined
parameters VDD and VE. The analysis results manifest that
the error of the engine parameter uncertain model increases
slowly and is small, as the mismatch of the linear model is
more and more serious. When ΔPLA < 22%, it can simulate
the real engine state in 1% error. The parameter uncertain
model not only has the advantages of the simple form and
fast calculation speed of the linear model but also can main-
tain a small error level in a broad range of engine state devi-
ation from the operating point state. Considering the
parameter uncertainty of the model is the main contribution
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Figure 9: The response curve of two models.

Table 3: The value of VDD and VE (ΔPLA = 15%).

RLS algorithm model Parameter uncertain model

VDD 0.15 0.073

VE 0.022 0.0064
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of this research during the optimization process. The model
is used for the design of aero engine fault diagnosis and
engine control algorithm, which can expand the application
range of diagnostic methods and control methods in lower
error intervals.

Data Availability

The [DATA_6015270.xlsx] data used to support the findings
of this study may be released upon application to the School
of Mechanical Engineering of the Hebei University of
Technology, which can be contacted through Dr. Shuai Liu
(e-mail: caucliushuai@163.com).
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