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In this paper, some analytical results via extended Galerkin method on free vibration characteristics of an anisotropic composite
beam, which is modeled as a nonuniform thin-walled structure with a chordwise asymmetric closed cross-section and corrected
the warping functions, are newly presented. For this study, nonclassical parameters such as warping restraint, transverse shear
flexibility, and structural couplings induced by two special configurations, such as circumferentially uniform stiffness (CUS) and
circumferentially asymmetric stiffness (CAS), are incorporated. And also, design parameters of the beam associated with preset
angles, pretwist angles, taper ratios, and section ratios are additionally investigated. The results of this study could play an
important role in more efficient designs of composite thin-walled beams.

1. Introduction

In the theoretical explicit analyses of thin-walled beams,
the closed cross-sections of most aircraft wings and rotor
blades have been using almost symmetrical contours in the
related literatures based on the author’s knowledge [1–9]. A
thin-walled beam theory originally developed by Song in
his doctoral dissertation [2] has been extensively used in
the literature for the study of dynamic response [3, 5, 6],
structural control [4, 7], and static aeroelasticity [8, 9].

However, in general, aircraft wings have an asymmetrical
cross-section in the chordwise direction. Therefore, in this
study, we investigated cross-sectional characteristics through
the mathematical modeling of asymmetric cross-section and
the correction of the warping function. In order to compen-
sate the warping function of the asymmetric cross-section
in the chordwise direction, the shape function of the cross-
section contour is derived on the basis of an arbitrary pole
of the cross-section and the shape function based on the pole
is determined so as to satisfy the equilibrium conditions of
the warping constraint. And then, the relation of the geomet-
ric cross-section is modified based on the pole of the new

position and the warping function is corrected and applied
to the governing equation.

In this paper, the beam modeled as a chordwise asym-
metric cross-section is analyzed for free vibration character-
istics numerically, and in order to investigate the effect of
the asymmetry of the cross-section, a comparative study
was conducted on a symmetrical cross-section model with
the same chordwise length and cross-section thickness as a
special case of the considered model. In the mathematical
modeling, warping restraint, transverse shear flexibility, and
structural couplings induced by circumferentially uniform
stiffness (CUS) and circumferentially asymmetric stiffness
(CAS) configurations [1, 4] are considered.

In addition, the present paper examined the effects of the
following parameters, such as preset angle, pretwist angle,
taper ratio, and section ratio on the eigenfrequencies of the
beam. Also, we compared the case where the warping func-
tion was corrected and the case where the warping function
was not corrected. As a result, in this study, numerical exam-
ples were carefully analyzed and compared to investigate the
effect of various design parameters on the natural frequencies
that provide the basis for dynamic characteristics of beams.
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The results presented as families of curves or tables,
which may be used for the direct estimation of the eigenfre-
quencies for any given beam.

2. Mathematical Modeling

2.1. Basic Assumptions. The following basic assumptions
have been used in this study [1, 2, 4, 9]:

(i) The cross-sections do not deform within their own
planes, i.e., no in-plane deformations are allowed

(ii) Transverse shear effects are incorporated. More-
over, the transverse shear strains γxy and γyz are uni-
form over the entire beam cross-section

(iii) Although the rate of twist is assumed as constant in
Saint-Venant torsion, it cannot be assumed to be
constant along the beam axis while a warping
restraint exists but it has been assumed to be a func-
tion of the axis coordinates in this paper

(iv) Primary and secondary warping effects are suffi-
ciently important to be included. The first one is
related to the warping displacement of points on
the midline cross-section and the second one is
related to the points off the midline contour

(v) In the absence of an internal pressure field, the
resultant hoop stress is negligibly small as compared
to the remaining stresses

(vi) The beam has a nonuniform and asymmetric lami-
nar flow airfoil profile, and in this sense, the beam is
considered to be linearly tapered in both the hori-
zontal and vertical planes

(vii) Deformations are small and linear elasticity theory
has been applied

2.2. Geometric Configuration of the Model. In this study,
Figure 1 shows a chordwise asymmetric closed cross-section
of a composite thin-walled cantilevered beam composed of
2 contours, that is, biconvex and ellipse. The pole (Pm) of
the section is located at connection points of the 2 different
contours on the chord line.

And also, the considered beam in Figure 2 is modeled as
an aircraft wing with preset angle (α0, so-called initial angle

of attack), pretwist angle (γ0), taper ratio (σ), and section
ratio (ξ) for the analysis.

2.3. Governing Equations. In principle of the theory for
beams, shells and plates, and massive bodies by using the
equations of three-dimensional continuum theory should
be able to derive with taking advantage of the factors which
serve to distinguish each type of structure. In this sense, the
theory of plates and shells constitutes a two-dimensional
approximation of the three-dimensional elasticity theory,
while solid cross-section and thin/thick-walled beams are both
one-dimensional approximations of the three-dimensional
continuum theory [1, 2].

Therefore, using the equations of the 3-D continuum the-
ory, the considered thin-walled beam model was induced to
1-D equations as follows but omitted the process of the trans-
formation in this paper; see reference [1].

u x, y, z, t = u0 z, t − y s, z − n
dx
ds

ϕ z, t ,

v x, y, z, t = v0 z, t − x s, z − n
dy
ds

ϕ z, t ,

w x, y, z, t =w0 z, t + x s, z θy z, t
+ y s, z θx z, t − Fw s, z ϕ′ z, t

+ n
dy
ds

θy z, t −
dx
ds

θx z, t − a s, z ϕ′ z, t ,

1

where s denotes the arc length measured along the circumfer-
ential coordinate (whose origin is arbitrarily but conveniently
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Figure 1: A chordwise asymmetric closed cross-section.
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Figure 2: The mathematical model.
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chosen) and n denotes the coordinate in the thickness direc-
tion. In addition,

θx z, t = γyz z, t − v0′ z, t ,

θy z, t = γxz z, t − u0′ z, t ,

Fw s, z =
s

0
rn s, z − ψ s, z ds = F1 s ,

a s, z = −x s, z dx
ds

− y s, z dy
ds

= F2 n, s ,

rn s, z = x s, z dy
ds

− y s, z dx
ds

,

ψ s, z = rn s, z ds
ds torsional function ,

2

where ⋅ ds is the integral along the closed midline contour
and rn s = x s l + y s m is a geometric quantity (see
Figure 3), where l = cos n, x ,m = sin n, x denote direction
cosines. Also, F1 s is the primary warping function and F2
n, s is the secondary warping function.

The boundary value problem, which consists of differen-
tial equations and boundary conditions, can be conveniently
derived using the extended Hamilton’s principle, which is
as follows:

t2

t1

δT − δV + δW dt = 0,

δu0 = δv0 = δw0 = δθy = δθx = δϕ = 0 at t = t1, t2,
3

where δT and δV denote the kinetic energy and strain
energy, respectively, and δW is the virtual work due to
nonconservative forces.

As a result, the governing equations and boundary condi-
tions are as follows but also omitted the process of the trans-
formation in this paper; see reference [1].

𝛼0 = 0°, 𝛾0 = 0°, 𝜎= cT/cR = 0.6, 𝜉= b/c= 0.4, 𝜂= z/L= 1.0

Area S1 =
−9.37E-05 

Area S2 =
3.38E-06 Area S3 =

8.26E-06 
Area S4 =
2.75E-06 

s

Model A0.0004

0.0003

0.0002
F1 (s)
0.0001

0.0000

−0.0001

0.00 0.05 0.10 0.15 0.20 0.25

Figure 5: Noncorrected primary warping functions of Model A.
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Figure 6: Corrected primary warping functions of Model A.

Table 1: Material properties and geometrical dimensions.

E1 = 206 75 GPa, E2 = E3 = 5 17 GPa, G1 = 3 10 GPa, G2 = G3 =
2 55 GPa
ν21 = ν31 = 0 00625, ν32 = 0 25, ρ = 1528 15 kg/m3

Chord length: c + a = 0 2 m, section thickness: b = ξ ∗ c

Semispan: L = 2 0 m, section contour thickness: h = 0 004 m
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2.3.1. Governing Equations.

δu0 a41w0′ + a42θy′ + a43θx′ + a44 θy + u0′

+ a45 θx + v0′ − a46ϕ″ + a47ϕ′ ′ − b1u0 − b2ϕ = 0,

δv0 a51w0′ + a52θy′ + a53θx′ + a54 θy + u0′

+ a55 θx + v0′ − a56ϕ″ + a57ϕ′ ′ − b1v0 + b3ϕ = 0,

δw0 a11w0′ + a12θy′ + a13θx′ + a14 θy + u0′ + a15 θx + v0′

− a16ϕ″ + a17ϕ′ ′ − b1w0 + b3θy + b2θx − b7ϕ = 0,

δθy a21w0′ + a22θy′ + a23θx′ + a24 θy + u0′

+ a25 θx + v0′ − a26ϕ″ + a27ϕ′ ′ − a41w0′

+ a42θy′ + a43θx′ + a44 θy + u0′ + a45 θx + v0′

− a46ϕ″ + a47ϕ′ − b3w0 + b5θy + b6θx − b9ϕ′

+ b15θy − b13θx − b17ϕ′ = 0,

δθx a31w0′ + a32θy′ + a33θx′ + a34 θy + u0′

+ a35 θx + v0′ − a36ϕ″ + a37ϕ′ ′ − a51w0′

+ a52θy′ + a53θx′ + a54 θy + u0′ + a55 θx + v0′

− a56ϕ″ + a57ϕ′ − b2w0 + b6θy + b4θx − b8ϕ′

− b13θy + b14θx + b16ϕ′ = 0,

δϕ a71w0′ + a72θy′ + a73θx′ + a74 θy + u0′

+ a75 θx + v0′ − a76ϕ″ + a77ϕ′ ′ − a61w0′

+ a62θy′ + a63θx′ + a64 θy + u0′ + a65 θx + v0′

− a66ϕ″ + a67ϕ′ − b4 + b5 + b14 + b15 ϕ

− b3v0 + b2u0 − −b7w0 − b9θy − b8θx

+ b10ϕ′ − b17θy + b16θx + b18ϕ′ = 0

4

2.3.2. Boundary Conditions.

δu0 a41w0′ + a42θy′ + a43θx′ + a44 θy + u0′

+ a45 θx + v0′ − a46ϕ″ + a47ϕ′ = 0,

δv0 a51w0′ + a52θy′ + a53θx′ + a54 θy + u0′

+ a55 θx + v0′ − a56ϕ″ + a57ϕ′ = 0,

δw0 a11w0′ + a12θy′ + a13θx′ + a14 θy + u0′

+ a15 θx + v0′ − a16ϕ″ + a17ϕ′ = 0,

δθy a21w0′ + a22θy′ + a23θx′ + a24 θy + u0′

+ a25 θx + v0′ − a26ϕ″ + a27ϕ′ = 0,

δθx a31w0′ + a32θy′ + a33θx′ + a34 θy + u0′

+ a35 θx + v0′ − a36ϕ″ + a37ϕ′ = 0,

δϕ a71w0′ + a72θy′ + a73θx′ + a74 θy + u0′

+ a75 θx + v0′ − a76ϕ″ + a77ϕ′ − a61w0′ + a62θy′

+ a63θx′ + a64 θy + u0′ + a65 θx + v0′ − a66ϕ″

+ a67ϕ′ ′ − −b7w0 − b9θy − b8θx + b10ϕ′

− b17θy + b16θx + b18ϕ′ = 0,

δϕ′ a61w0′ + a62θy′ + a63θx′ + a64 θy + u0′

+ a65 θx + v0′ − a66ϕ″ + a67ϕ′ = 0,

5

where aij i, j = 1, 2,… , 6 are stiffness coefficients and
bj j = 1, 2,… , 18 are mass coefficients.

3. Numerical Analysis and Discussion

3.1. Material Properties and Geometrical Dimensions.
Wing structures modeled as a cantilevered thin-walled beam
of a chordwise asymmetric closed cross-section made of
T300/5208 carbon epoxy material are considered for numer-
ical simulations. Their geometrical dimensions and material
properties are shown in Table 1.

3.2. Correction of the Primary Warping Functions. The warp-
ing displacement in pure twist can be obtained as the product
of the warping function and the rate of twist [1, 2].

w s, z, t = F1 s ϕ′ z, t , 6

where F1 s = s
0 λ − rn ds + C, the constant C being deter-

mined by satisfying the following warping equilibrium
condition:

F1 s ds = 0, 7

thus yielding

C = F1ds
ds

8
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In equation (7), ⋅ ds denotes the integration around
the whole midline contour of the cross-section.

Note that fulfillment of F1ds = 0 implies

K

∂w
∂s

ds = 0,  K = 1, 2,… ,N , 9

and vice-versa [1].
From the above relations, equations (6)–(9), the warping

functions could be corrected for the model (see Figure 4) as
the following procedures.

Step 1. In advance, the geometrical shape functions of the
contour are derived as follows:

For an ellipse contour, from x2/a2 + y2/b2 = 1,

x = ±a cos φ,
y = ±b sin φ

10

For a biconvex contour, from x2 + y + R cos θ0 2 = R2 at
the upper,

x = ±R sin φ,
y = ±R cos φ − R cos θ0

11

And from x2 + y − R cos θ0 2 = R2 at the lower,

x = ±R sin φ,
y = ±R cos φ + R cos θ0

12

And also, the length and the area of the contours are

Ω =Ωe +Ωb,
β = βe + βb,

Ωb =
R2 2θ0 − sin 2θ0

2 ,

Ωe =
πab
2 ,

βe = 2cEm,
βb = 2Rθ0,

13

where Em is the complete elliptical integral (m = 1 − b2/a2,
where a ≥ b), Ω and β are the all area and all length of the
contours, and ⋅ e and ⋅ b mean the physical quantities of
the ellipse and biconvex contours, respectively.

From the above relations, we have the geometrical shape
functions of the contour as follows:

s0 ≤ s ≤ s1 xP1 = −R sin s
R

,

yP1 = b − R + R cos s
R

,

s1 ≤ s ≤ s2 xP2 = −R sin βb − s
R

,

yP2 = b − R + R cos βb − s
R

,

s2 ≤ s ≤ s3 xP3 = −R sin π βb − s
βe

,

yP3 = −b cos π βb − s
βe

,

s3 ≤ s ≤ s4 xP4 = −R sin π βb − s
βe

,

yP4 = −b cos π βb − s
βe

14

Step 2. And then, for correction of the warping functions, so
as to satisfy equilibrium condition (7), the pole (Pm) should
be translated to the new one (Pn) and also the shape func-
tions (equation (14)) modified as follows:

s0 ≤ s ≤ s1 xP1 = xc − R sin s
R

,

yP1 = b − R + R cos s
R

,

s1 ≤ s ≤ s2 xP2 = xc − R sin βb − s
R

,

yP2 = b − R + R cos βb − s
R

,

s2 ≤ s ≤ s3 xP3 = xc − R sin π βb − s
βe

,

yP3 = −b cos π βb − s
βe

,

s3 ≤ s ≤ s4 xP4 = xc − R sin π βb − s
βe

,

yP4 = −b cos π βb − s
βe

,

15

Table 2: Mass coefficients of Model A and Model C for CUS and CAS.

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 b16 b17 b18
α0 = 0 and γ0 = 0 S A S S A S S S S A S

α0 ≠ 0 or γ0 ≠ 0 S A A S S S A A S S S S A A S
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where xc is a translation quantity along the chordwise (see
Figure 4), that is,

xc =
ac csc θ0/2 2 −2Em + π θ0 − πθ0 cos θ0

+Em sin 2θ0
4 cθ0 + aEm sin θ0

16

To verify the above results through an example, in case of
the noncorrected primary warping functions (equation (14)),
the function’s graph can be depicted in Figure 5. In Figure 5,
the sum of the area based on the x-axis is not zero. That
means that the warping function should be corrected [1].
Therefore, from the corrected warping functions (equations
(15) and (16)), Figure 6 can be drawn and shows that the
all area is zero. As a result, the above relations, equations
(15) and (16), will be applied to governing equations and
boundary conditions of the beam for analysis.

3.3. Characteristics of the Cross-Section. For a survey of the
characteristics of the chordwise asymmetric closed cross-
section (Model A), using the corrected warping functions,
mass coefficients bj and stiffness coefficients aij of equations
(4) and (5) were found. The details of the mass and stiffness
coefficients could be found in reference [1], which are equa-
tions (4.1-4) for mass coefficients and Tables 4.3-1 for stiff-
ness coefficients of chapter 4. The results of the nonzero
coefficients were provided in Tables 2 and 3 for comparing
between Model A and a symmetric one (Model C, see
Figure 7) according to a preset angle (α0) and a pretwist angle
(γ0) of CUS and CAS configurations for each. In the tables,
“S” entries are valued elements of the symmetric section
(Model C) and “A” entries are those of the asymmetric sec-
tion (Model A) in addition to the results of Model C.

And then, stiffness coefficients aij = aji in cases of
(α0 = 0° and γ0 = 0°) and (α0 = 4° and γ0 = 10°) were depicted
in Figures 8 and 9 for CUS and CAS at η = 1 0, σ = 0 6, and
ξ = 0 4. These figures show that a14, a15, a24, a25, a27, a34,
a35, a37, a45, a46, a56, and a67 have asymmetric values and
the others have symmetric values at a ply angle of 90°.

Table 3: Stiffness coefficients of Model A and Model C.

(a)

CUS: α0 = 0 and γ0 = 0
aij 1 2 3 4 5 6 7

1 S A S

2 S S A

3 S S A

4 S A

5 S

6 Sym. S

7 S

(b)

CAS: α0 = 0 and γ0 = 0
aij 1 2 3 4 5 6 7

1 S A S

2 S A

3 S A S

4 S

5 S S

6 Sym. S A

7 S

(c)

CUS: α0 ≠ 0 or γ0 ≠ 0
aij 1 2 3 4 5 6 7

1 S S A S

2 S A S A S

3 S S S A

4 S A S

5 S A

6 Sym. S

7 S

(d)

CAS: α0 ≠ 0 or γ0 ≠ 0
aij 1 2 3 4 5 6 7

1 S S A S A

2 S A S A A A

3 S A A S S

4 S A A

5 S S

6 Sym. S A

7 S
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Figure 7: Model B and Model C for comparing.
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Furthermore, Table 4 shows that some stiffness coeffi-
cients of the model have different values between α0 = 0°
and γ0 = 0° and α0 ≠ 0° or γ0 ≠ 0° and some are the same or

the others only appeared in case of α0 ≠ 0° or γ0 ≠ 0°. And
especially, when i = j, aii have all the same values for CUS
and CAS configurations.
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Figure 9: Stiffness coefficients aij = aji vs. ply angle of Model A for CAS.
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3.4. Eigenfrequency of the Model

3.4.1. Stiffness and Mass Matrices. The eigenvalue problem is
discretized by representing in the form via extended Galerkin
method (EGM):

u0 z, t = 〠
N

j=1
ajψ

1
j z ,

v0 z, t = 〠
N

j=1
bjψ

2
j z ,

w0 z, t = 〠
N

j=1
cjψ

3
j z ,

θy z, t = 〠
N

j=1
djψ

4
j z ,

θx z, t = 〠
N

j=1
ejψ

5
j z ,

ϕ z, t = 〠
N

j=1
f jψ

6
j z ,

17

where ψ r
j are trial functions and have to satisfy the geomet-

rical boundary conditions at z = 0 and also, aj, bj, cj, dj, ej,
and f j are arbitrary coefficients. Now, the discretization is
accomplished directly in the Hamilton’s principle functional
and then written in a matrix form as follows:

⋯

⋮ Kpq ⋮

⋯

aj

⋮

f j

− ω2

⋯

⋮ Mpq ⋮

⋯

aj

⋮

f j

=

Q1

⋮

Q6

,

18

where Kpq and Mpq are stiffness and mass matrices,
respectively, and Qr r = 1, 2,… , 6 is a force vector.

Similarly, for the survey of the characteristics of the
chordwise asymmetric closed cross-section (Model A), using
the corrected warping functions, the mass and stiffness
matrices of equation (18) were found. The results of the non-
zero coefficients were provided in Tables 5 and 6 for compar-
ing between Model A and a symmetric one (Model C, see
Figure 7) according to a preset angle (α0) and a pretwist
angle (γ0) of CUS and CAS configurations for each. In the
tables, “S” entries are valued elements of the symmetric sec-
tion (Model C) and “A” entries are those of the asymmetric
section (Model A) in addition to Model C.

At this point, Table 5 shows that the stiffness matrix
for CAS configuration is composed of the same elements

between Model A and Model C, in cases of α0 = 0 and γ0 =
0 and α0 ≠ 0 or γ0 ≠ 0. And also, mass matrices have all the
same values for CUS and CAS configurations at any case.

3.4.2. Effects of Preset Angle and Pretwist Angle on
Eigenfrequency. In order to investigate the effects of preset
and pretwist angles on eigenfrequencies calculated for Model
A, both CUS and CAS configurations. The results are shown
in Figure 10 and Table 7.

In Figure 10 and Table 7, preset and pretwist angles have
no near effects on eigenfrequencies; nevertheless, the differ-
ences exist but very negligibly small.

3.4.3. Effects of Correction of the Primary Warping Functions.
Next, based on ply angles, the effects of corrected (CW) and
noncorrected (NCW) warping functions on eigenfrequencies
were estimated for Model A, both CUS and CAS configura-
tions. The results are shown in Figure 11 and Table 8.

In Figure 11 and Table 8, the effects of corrected (CW)
and noncorrected (NCW) warping functions on eigenfre-
quencies were observed to have very small differences for
ply angles. However, for precise calculation, the primary
warping function should be properly corrected according to
the warping equilibrium condition from equations (6)–(9).

3.4.4. Effects of Geometrical Parameters. From now on, the
effects of geometrical parameters (α0, γ0, σ, and ξ) on eigen-
frequencies were investigated for Model A, both CUS and
CAS configurations.

(1) Preset Angle, α0. After calculating the eigenfrequencies via
preset angles α0, the results are shown in Figure 12. Gener-
ally, from the results, the preset angle effects on the eigenfre-
quencies are very insignificant.

(2) Pretwist Angle, γ0. Also, after calculating the eigenfre-
quencies via pretwist angles γ0, the results are shown in
Figure 13. As a result, lower-order eigenfrequencies were
not almost affected by the pretwist angle but the higher
modes increase the effects which is associated with the preset
angles being higher.

(3) Taper Ratio, σ. Next, the eigenfrequencies via taper
ratios σ of the beam were found. The results are shown in
Figure 14. In this case, the taper ratio has more effect on

Table 4: Nonzero stiffness coefficients of Model A.

CUS aij = aji

Different values a11, a17, a25, a34, a66, a77

Same values a12, a22, a27, a33, a36, a44, a46, a55
Only α0 ≠ 0 or γ0 ≠ 0 a13, a23, a26, a37, a45, a56

CAS aij = aji

Different values a11, a66, a67, a77

Same values a12, a14, a22, a24, a33, a36, a37, a44, a55, a56
Only α0 ≠ 0 or γ0 ≠ 0 a13, a15, a23, a25, a26, a27, a34, a35, a45, a46
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the eigenfrequencies related to the higher modes. The first
and second eigenfrequencies decrease which is associated
with the taper ratio being higher and the third or more eigen-
frequencies increase along the taper ratio being higher.

(4) Section Ratio, ξ. Finally, the eigenfrequencies via section
ratios ξ of the beam were computed. The results are shown
in Figure 15.

Figure 15 shows that the eigenfrequencies via section
ratios have irregular trends for each. This is because of the
characteristic that circles, squares, etc. have no values for pri-
mary warping functions [1], that is, see Figure 16, the pri-
mary function of the ellipse contour of Model A has almost
zero values at ξ = 0 7716. As a result, the effects of section
ratio on the eigenfrequencies exist but the substantial factor
of the effects is not section ratios but contour shapes.

3.4.5. Comparison of Model B and Model C. For the compar-
ison with a symmetric section, when a = c in Model A, Model
A is fixed to Model B (Figure 7). And then, the eigenfrequen-
cies of Model B and Model C were compared to each other.
The results are shown in Figure 17.

In Figure 17, Model C has symmetric eigenfrequencies
at a ply angle of 90°, but on the contrary, Model B has
not. Also, it is notable that CUS and CAS have the same
values at ply angles 0°, 90°, and 180° for each, and especially,
ω2 of CAS of Model B has an observable asymmetric curve of
eigenfrequency which is one of vertical transverse shear
vibration modes.

4. Conclusion

A lot of effort and attention are needed in deriving and cor-
recting the warping functions from the geometric relationship

Table 6: Mass matrix Mpq of Model A and Model C.

(a)

CUS & CAS: α0 = 0 and γ0 = 0
p

q 1 2 3 4 5 6

1 S

2 S S

3 S S

4 S S

5 S

6 Sym. S

(b)

CUS & CAS: α0 ≠ 0 or γ0 ≠ 0
p

q 1 2 3 4 5 6

1 S S

2 S S

3 S S S

4 S S S

5 S S

6 Sym. S

Table 5: Stiffness matrix Kpq of Model A and Model C.

(a)

CUS: α0 = 0 and γ0 = 0
p

q 1 2 3 4 5 6

1 S S S A

2 S S S

3 S A S

4 S S A

5 S A

6 Sym. S

(b)

CAS: α0 = 0 and γ0 = 0
p

q 1 2 3 4 5 6

1 S S S

2 S S S

3 S S

4 S S

5 S

6 Sym. S

(c)

CUS: α0 ≠ 0 or γ0 ≠ 0
p

q 1 2 3 4 5 6

1 S S S S A

2 S S S A

3 S A A S

4 S S A

5 S A

6 Sym. S

(d)

CAS: α0 ≠ 0 or γ0 ≠ 0
p

q 1 2 3 4 5 6

1 S S S S S S

2 S S S S S

3 S S S

4 S S S

5 S S

6 Sym. S
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Figure 10: Eigenfrequencies vs. ply angle of Model A via α0 = 0 and γ0 = 0 for CUS and CAS.

Table 7: Eigenfrequencies of Model A via α0 = 0 and γ0 = 0 for CUS and CAS.

CUS (°) ω1 (rad/s) ω2 (rad/s) ω3 (rad/s)
θ α0 = 0, γ0 = 0 α0 = 4, γ0 = 10 α0 = 0, γ0 = 0 α0 = 4, γ0 = 10 α0 = 0, γ0 = 0 α0 = 4, γ0 = 10
0 51.1874 51.2014 110.305 110.096 260.03 260.587

45 63.8732 63.9046 150.383 149.814 324.784 326.814

90 301.001 301.106 595.863 594.734 1068.34 1068.17

135 63.8728 63.8881 150.383 150.215 324.785 324.6

180 51.1874 51.2014 110.305 110.096 260.03 260.587

0 51.1874 51.2008 110.305 110.096 260.03 260.57

45 64.6077 64.8452 159.239 158.803 328.334 329.249

90 301.001 301.106 595.863 594.734 1068.34 1068.17

135 63.9356 63.6511 161.385 160.896 324.406 325.731

180 51.1874 51.2008 110.305 110.096 260.03 260.57
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Figure 11: Eigenfrequencies vs. ply angle of Model A via CW and NCW for CUS and CAS.
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Table 8: Eigenfrequencies of Model A via CW and NCW for CUS and CAS.

CUS (°) ω1 (rad/s) ω2 (rad/s) ω3 (rad/s)
θ CW NCW CW NCW CW NCW

0 51.1874 51.1852 110.305 110.303 260.03 260.026

45 63.8732 63.8757 150.383 150.38 324.784 324.81

90 301.001 301.359 595.863 595.858 1068.34 1065.79

135 63.8728 63.8744 150.383 150.381 324.785 324.812

180 51.1874 51.1852 110.305 110.303 260.03 260.026

0 51.1874 51.1852 110.305 110.303 260.03 260.026

45 64.6077 64.0606 159.239 159.237 328.334 328.122

90 301.001 301.362 595.863 595.858 1068.34 1065.83

135 63.9356 63.7094 161.385 161.381 324.406 325.027

180 51.1874 51.1844 110.305 110.303 260.03 260.028
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Figure 12: Eigenfrequencies vs. ply angle of Model A via α0 = 0 for CUS and CAS.
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Figure 13: Eigenfrequencies vs. ply angle of Model A via γ0 = 0 for CUS and CAS.
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of the chordwise asymmetric closed cross-sections. However,
this is an indispensable procedure for initial sizing through
analytical methods in the early stages of design development,
such as aircraft wings and rotor blades.

For this purpose, in this paper, a model with a chordwise
asymmetric closed cross-section (Model A) of a composite
thin-walled beam was selected considering the contour

shape for generalization of chordwise asymmetric closed
cross-sections. And then, mathematical modeling was car-
ried out by modifying the warping functions of the asymmet-
ric cross-section and considering the transverse shear effect,
warping restraint effect, and geometrical parameters, such
as preset angle (α0), pretwist angle (γ0), taper ratio (σ), and
section ratio (ξ) of the beam.

0.0E + 00

2.0E + 02

4.0E + 02

6.0E + 02

8.0E + 02

1.0E + 03

1.2E + 03

0.2 0.4 0.6 0.8 1.0
𝜔4
𝜔5

𝜔i

𝜎

𝜔1
𝜔2
𝜔3

𝜔4
𝜔5

𝜔1
𝜔2
𝜔3

0.0E + 00

2.0E + 02

4.0E + 02

6.0E + 02

8.0E + 02

1.0E + 03

1.2E + 03

0.2 0.4 0.6 0.8 1.0

𝜔i

𝜎

CUS: 𝜃 = 45°, 𝛼0 = 0°, 𝛾0 = 0°, 𝜉 = 0.4 CAS: 𝜃 = 45°, 𝛼0 = 0°, 𝛾0 = 0°, 𝜉 = 0.4 

Figure 14: Eigenfrequencies vs. ply angle of Model A via σ for CUS and CAS.
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Figure 15: Eigenfrequencies vs. ply angle of Model A via ξ for CUS and CAS.
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Based on the mathematical modeling with the corrected
warping function, mass coefficients, stiffness coefficients,
and eigenfrequencies of the beamwith a chordwise asymmet-
ric closed cross-section were investigated for the CUS and
CAS configurations of Model A. In addition, the present
paper examined the effects of the following parameters: pre-
set angle, pretwist angle, taper ratio, and section ratio of the
beam. The results are presented as families of curves and
tables, which may be used for the direct estimation of
the eigenfrequencies for any given beam. Also, a comparative
study was conducted on the symmetrical cross-section
model (Model C) and the symmetrical cross-section model

(Model B) with same chord length and section thickness
and the results were also provided.

From the above results, it is shown that the theoretical
explicit analysis of the thin-walled beam with chordwise
asymmetric closed cross-sections through the correction
technique of the warping functions proposed in this study
is possible and can be applied to the field of dynamic charac-
teristics and aeroelasticity and so on. As a future research
work, other lay-up schemes which may yield different elastic
couplings might be considered. Moreover, in order to obtain
more practical results, the multicell theory as well as stiff-
eners (spars and ribs) of the wing should be considered.
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Figure 16: Primary warping function of Model A at ξ = 0 7716.
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Figure 17: Eigenfrequencies of Model B and Model C for CUS and CAS.
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