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An adaptive saturated neural network (NN) controller is developed for 6 degree-of-freedom (6DOF) spacecraft tracking, and its
hardware-in-the-loop experimental validation is tested on the ground-based test facility. To overcome the dynamics
uncertainties and prevent the large control saturation caused by the large tracking error at the beginning operation, a saturated
radial basis function neural network (RBFNN) is introduced in the controller design, where the approximate error is
counteracted by an adaptive continuous robust term. In addition, an auxiliary dynamical system is employed to compensate for
the control saturation. It is proved that the ultimate boundedness of the closed-loop system is achieved. Besides, the proposed
controller is implemented into a testbed facility to show the final operational reliability via hardware-in-the-loop experiments,
where the experimental scenario describes that the simulator is tracking a planar trajectory while synchronizing its attitude with
the desired angle. Experimental results illustrate that the proposed controller ensures that the simulator can track a preassigned
trajectory with robustness to unknown inertial parameters and disturbances.

1. Introduction

In recent few decades, spacecraft control has been attracting
widespread interest because of its typical orbit applications,
such as formation flying, construction of space station, and
space surveillance and capturing, rendezvous, and docking.
Since the highly nonlinear character arising from 6DOF
dynamics in the presence of disturbance and parametric
uncertainty would bring more difficulties, it is still challeng-
ing to design high-performance controllers for spacecraft.
However, most previous work has only focused on the con-
troller design without perhaps the most critical experimental
validations [1].

In previous studies, different controllers have been found
to be related to 6DOF spacecraft control problems, such as
PD+ controller [2], sliding surface controller [3], and distur-
bance observer-based controller [4, 5]. However, controllers
in [2–5] have only been carried out in the presence of exact
inertial parameters or disturbances (or their bounds). A

number of techniques have been developed to solve the con-
trol problems of 6DOF spacecraft with unavailable uncer-
tainties [6–13]. For 6DOF spacecraft operations subject to
unknown parameters and disturbances, adaptive controllers
[6, 14, 15] are synthesized. In addition, adaptive saturated
controllers [7, 8] are designed by using different saturation
compensating methods. To achieve 6DOF spacecraft maneu-
vers in the presence of control saturations and dynamics
uncertainties, disturbance observer-based saturated control-
lers are studied in [9, 10].

The neural network, which is an alternative solution
with highly approximate capacity [11], also draws atten-
tion to 6DOF spacecraft controls. For formation flying
control problems with parametric uncertainties and distur-
bances, a NN-based adaptive sliding mode controller is pro-
posed in [12]. For cooperative rendezvous and docking
maneuvers, a NN-based switching saturated control is inves-
tigated in [13]. Besides, adaptive NN controllers are also
studied in helicopter [16] and marine surface vessel [17].
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Nevertheless, the abovementioned studies have failed to
demonstrate the designed controllers by hardware-in-the-
loop experimental validations.

To realize the theoretical results in practical applications,
the air-bearing ground test facilities have been developed
[18, 19] and some controllers have been validated by hard-
ware-in-the-loop experiments [20–26]. For spacecraft opera-
tions subject to parametric uncertainties, adaptive controllers
are designed and the related experimental validations are con-
ducted on the ground test facilities [20, 21]. For spacecraft
operations, PID [22] and LQR [23] controllers are designed
and experimentally tested, respectively. In addition, several
controllers [24–26] are developed and validated on the testbed
facility. Despite the fact that experimental results can be found
in [20–26], the NN-based controllers are rarely validated by
hardware-in-the-loop experiments in previous results.

This paper seeks to address the controller design for
6DOF spacecraft tracking operations subject to unknown
inertial parameters and disturbances. A saturated NN is
designed to approximate the unknown dynamics, and the
approximate error is counteracted by an adaptive robust
compensating term. An auxiliary dynamical system is intro-
duced to ensure the designed controller satisfying the magni-
tude constraints. The most remarkable result in this work is
that the proposed NN saturated controller is validated by
hardware-in-the-loop experiments which are conducted on
the ASTERIX facility. Compared with the aforementioned
works, the main contributions of this paper are threefold.
First, in contrast to the NN employed in [12, 13, 16, 17],
a saturated NN is developed to approximate the dynamics
uncertainties while avoiding the long time saturation aris-
ing from the large tracking errors at the beginning of the
operation. Second, to satisfy the magnitude constraints of
the actuators installed in spacecraft, an auxiliary variable
generated by a dynamical system is introduced in the con-
trol design. Compared with the dynamical system designed
in [17], the proposed one gives a simpler structure which
makes it easier to be realized in practical engineering appli-
cations. Finally, different from the numerical simulation
validation of NN controllers in [12, 13], the proposed con-
troller is experimentally validated on the ASTERIX facility,
where the practical impacts including parametric uncer-
tainties, disturbances, and measurement errors are affecting.
The experimental results demonstrate that the proposed
controller works and that the results meet theoretical pre-
dictions, within a margin of error.

The remaining sections are arranged as follows. Mathe-
matical preliminaries are formulated in Section 2. The con-
trol problem to be solved is stated in Section 3. The main
results including the controller design and stability proof
are given in Section 4. Basic hardware characteristics of
the ASTERIX facility and experimental results are presented
in Section 5. Finally, the conclusions are summarized in
Section 6.

2. Preliminaries

2.1. Notations. In what follows, kxk denotes the Euclidean
norm of a vector x ∈ℝn, λminðXÞ and λmaxðXÞ denote the

minimum and maximum eigenvalues of a square matrix
X ∈ℝn×n, respectively. For x = ½x1, x2, x3�T ∈ℝ3, superscript
× represents the matrix form of the cross product satisfy-
ing x× = ½0,−x3, x2 ; x3,0,−x1;−x2, x1,0�. For x ∈ℝ and posi-
tive constants a and b, the saturation function is defined
as follows:

sata,b xð Þ =
a, if x > a,
x, if − b ≤ x ≤ a,
−b, if x<−b:

8>><>>: ð1Þ

If no confusion arises, satðxÞ always presents sata,bðxÞ
throughout this paper. For x = ½x1, x2,⋯, xn�T ∈ℝn, define
the saturation function vector satðxÞ = ½satðx1Þ, satðx2Þ,⋯,
satðxNÞ�T .
2.2. RBFNN Approximation. Let f ðxÞ: ℝn →ℝ be an
unknown smooth function. According to [11], we can
approximate f ðxÞ on a compact set Ω ⊆ℝn by employing
the following RBFNN:

f xð Þ =wTΦ xð Þ + ϵ, ð2Þ

where ϵ is the bounded approximation error, w ⊆ℝl is the
weight vector, and l is the node number. w is defined by

w = arg min
ŵ

sup
x∈Ω

f xð Þ − ŵTΦ xð Þ�� ��� �
, ð3Þ

where ŵ is the estimate of w, ΦðxÞ = ½ϕ1ðxÞ, ϕ2ðxÞ,⋯,
ϕlðxÞ�T : Ω→ℝl is the RBF vector, and ϕiðxÞ is the Gaussian
function satisfying

ϕi xð Þ = exp −
x − μik k
η2i

� �
, i = 1, 2,⋯, l, ð4Þ

with its center μi ∈ℝ
n and its spread ηi > 0.

3. Problem Formulation

3.1. Reference Coordinate Frames. Assume that the spacecraft
and simulator are rigid bodies, respectively. To formulate
their dynamics, the following coordinate frames are defined.
The Earth inertial frame (FI = fO, xi, yi, zig): its origin O is
located at the Earth center, axes xi and zi point to the direc-
tion of the vernal equinox and toward the north pole, respec-
tively, and three axes satisfy the Right-Hand-Rule (RHR)
frame. The spacecraft (desired) body fixed frame FB = fB,
xB, yB, zBg (FB0 = fB0, xB0, yB0, zB0g): its origin B (B0) coin-
cides with its center of mass (c.m.), and three axes coincide
with its three inertial principal axes, respectively. The desired
orbit frame (local vertical local horizontal (LVLH) frame)
FL = fL, xL, yL, zLg: its origin L is the center of the desired
target, xL axis points from the earth center to L, zL axis is per-
pendicular to the orbit plane, and yL axis is in the orbit plane
complying with the RHR. The testbed centred frame FT =
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fT , xT , yTg: its origin is the geometric center of the testbed
surface, two axes are along the edges of the bed forming an
orthogonal plane coordinate frame.

3.2. 6DOF Dynamics Model

3.2.1. Attitude Error Dynamics. The attitude of spacecraft is
represented by using Modified Rodrigues Parameters
(MRPs) σ ∈ fσ ∈ℝ3 ∣ σ = n̂ tan ðη/4Þg, where n̂∈ℝ3 is the
principal rotation axis and η ∈ ð−2π, 2πÞ is the principal
rotating angle. According to [27], by introducing a switching
condition at the surface kσk = 1, the unique and nonsingular
description can be guaranteed. This further ensures that
0 ≤ σTσ ≤ 1. Let σ and σd be the MRPs of the spacecraft
and the desired, respectively. The error MRPs are given by

~σ = σd σTσ − 1
� �

+ σ 1 − σT
dσd

� �
− 2σ×dσ

1 + σT
dσdσ

Tσ + 2σTdσ
: ð5Þ

According to [27], the attitude error kinematics satisfies

_~σ =G ~σð Þ~ω, ð6Þ

where Gð~σÞ = 1/4½ð1 − ~σT~σÞI3 + 2~σ× + 2~σ~σT �, ~ω = ω − ~Rωd is
the error angular velocity expressed in frame FB, ω and ωd ,
respectively, represent the angular velocities of the spacecraft
and the desired, and ~R is the rotation matrix defined as

~R ≜ R ~σð Þ = I3 −
4 1 − ~σT~σ
	 

1 + ~σT~σ

	 
2 ~σ
× + 8 ~σ×ð Þ2

1 + ~σT~σ
	 
2 : ð7Þ

In addition, according to [27] and _~R = ~R~ω×, we have the
following attitude error dynamics:

J _~ω = −ω×Jω + τ + τd + J ~ω×~Rωd − ~R _ωd

� �
, ð8Þ

where J ∈ℝ3×3 is the inertia matrix, τ ∈ℝ3 and τd ∈ℝ3 are
the control torque and disturbance torque, respectively.

3.2.2. Orbit Error Dynamics. Let ~r = r − δ and ~v = v − _δ be the
position and velocity tracking errors, where r = ½rx , ry , rz�T is
the position vector error between the spacecraft and desired
target, v is the velocity error, and δ is the desired trajectory
referenced in frame FL . In terms of [28], the orbit error
kinematics and dynamics satisfy

_~r = ~v, ð9Þ

m _~v = −mCtv −mnt + RB
Lf + fd −m€δ, ð10Þ

where m is the mass of the spacecraft,

Ct = 2 _ν
0 −1 0
1 0 0
0 0 0

2664
3775,

nt =

−€νry − _ν2rx +
μ r0 + rxð Þ

r0 + rxð Þ2 + r2y + r2z
	 
3/2 −

μ

r20

€νrx − _ν2ry +
μry

r0 + rxð Þ2 + r2y + r2z
	 
3/2

μrz

r0 + rxð Þ2 + r2y + r2z
	 
3/2

26666666666664

37777777777775
:

ð11Þ

RB
L = RLRTðσÞ is the rotation matrix from frame FB to

frame FL , RL is the rotation matrix between frames FI

and FL satisfying

with the true anomaly ν, the radial distance between the
desired target and the Earth r0, the right ascension of ascend-
ing node Ω0, the argument of latitude θ0 = ωp + ν, the argu-

ment of perigee ωp, and the orbit inclination i0, f ∈ℝ3 is

the control force in frameFB, and fd ∈ℝ3 is the disturbance
force. c and s stand for cosine and sine, respectively.

3.2.3. Actuator Distribution. Consider that there are N pairs
of thrusters installed in the spacecraft controlling of attitude

and orbit simultaneously. Each thruster in one pair is assem-
bled symmetrically with respect to the rotation center for the
dynamics. The control torque direction and the spin axis sat-
isfy the right-hand principle. In particular, each pair of
thrusters consists of thrusters T j and Pj, where T j provides
control force along one axis and control torque around
another spin axis of frame FBi simultaneously and Pj pro-
vides the opposite control force and torque generated by
T j. Let p ∈ℝN be the outputs of all the pairs of thrusters

RL =
c Ω0ð Þc θ0ð Þ − s Ω0ð Þs θ0ð Þc i0ð Þ s Ω0ð Þc θ0ð Þ + c Ω0ð Þs θ0ð Þc i0ð Þ s θ0ð Þs i0ð Þ
−c Ω0ð Þs θ0ð Þ − s Ω0ð Þc θ0ð Þc i0ð Þ −s Ω0ð Þs θ0ð Þ + c Ω0ð Þc θ0ð Þc i0ð Þ c θ0ð Þs i0ð Þ

s Ω0ð Þs i0ð Þ −c Ω0ð Þs i0ð Þ c i0ð Þ

2664
3775, ð12Þ
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and A ∈ℝ6×N be the distribution matrix. To ensure the con-
trol system non-under-actuated case, the distribution matrix
should satisfy rank ðAÞ = 6.

Due to the fact that the thrusters are generally con-
strained by power supply in practice, we further consider
saturations in the command controls. Generally, the saturated
control is expressed by using the saturation function satð·Þ. In
the studied case, we have that p = satðξÞ = ½satðξ1Þ, satðξ2Þ,
⋯, satðξNÞ�T with

sat ξj
� �

=

�ξ
+
j , if ξ > �ξ

+
j ,

ξj, if − �ξ
−
j ≤ ξj ≤ �ξ

+
j ,

−�ξ−j , if ξj<−�ξ
−
j ,

8>>><>>>: ð13Þ

where ξ ∈ℝN is the command control, �ξ
+
j > 0 and �ξ

−
j > 0,

j = 1, 2,⋯,N, are the magnitude constraints. Let u =
½τT , ðRB

LfÞT �
T
and define Δξ = satðξÞ − ξ. Then, we have

u =DAsat ξð Þ =DA ξ + Δξð Þ, ð14Þ

where D = diag ðI3, RB
LÞ. In addition, to ensure that the

command control of each thrust should be nonnegative, i.e.,
T j, Pj ≥ 0, j = 1, 2,⋯,N, the command control signals are
arranged as follows:

T j = sat ξj
� �

, Pj = 0, if ξj ≥ 0,

Pj = −sat ξj
� �

, T j = 0, if ξj < 0:

(
ð15Þ

3.2.4. 6DOF Error Dynamics. Let x1 = ½~σT ,~rT �T and x2 =
½~ωT , ~vT �T . In view of equation (6) and equation (9), we have

_x1 =Λx2, ð16Þ

where Λ = diag ðGð~σÞ, IÞ. In terms of equation (8), equation
(10), and equation (14), the integrated 6DOF error dynamics
is derived as follows:

M _x2 = ς + B ξ + Δξð Þ + d, ð17Þ

where

ς =
−ω×Jω + J ~ω×~Rωd − ~R _ωd

� �
−mCtv −mnt −m€δ

" #
,

M = diag J,mIð Þ,
B =DA,

ð18Þ

d = τTd , fTd
h iT

: ð19Þ

3.3. Control Objective. Consider the 6DOF tracking error
dynamics consisting of equation (16) and equation (17).
Suppose that the full motion information of the desired

and the spacecraft is available to the spacecraft. The control
objective is to design controller ξ for each thruster assembled
in the spacecraft such that x1 and x2 converge to small sets
around zero.

Assumption 1. The desired angular velocity ωd and its deriv-
ative _ωd are bounded. The desired position δ and its deriva-
tives _δ and €δ are bounded, respectively.

Assumption 2. J and m are unknown constant parameters
with known nominal values J0 and m0, respectively.

4. Main Results

In this section, the main results are presented. An adaptive
controller is first proposed such that the 6DOF tracking
objective is realized. Then, the closed-loop stability analysis
is undertaken.

4.1. Controller Development. In the following, an adaptive
controller is synthesized by introducing a saturated RBFNN
and a feasible auxiliary dynamical system, which results in
the high accuracy tracking.

Define a variable

s = x2 +K1x1, ð20Þ

where K1 = diag ðα1I3, α2I3Þ with α1 > 0 and α2 > 0. In terms
of equation (16) and equation (17), the derivative of equation
(20) satisfies

M_s = ς + B ξ + Δξð Þ + d +MK1Λx2 = ρ + Bξ + BΔξ + d,
ð21Þ

where ρ = ς +MK1Λx2.
Since the exact knowledge of inertial parameters cannot

be obtained easily, we use their nominal values J0 and m0
to calculate the value of ρ. Define ρ0 as the value of ρ when
J = J0 and m =m0. Let Δρ = ρ0 − ρ. It follows that

M_s = ρ0 + Bξ + BΔξ + d∗, ð22Þ

where d∗ = d − Δϱ. It can be easily known that d∗ consists of
the variables x1, x2, _ωd , €δ, _ν, and €ν. To approximate d∗, we
introduce the following RBFNN

d∗ =WTΦ yð Þ + ϵ, ð23Þ

whereW ∈ℝl×6 is the constant weight matrix, l is the number

of nodes, ΦðyÞ ∈ℝl is the RBF vector, y = ½xT1 , xT2 , _ωT
d , €δ

T , _ν,
€ν�T is the input of the RBFNN, and ϵ ∈ℝ6 is the approxima-
tion error. During the overshoot and transient at the begin-
ning of the control process, large tracking errors may lead
to large output of the RBFNN, which would increase the bur-
den of the actuators. To overcome this disadvantage, we use a
saturated RBFNN instead of the direct output from RBFNN.

Let Ŵ be the estimate of W. Define Δϵ = satðŴTΦðyÞÞ −
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ŴTΦðyÞ and the estimate error ~W = Ŵ −W, respectively.
Then, we rewrite equation (23) as

d∗ = sat ŴTΦ yð Þ
	 


− ~WTΦ yð Þ + ϵ∗, ð24Þ

where ϵ∗ = ϵ − Δϵ.

Assumption 3. ϵ∗ is bounded by an unknown constant �ϵ, i.e.,
∣ϵ∗∣ ≤ �ϵ.

Let Ŵ and bϵ be the estimates of W and �ϵ, respectively.
Design the following controller

ξ = BT BBT� �−1�−ΛTx1 −K2s − ρ0

− sat ŴTΦ yð Þ
	 


−
bϵ s

sk k + ϖ
+ κ1Bχ

�
,

ð25Þ

and the adaptation laws

_̂W = ϑ1 Φ yð ÞsT − ϑ2Ŵ
� �

,

_bϵ = ϑ3
sk k2

sk k + ϖ
− ϑ4 bϵ − ϵ0ð Þ

� �
,

ð26Þ

where K2 = diag ðα3I3, α4I3Þ with α3 > 0 and α4 > 0, κ1 > 0, ϖ
is a small positive constant, ϑi, i = 1, 2, 3, 4, is a positive con-
stant, ϵ0 is the initial value of bϵ , and χ ∈ℝN is an auxiliary
signal generated from the following dynamical system

_χ = −κ2χ + Δξ, ð27Þ

where κ2 > 0.
By substituting equation (20) into equation (16), and

equation (24) and (25) into equation (22), a 6DOF closed-
loop system is derived as follows

_x1 = Λ s −K1x1ð Þ, ð28Þ

M_s = −ΛTx1 −K2s + BΔξ + κ1Bχ

− ~WTΦ yð Þ − bϵ s
sk k + ϖ

+ ϵ∗:
ð29Þ

4.2. Stability Analysis. Since the controller for the 6DOF
tracking error dynamics has been developed, we next focus
on the closed-loop stability analysis. In particular, the follow-
ing theorem summarizes the accomplishment of the 6DOF
tracking objective.

Theorem 1. Consider the 6DOF closed-loop dynamics (28)
and (29). Suppose that Assumptions 1–3 hold. If the control
parameters are selected as

min α3, α4ð Þ ≥ κ1
4θ1

+ θ2,

κ2 ≥ �βθ1κ1 + θ3,
ð30Þ

where θi, i = 1, 2, 3, is an arbitrary positive constant, and
�β = sup ðkBk2Þ, the proposed controller (25) and adaptation
laws (26) ensure that the 6DOF tracking objective is achieved,
i.e., x1 and x2 converge to small sets around zero, resectively.

Proof.Define the estimate error ~ϵ = bϵ − �ϵ. Choose the follow-
ing Lyapunov function candidate

V = 1
2 x

T
1 x1 +

1
2 s

TMs + 1
2χ

Tχ + 1
2ϑ1

tr ~WT ~W
	 


+ 1
2ϑ3

~ϵ2:

ð31Þ

Its time derivative along equation (27), (28), and (29)
satisfies

_V = xT1 _x1 + sTM_s + χT _χ + 1
ϑ1

tr ~WT _̂W
	 


+ 1
ϑ3

~ϵ _bϵ
= −xT1ΛK1x1 − sTK2s − κ2χ

Tχ + κ1sTBχ

+ sTBΔξ + χTΔξ − sT ~WTΦ yð Þ − bϵ sTs
sk k + ϖ

+ sTϵ∗ + 1
ϑ1

tr ~WT _̂W
	 


+ 1
ϑ3

~ϵ _bϵ:
ð32Þ

In view of 0 ≤ ~σT~σ ≤ 1 and ~σTGð~σÞ = ð1 + ~σT~σÞ~σT /4,
we have

xT1ΛK1x1 = xT1
1 + ~σT~σ

4 α1I3 0

0 α2I3

24 35x1 ≥ c1xT1 x1, ð33Þ

where c1 = min ðα1/4, α2Þ. Note that κ1sTBχ ≤ ðκ1/4θ1ÞsT
s + �βθ1κ1χ

Tχ, sTBΔξ ≤ θ2sTs + �β/4θ2ΔξTΔξ, χTΔξ ≤ θ3χ
T

χ + 1/4θ3ΔξTΔξ. It follows that

_V ≤ −c1xT1 x1 − λ2 −
κ1
4θ1

− θ2

� �
sTs − κ2 − �βθ1κ1θ3

� �
χTχ

+
�β

4θ2
+ 1
4θ3

� �
Δξk k2 − sT ~WTΦ yð Þ

+ 1
ϑ1

tr ~WT _̂W
	 


+ �ϵ sk k − bϵ sTs
sk k + ϖ

+ 1
ϑ3

~ϵ _bϵ
≤ −c1xT1 x1 − c2sTs − c3χ

Tχ +
�β

4θ2
+ 1
4θ3

� �
Δξk k2

+ tr ~WT 1
ϑ1

_̂W −Φ yð ÞsT
� �� �

+ ~ϵ
1
ϑ3

_bϵ −
sk k2

sk k + ϖ

� �
,

ð34Þ

where λ2 = min ðα3, α4Þ, c2 = λ2 − κ1/4θ1 − θ2, c3 = κ2 − �βθ1
κ1 − θ3. Substituting adaptation laws equation (26) gives

_V ≤ −c1xT1 x1 − c2sTs − c3χ
Tχ +

�β

4θ2
+ 1
4θ3

� �
Δξk k2

− ϑ2tr ~WTŴ
	 


− ϑ4~ϵ bϵ − ϵ0ð Þ:
ð35Þ
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Note that −ϑ2trð ~WTŴÞ ≤ −ϑ2/2trð ~WT ~WÞ + ϑ2/2trðWT

WÞ and −ϑ4~ϵðbϵ − ϵ0Þ ≤ −ϑ4/2~ϵ2 + ϑ4/2ð�ϵ − ϵ0Þ2. Let �Δ = sup
kΔξk2. Then, we have

_V ≤ −c1xT1 x1 − c2sTs − c3χ
Tχ −

ϑ2
2 tr ~WT ~W

	 

−
ϑ4
2 ~ϵ2 + k∗,

ð36Þ

where k∗ = ð�β/4θ2 + 1/4θ3Þ�Δ + ϑ2/2trðWTWÞ + ϑ4/2ð�ϵ − ϵ0Þ2
> 0. In view of equation (31) and equation (36), then

_V ≤ −c∗V + k∗, ð37Þ

where c∗ = η/φ > 0, η =min fc1, c2, c3, ϑ2/2, ϑ4/2g, and φ =
1/2 max f1, λmaxðMÞ, 1/ϑ1, 1/ϑ3g. It follows that

V tð Þ ≤ V 0ð Þ − k∗

c∗

� �
e−c

∗t + k∗

c∗
: ð38Þ

So V eventually converges to ΩV = fV ∣V ≤
ffiffiffiffiffiffiffiffiffiffi
k∗/c∗

p g. It
follows that x1, x2, χ, ~W, ~ϵ are bounded. In particular, let
λm = λminðMÞ and km =max ðα1, α2Þ. With equation (20)
and ΩV , we can obtain that x1 and x2 eventually converge to
Ω1 = fx1 ∣ kx1k ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2k∗/c∗

p g and Ω2 = fx2 ∣ kx2k ≤ ð ffiffiffiffiffiffiffiffiffiffi
1/λm

p
+ kmÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2k∗/c∗

p g, respectively. This completes the proof.

Remark 1. Different from the conventional NN used in [12,
13, 16, 17], a saturated NN output is designed to reduce the
large values caused by the large tracking errors during the
overshoot and transient at the beginning of the control
operation. An adaptive robust term is employed in the con-
troller to compensate for the nonlinear term arising from
the NN approximation error. The saturated NN and robust
compensating term work together not only to counteract
the dynamics uncertainties efficiently but also to improve
the control accuracy.

Remark 2. In this paper, we can easily determine the control-
ler parameters according to equation (30). Careful analysis
implies that increasing αjðj = 1, 2, 3, 4Þ would result in a
smaller set Ω1 which illustrates that the ultimate convergent
sets of ~σ and ~r can be tuned by choosing appropriate control
parameters. Moreover, larger control parameters could con-
tribute to faster convergence rate but longer control satura-
tion times which would bring the burden of thrusters. To
this end, a reasonable compromise among practical control
objectives is necessary.

5. Experimental Results

In this section, the hardware-in-the-loop experiments are
tested to evaluate the proposed controller. The experiment
scenario shows that a 3DOF simulator tracks a desired trajec-
tory on the testbed surface while synchronizing its rotation
angle with the desired attitude. First, basic hardware charac-
teristics of the test facility are presented. Then, experimental
results are illustrated by using the proposed controller.

5.1. ASTERIX Facility Description. The hardware experimen-
tal validation of the proposed control strategy is conducted in
the ASTERIX facility [19]. The test facility has three main
elements including an operational arena, two 5DOF space-
flight simulators, and tracking (measurement) systems. An
overview of this test facility is presented in Figure 1.

Some basic and important characteristics of the facility
are listed as follows. A 6320mm × 3060mm operational
arena consists of four 3060mm × 1580mm aluminum plates
organized side by side. Due to the limitation of the
manufacturing process, the inclination is inevitable. From
the measurement by an SPI TRONIC PRO 3600, the maxi-
mum local inclination turned out to be −0.07° and the max-
imum local displacement with respect to the lowest point of
the arena is 0.863mm. The 5DOF spaceflight simulator con-
sists of a 2DOF translation stage and a 3DOF attitude stage.
The mass of each simulator is 147.22 kg, and the moment
of inertia of the attitude stage presented in frame FBi is

J =
7:2002 −0:0882 −0:1230
−0:0882 7:0141 0:0493
−0:1230 0:0493 11:8319

2664
3775 kg · m2: ð39Þ

In addition, the spaceflight simulator is equipped with 3
reaction wheels and 16 thrusters. Each reaction wheel is set
to provide torque around each axis of frame FBi. The 16
thruster assemblies are symmetrically arranged with respect
to the CR. Each set of four thrusters is set to expel exhaust
gas in a fixed direction of the body frame, ±xBi and ±yBi.
The attitude of the simulator is obtained by an attitude and
heading reference system (AHRS). The attitude measure-
ment noise satisfies a random normal distribution

eja = f υja
� �

= 1ffiffiffiffiffiffi
2π

p
σj
a

exp −
υja − μ j

a

	 
2

2 σj
a

	 
2

0B@
1CA, j = x, y, z,

ð40Þ

Figure 1: The testbed facility: ASTERIX.
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where υja is a random scalar, σa = ½σx
a, σ

y
a, σz

a�T = ½0:0175,
0:0170, 0:0347�T deg, μa = ½μxa, μya, μza�T = ½0:3, 0:3, 0:7�T deg.
The position of the simulator is measured by the tracking
system. Similarly, the measurement error also satisfies the
following random normal distribution

ep = f υp
� �

= 1ffiffiffiffiffiffi
2π

p
σp

exp −
vp − μp

	 
2

2σ2p

0B@
1CA, ð41Þ

where υp is a random scalar, σp = 0:2950 × 10−3m, and μp =
−19:7499 × 10−6m.

5.2. Experimental Results. In this subsection, we show the
experimental results.

The desired rotation angle is governed as

ψd = ψ 0ð Þ − ψ 0ð Þ
T

t degð Þ, ð42Þ

where ψð0Þ is the initial angle of the simulator and T is the
time of the experiment. The desired trajectory in each phase
is given in Table 1.

In this experiment, we use 4 pairs of thrusters generating
the control efforts. The distribution of thrusters are shown
in Table 2 and Figure 2. The distribution matrix is given by
A = ½l, l,−l,−l ; 1, 0, 0, 1 ; 0, 1, 1, 0�, where l is the arm of force
of each pair of thrusters. The model parameters of the simu-
lator are listed in Table 3, respectively.

The saturation constraints of the NN with l = 80 nodes
are chosen as a = b = ½0:2,0:8,0:8�T . The parameter estimates
are initialized as Ŵð0Þ = 0 and bϵ ð0Þ = 1. The parameters of
the controller and adaptation laws are chosen as κ1 = κ2 =
0:1, ϑ1 = 0:025, ϑ2 = 0:01, ϑ3 = 0:03, ϑ4 = 0:01, and ϖ = 0:01.
The experiment time is T = 270ðsÞ. Four groups of experi-
ments are performed by using different control parameters
and nominal values of inertial parameters which are summa-

rized in Table 4, where M = diag ðjz ,m,mÞ. Experimental
results are presented in Figures 3–10.

Figure 3 collects the rotation angle error of each case.
Figure 4 presents the trajectory of each case versus the
desired. Figures 5 and 6 show the position tracking errors
in x-axis and y-axis of each case, respectively. Table 5 sum-
marizes all the standard derivations of tracking errors in dif-
ferent cases. From the experimental results, it can be seen
that the simulator tracks the desired trajectory while syn-
chronizing its rotation angle with a good performance in
spite of measurement errors and a large range of parameter
uncertainty. During the first phase of the experiment, the
transient behavior arises because the initial position of the
simulator does not coincide with the initial value of the
desired trajectory. After that, the simulator tracks the desired
trajectory fairly well. Apart from the slight discrepancy of the
tracking errors, the high control accuracy is confirmed by the
experimental results in spite of the parameter uncertainty
from −35% and +75%.

Table 1: Desired trajectory.

Phase Time (s) x-axis rxd (m) y-axis ryd (m)

1st t ∈ 0, T2

� 

0:6 cos 4π

T
t

� �
0:4 sin 4π

T
t

� �
2nd t ∈

T
2 , T

� 

0:45 cos 4π

T
t

� �
+ 0:15 0:3 sin 4π

T
t

� �

Table 2: Thruster distribution.

Control direction
Number of each pair

1 2 3 4

+xB F1 F16

−xB F4 F13

+yB F5 F12

−yB F8 F9

CR

F15

by
ˆ

bx
ˆ

F10

F9
F16

F13

F8

F14

F7

F5
F4

F6

F3

F2

F11

F1

F12

Figure 2: Distribution of the thrusters.

Table 3: Model parameters.

Parameter Value Unit

Mass m 147.22 kg

Moment of inertia jz 11.8319 kg · m2

Gravitational acceleration g 9.8 m/s2

Arm of force l 0.4875 M
Magnitude constraint �ξ

+
i i = 1, 5, 12, 16ð Þ 1, 1, 1, 1 N

Magnitude constraint �ξ
−
j j = 4, 8, 9, 13ð Þ 1, 1, 1, 1 N

Table 4: Control parameters and nominal values.

Case Control parameter Nominal value

1 α1 = 4, α2 = 11, α3 = 4, α4 = 6 0:65M
2 α1 = 4, α2 = 10, α3 = 4, α4 = 6 0:9M
3 α1 = 4, α2 = 2, α3 = 4, α4 = 4 1:3M
4 α1 = 4, α2 = 2, α3 = 4, α4 = 4 1:75M
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We next show the detailed experimental result of Case 2
to evaluate the proposed controller. Figure 7 illustrates the
top view of the experiment result, where the orange line is
the initial position with an x-axis in frame FB representing
initial angle of the simulator and the blue line is the final
position of the simulator. From this result, we can see that
the simulator tracks the desired trajectory with a good perfor-
mance. In particular, there is no obvious tracking error after
the simulator enters the second phase. In addition, the com-
mand control of each thruster is collected in Figure 8. It can

be seen that all the control signals are within their magni-
tude constraints, respectively. Besides, Figure 9 describes
the output of the NN versus time, and Figure 10 presents
the estimate bϵ and norm of the auxiliary signal χ versus
time, respectively. At the beginning of the experiment, it
can be seen that the output of the NN is much larger than
the magnitude constraint of the thruster. Instead, the sat-
urated value is applied in the controller which contributes
to reduce the burden of the thrusters. It is also evidenced
that the estimate bϵ and auxiliary signal χ remain bounded
during the experiment.
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6. Conclusions

We develop an NN-based saturated adaptive controller for
6DOF spacecraft tracking operations in this paper. To esti-
mate the dynamics uncertainties with high accuracy while
avoiding the long time control saturation during the initial
operation, an adaptive saturated NN is designed with its
approximate error being compensated by a continuous
robust term. An auxiliary dynamical system is introduced

to overcome the effects caused by control saturation. The
ultimate boundedness of the closed-loop dynamics has been
proved. Hardware-in-the-loop experimental validation is
conducted on the test facility ASTERIX, where a 3DOF
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Figure 7: Experimental result: attitude and position of simulator in
Case 2.
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Table 5: Standard derivations of tracking errors.

Case
1-2 phases 2nd phase

ψ (deg) ~rx (mm) ~ry (mm) ψ (deg) ~rx (mm) ~ry (mm)

1 1.7275 16.8991 23.5340 0.4100 1.5233 1.2869

2 0.3983 5.7777 7.6600 0.2551 3.4071 1.7211

3 0.1810 7.1407 19.7165 0.1657 3.8055 2.7741

4 0.2636 9.3525 17.0123 0.2183 7.2070 3.7914
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tracking scenario of the planar and rotational maneuver is
performed in the presence of unknown inertial parameters,
disturbances, and measurement errors. Experimental results
demonstrate that the proposed controller ensures the simula-
tor tracking a desired trajectory with a good performance and
that the rotation angle and position tracking errors are within
0:5 degree and 8 millimeter during the final phase.
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