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For the terminal guidance problem of a missile intercepting a maneuvering target, a profile-tracking-based adaptive guidance law is
proposed with inherent continuity in this paper. To flexibly and quantitatively control the convergence rate of the line-of-sight rate,
a standard tracking profile is designed where the convergence rate is analytically given. Then, a nonsingular fast terminal sliding-
mode control approach is used to track the profile. By estimating the square of the upper bound of target maneuver, an adaptive
term is constructed to compensate the maneuver. Therefore, no information of target acceleration is required in the derived law.
Stability analysis shows that the tracking error can converge to a small neighborhood of zero in finite time. Furthermore, a
guidance-command-conversion scheme is presented to convert the law into the one appropriate for endoatmospheric
interceptions. Simulation results indicate that the proposed law is effective and outperforms existing guidance laws.

1. Introduction

The terminal guidance law of a missile plays a crucial role in
making a successful intercept, and the guidance performance
of the law exerts a direct influence on miss distance, control
efforts, etc. Proportional navigation (PN) and its variants
are widely applied in a considerable variety of intercept
engagements due to inherent simplicity and high effective-
ness [1–3]. However, with enhancement of target maneuver-
ability, PN suffers from a significant degradation of intercept
performance because of limited capability to suppress rota-
tion of the line of sight (LOS) between a missile and a target
induced by target maneuver. Then, the augmented PN was
proposed to compensate target maneuver, but the price paid
is the information of target acceleration which cannot be
measured directly and is difficult to be accurately estimated
[4, 5]. To meet the challenge of precisely intercepting agile
targets, some advanced control algorithms have been used
to develop robust guidance laws, such as sliding mode con-
trol [6–11], nonlinearH∞ control [12], dynamic surface con-
trol [13], and finite time control [14–18].

Sliding mode control (SMC) is a simple and effective
approach to handling external disturbances and system
uncertainties, which attracts considerable attention paid to
applying SMC to intercept guidance. The SMC-based guid-
ance law can achieve the robustness to target maneuver and
consequently outperforms the PN law [6–11]. However,
most of the SMC-based guidance laws provide only the
asymptotic or exponential stability of a guidance system,
which indicates that the LOS rate (LOSR) is driven to zero
or its small neighborhood only as time approaches infinity.
Since the terminal phase of interception is of short duration,
it is the convergence property of the LOSR that is a main
influence on guidance performance. Compared with the
asymptotic stability, the finite-time stability firstly proposed
in 1986 demonstrates that a dynamical system from an
unstable state can converge to its equilibrium point in finite
time [19–21]. In recent years, driving the LOSR to zero or
its small neighborhood in finite time has become increasingly
prevalent during the design of a guidance law. On basis of the
finite-time stability theory [20], the finite-time guidance law
was designed in [14–16] which obtained high accuracy and
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good performance. To acquire the robustness to target
maneuver, the aforementioned guidance laws require the
introduction of a discontinuous switching term whose gain
is generally larger than the upper bound of target maneuver.
However, the term is followed by chattering of guidance
command, and the bound is difficult to be accurately given
in most cases. To alleviate chattering, a common technique
is to employ a continuous function instead of the signum
function in the switching term, such as the sigmoid function
[8] and the saturation function [14].

In the design of the guidance law against maneuvering
targets, the approach is crucial to addressing target maneuver
which is generally considered as a bounded external distur-
bance with respect to a guidance system. It is known that
the way to introduce a switching term easily brings about
chattering. Then, estimation and adaptive control theories
are adopted to deal with target maneuver in [22–29]. A non-
homogeneous disturbance observer was used to estimate dis-
turbances in a guidance system, and the chattering was
eliminated in [22]. Ma and Zhang [23] proposed a finite-
time convergent guidance law, and the target maneuver was
estimated using an extended state observer and compensated.
However, the finite-time stability theory was no longer
strictly satisfied due to the presence of an estimation error.
Based on the finite-time stability theory and a nonlinear dis-
turbance observer, Zhang et al. [24] presented a composite
guidance law where the gain of the switching term was
reduced to being only larger than the upper bound of a dis-
turbance estimation error. The finite-time convergent char-
acteristic of the LOSR was proven under the composite law.
In [25], a finite-time guidance law was given without the
bound knowledge of a disturbance estimation error by an
adaptive exponential reaching law. Different from the
observer method in [22–27] considered the target maneuver
as a disturbance with unknown bound and employed an
adaptive algorithm to approach the bound. Furthermore,
the proposed controllers for a guidance system were inher-
ently continuous by substituting the saturation function for
the sign function and asymptotically converged to the origin
in theory in spite of the substitution. In [28], an adaptive
nonlinear guidance law was developed, and two adaptive
terms were involved to estimate target acceleration. Although
the finite-time convergence of the LOSR was guaranteed to
zero, the convergence process was of long duration and the
bounds of target acceleration and jerk were required. By
combining nonsingular terminal SMC and adaptive control,
Zhou and Yang [29] constructed an adaptive finite-time
guidance law which contained an adaptive continuous term
to reject target maneuver. Without the information of target
acceleration, it was ensured that the system state could con-
verge to a small neighborhood of zero. In terms of robust
guidance laws, the antichattering and the finite-time conver-
gence of the LOSR are two significant qualities. From the pre-
vious discussions, the chattering problem has been solved
well and the finite-time convergence can be guaranteed in
theory and simulation senses. However, the convergence
time is difficult to be quantitatively controlled. Moreover,
the simple but radical concept is embraced that the LOSR
decreases as rapidly as possible. Sometimes, a rapid conver-

gence may be unnecessary which signifies more control
efforts in most cases.

Based on the above discussions, this paper is devoted to
flexibly and accurately regulate the convergence rate of the
LOSR in considering of saving energy consumption. Then,
a novel profile-tracking-based adaptive guidance law is pro-
posed against maneuvering targets with inherent continuity.
The main contributions of this paper are summarized as fol-
lows: (1) a standard tracking profile is designed which
describes the convergence rate of the LOSR analytically. A
nonsingular fast terminal SMC method is employed to track
the profile. (2) An inherently continuous adaptive term is
constructed to compensate target maneuver without the
information of target acceleration. The finite-time conver-
gence to a small neighborhood of zero is strictly guaranteed
of the tracking error. (3) To be suitable for endoatmospheric
interceptions, a guidance-command-conversion scheme is
put forward to change the action orientation of guidance
command. Compared with existing guidance laws, the pro-
posed law has smaller miss distance and less control efforts.

The rest of this paper is organized as follows. The fol-
lowing section gives the modeling description of intercept
guidance. Section 3 presents a standard tracking profile.
In Section 4, a novel profile-tracking-based adaptive guid-
ance law is derived in details. Numerical simulations are
performed in Section 5, followed by conclusions in Section 6.

2. Preliminaries

An appropriate coordinate system is conducive to revealing
relative-motion characteristics between a missile and a target
and simplifying the design of a guidance law. In existing lit-
eratures, there are mainly two coordinate systems used to
describe intercept engagement. One is the commonly used
spherical LOS coordinate system, as shown in [9]. The other
is the rotating LOS coordinate system proposed in [5]. In this
paper, we adopt the rotating LOS coordinate system where a
decoupled relative-motion equation set is obtained.

The three-dimensional engagement geometry is pre-
sented in Figure 1 where a missile M is intercepting a
maneuvering target T . The missile and the target are
assumed as point masses. oIxIyIzI represents the inertial
reference frame. vm and vt denote the velocities of the
missile and the target, respectively.

From Figure 1, we have

r = rt − rm = rer , ð1Þ

where r is the missile-target relative distance and er is the unit
vector along the LOS. Orientation variation of the target rel-
ative to the missile brings about rotation of the LOS. How-
ever, the LOS rotation is completely dependent on the
components of vm and vt normal to the LOS. Therefore,
angular velocity of the LOS rotation is perpendicular to the
LOS and denoted as ω. Then, ω is computed as

ω =
r × v
r2

= ωeω, ω ≥ 0, ð2Þ
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where v = vt − vm, eω is the unit vector along ω, and ω, the
length of ω, is known as the LOSR. Taking the derivative of
(1) yields

v = vrer + vθ eω × erð Þ, ð3Þ

where vr = _r is the closing velocity and vθ = rω is the compo-
nent of v normal to the LOS.

Let eθ = eω × er , and then the set ðer , eθ, eωÞ is the unit
vectors along the axes of the rotating LOS coordinate system.
According to [5], we have the following relations:

der
dt

= ωeθ,

deθ
dt

= −ωer +Ωeθ,

deω
dt

= −Ωeθ,

8>>>>>>><>>>>>>>:
ð4Þ

where Ω is the projection along eθ of the rotational angular
velocity of eω. Then, the relative-motion equation set in the
rotating LOS frame is obtained as

€r − rω2 = atr − amr ,

r _ω + 2_rω = atθ − amθ,

rωΩ = atω − amω,

8>><>>: ð5Þ

where ðatr , atθ, atωÞ and ðamr , amθ, amωÞ are the acceleration
components of the target and the missile, respectively. As
shown in (5), the first two equations are decoupled from
the third equation. For more details, refer to [5].

Before proceeding with the guidance law design, the fol-
lowing assumptions are made.

Assumption 1. Consider that the target acceleration cannot
be infinite in practice. Then, it is reasonable to suppose that
its magnitude at =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2tr + a2tθ + a2tω

p
is bounded, i.e., at ≤ d,

where d is difficult to be precisely determined prior in practi-
cal interceptions. Thus, in the subsequent design, it is
regarded as an unknown parameter to be estimated.

Assumption 2. After the handover from the midcourse to
the terminal guidance, the closing velocity _r satisfies _rðt0Þ
≤−L < 0, where t0 is the initial time of terminal guidance
and L is a positive constant.

3. Standard Tracking Profile

The typical design principle of a guidance law is that nullify-
ing the LOSR results in the missile being in a desired collision
triangle with the target, as described in Figure 2 where the
LOSR is zero [7]. The lines of sight are parallel to each other
at different instants. It is indicated that the relative motion
between the missile and the target is in line with the LOS
and a direct collision occurs in the end.

According to the principle, the guidance problem is to
find an efficient commanded acceleration amθ in (5), which
reduces ω to zero. In practical interceptions, however, it is
almost impossible that the collision triangle is strictly satis-
fied because of the initial nonzero LOSR and random target
maneuver. In fact, reducing the LOSR to a low level is ade-
quate for performing a collision because of the body sizes of
the missile and the target. Motivated by the concept of the
standard profile tracking in the trajectory generation of entry
vehicles [30], we introduce a standard profile of vθ versus r
into the guidance law design, as shown in Figure 3.

In Figure 3, the profile is composed of CB, BA
_
, and Ao. A

and B are points of tangency. Since CB and Ao are line seg-
ments, the analytical expressions are written as
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Figure 1: Three-dimensional engagement geometry.
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Figure 3: Standard tracking profile of vθ versus r.
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CB : y = tan γ x − ar0ð Þ + br0ω0, γ = arctan
ω0 1 − bð Þ
1 − a

,

Ao : y = tan α ⋅ x, α = arctan bω0
a

,

 a ≥ b,

8>>>>><>>>>>:
ð6Þ

where r0 and ω0 are the values of r and ω at t0, respec-
tively. If a = b, ω is a constant; if a > b, ω decreases in
CB and keeps constant in Ao; if a < b, ω increases in CB
and keeps constant in Ao. Therefore, a > b should be
met and b is sufficiently small, which reduces ω to a low

level and keeps it constant. In x′o′y′, BA
_

is a parabola
segment, and the function expression is defined by

y′ = ex′2 + f , x′ ∈ −δ, δ½ �: ð7Þ

From Figure 3, the coefficients satisfy the following
equations:

2eδ = tan ε = k,

eδ2 + f = kδ,

(
ð8Þ

where ε = ðγ − αÞ/2. Hence, e = k/2δ, and f = kδ/2. To

obtain the function expression of BA
_

in xoy, according
to Figure 3, we can give the coordinate transformation
from xoy to x′o′y′ in the form of

x′

y′

" #
=

X cos θ + Y sin θ

−X sin θ + Y cos θ

" #
, ð9Þ

where θ = ðγ + αÞ/2, X = x − ar0, and Y = y − br0ω0. Then,
substituting (9) into (7), we have

k sin2θY2 + 2 kX cos θ sin θ − δ cos θð ÞY
+ kX2 cos2θ + 2δX sin θ + kδ2 = 0:

ð10Þ

The solution to Y is given by

Y =
δ cos θ − kX cos θ sin θð Þ ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 cos2θ 1 − k2 tan2θ

� �
− 2kXδ sin θ

q
k sin2θ

:

ð11Þ

Based on the derivative rule of the implicit function,
taking the derivative of (10) with respect to x yields

dy
dx

=
Z cos θ + sin θ

cos θ − Z sin θ
, Z =

k
δ

x − ar0ð Þ cos θ + y − br0ω0ð Þ sin θ½ �:
ð12Þ

By examining the left and right derivatives of A and B, it is
known that the designed profile is continuously differentiable.
The change trend of the profile is formulated as the parame-
ters a, b, and δ. Generally, δ is set as a small constant. When
an accurate profile tracking is guaranteed, we can flexibly con-
trol the convergence rate of the LOSR by adjusting a and b.

4. Adaptive Guidance Law Based on
Profile Tracking

4.1. Guidance Law Design. To accurately track the profile, we
define the tracking error as

ve = vθ − vθc, ð13Þ

where vθc, the standard value of vθ, is given by the profile.
Taking the derivative of (13) and applying the second equa-
tion of (5) to the resulting equation, we have

_ve = −_rω − _r
dvθc
dr

+ atθ − amθ: ð14Þ

Then, (13) and (14) describe a second-order nonlinear
system as follows:

_x1 = x2,

_x2 = −_rω − _r
dvθc
dr

+ atθ − amθ,

8<: ð15Þ

where the state vector x is selected as x = ½x1, x2�T =
½Ð t0veðτÞdτ, ve�T, amθ is the control input, and atθ is consid-
ered as the system disturbance.

Introduce a nonsingular fast terminal sliding-mode sur-
face defined in [31] as follows:

s = x2 + α1x1 + α2β x1ð Þ, ð16Þ

where α1, α2 > 0, and βðx1Þ takes the form of

β x1ð Þ =
x1j jγ sgn x1ð Þ,  x1j j > ξ,

b1x1 + b2 sgn x1ð Þx21,  x1j j ≤ ξ,

(
ð17Þ

where 0 < γ < 1, b1 = ð2 − γÞξγ−1, b2 = ðγ − 1Þξγ−2, sgn ð⋅Þ
denotes the sign function, and ξ is a small positive constant.
The derivative of (17) with respect to x1 is

dβ x1ð Þ
dx1

=
γ x1j jγ−1,  x1j j > ξ,

b1 + 2b2 x1j j,  x1j j ≤ ξ,

(
ð18Þ

From (18), it is known that dβðx1Þ/dx1 is continuous. By
using (15), the time derivative of the sliding-mode surface
(16) is written as

_s = −_rω − _r
dvθc
dr

+ atθ − amθ + α1x2 + α2x2
dβ x1ð Þ
dx1

: ð19Þ
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To make the system states converge to the designed
sliding-mode surface s = 0 in finite time, the following fast
reaching law is adopted:

_s = −k1s − k2 sj jμ sgn sð Þ, ð20Þ

where k1, k2 > 0, and 0 < μ < 1. Substituting (20) into (19), we
achieve a guidance law as follows:

amθ = −_rω − _r
dvθc
dr

+ α1x2 + α2x2
dβ x1ð Þ
dx1

+ k1s + k2 sj jμ sgn sð Þ + atθ:

ð21Þ

In practical intercepts, the target acceleration atθ is diffi-
cult to be obtained. From Assumption 1, we have jatθj ≤ dθ
where dθ is unknown. To acquire the robustness to atθ and
avoid the introduction of switching term, an adaptive term
is constructed with inherent continuity [29]. The adaptive
guidance law is designed as

amθ = −_rω − _r
dvθc
dr

+ α1x2 + α2x2
dβ x1ð Þ
dx1

+ k1s + k2 sj jμ sgn sð Þ + bκs
2ε2

,
ð22Þ

where ε > 0, bκ is the estimation of κ, and κ = d2θ. The
updating law of bκ is given by

_bκ = k3
s2

2ε2
− k4bκ� �

, ð23Þ

where k3, k4 > 0.

4.2. Stability Analysis. In this subsection, the stability analysis
of the adaptive guidance law is performed. First, we give the
following lemma required in the analysis.

Lemma 1 [21]. Suppose that there is a continuously differ-
entiable and positive definite function VðxÞ defined in a
neighborhood U ⊂ Rn of the origin and that _VðxÞ≤−pV
ðxÞ − qVηðxÞ where p, q > 0, and 0 < η < 1, then, x con-
verges to zero in finite time and the settling time T sat-
isfies the inequality

T ≤
1

p 1 − ηð Þ ln
pV1−η x0ð Þ + q

q
, ð24Þ

where xðt0Þ = x0.

Theorem 1. For the guidance system (15) with the sliding-
mode surface (16), if the guidance law is chosen as (22) with
the updating law (23), then the sliding-mode variable s and
the system states x1 and x2 will converge to the regions

sj j ≤ ε2

2k2

� �1/ μ+1ð Þ
=Θ1,

x1j j ≤max
Θ1

α2

� �1/γ
, ξ

( )
=Θ2,

x2j j ≤Θ1 + α1Θ2 + α2Θ
γ
2

ð25Þ

in finite time, respectively.

Proof. Consider the Lyapunov function

V1 =
1
2
s2 +

1
2k3

~κ2, ð26Þ

where ~κ = κ − bκ . Its time derivative is

_V1 = s_s −
1
k3

~κ _bκ: ð27Þ

Substituting (22) into (19) yields

_s = atθ − k1s − k2 sj jμ sgn sð Þ − bκs
2ε2

: ð28Þ

By using (23) and (28), (27) is written as

_V1 = atθs − k1s
2 − k2 sj jμ+1 −

bκs2
2ε2

−
~κs2

2ε2
+ k4 κ − ~κð Þ~κ

≤ dθ sj j −
κs2

2ε2
− k1s

2 − k2 sj jμ+1 + k4 κ~κj j − k4~κ
2:

ð29Þ

Noting that

dθ sj j = 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κs2

2ε2
⋅
ε2

2
≤

r
κs2

2ε2
+
ε2

2
,

~κκj j = 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ~κ2

2
⋅
κ2

2ρ

s
≤
ρ~κ2

2
+

κ2

2ρ
,

ð30Þ

where 0 < ρ < 2, we can obtain

_V1 ≤ −k1s
2 − k2 sj jμ+1 − k4 1 −

ρ

2

� �
~κ2 +

ε2

2
+ k4

κ2

2ρ

≤ −2k1
1
2
s2 − 2k3k4 1 −

ρ

2

� � 1
2k3

~κ2 +
ε2

2
+ k4

κ2

2ρ
≤ −χV1 + ψ,

ð31Þ

whereχ =min f2k1, 2k3k4ð1 − ρ/2Þg andψ = ðk4κ2/ρ + ε2Þ/2.
From (31), we have _V1 < 0 when V1 > ψ/χ. Thus, V1 is
bounded, and then ~κ is bounded, that is, j~κj ≤ ζ where ζ is a
nonnegative constant. Reconsidering the Lyapunov function
V2 = s2/2, and differentiatingV2 with respect to time, we have
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_V2 ≤ dθ sj j −
bκs2
2ε2

− k1s
2 − k2 sj jμ+1

≤
~κs2

2ε2
+
ε2

2
− k1s

2 − k2 sj jμ+1

≤
ζs2

2ε2
+
ε2

2
− k1s

2 − k2 sj jμ+1

= −2 k1 −
ζ

2ε2

� �
V2 − 2 μ+1ð Þ/2 k2 −

ε2

2 sj jμ+1
� �

V2
μ+1ð Þ/2:

ð32Þ

According to (32), when k1 > ζ/2ε2 and k2 > ε2/2jsjμ+1,V2
satisfies Lemma 1. Therefore, swill, in finite time, converge to
the region

sj j ≤ ε2

2k2

� �1/ μ+1ð Þ
=Θ1: ð33Þ

After that, the system states satisfy the following equation:

x2 + α1x1 + α2β x1ð Þ = s,  sj j ≤Θ1: ð34Þ

When jx1j ≥ ξ, (34) can be rewritten as

x2 + α1x1 + α2 −
s

x1j jγ sgn x1ð Þ
	 


x1j jγ sgn x1ð Þ = 0: ð35Þ

Choose the Lyapunov function

V3 =
1
2
x21: ð36Þ

Then, taking the derivative of (36)with respect to time and
substituting (35) into the resulting equation, we obtain

_V3 = −2α1V3 − 2 γ+1ð Þ/2 α2 −
s

x1j jγ sgn x1ð Þ
	 


V3
γ+1ð Þ/2: ð37Þ

From Lemma 1, x1 will converge towards zero when

α2 ≥
Θ1
x1j jγ : ð38Þ

Thus, the convergence region of x1 is obtained as

x1j j ≤max
Θ1
α2

� �1/γ
, ξ

( )
=Θ2: ð39Þ

Simultaneously, the convergence region of x2 is given as

x2j j ≤ sj j + α1 x1j j + α2 β x1ð Þj j ≤Θ1 + α1Θ2 + α2Θ2
γ: ð40Þ

The proof is complete.

4.3. Guidance Command Conversion. According to the
implementation direction of guidance acceleration, the
existing intercept laws may be mainly classified into two

categories. The one category consists of interceptor velocity
referenced laws, and the second is referenced to the LOS
[32]. On account of the difference in overload-generated
pattern, the velocity-referenced guidance system is
employed inside the atmosphere by aerodynamically con-
trolled interceptors or interceptors with compound control,
while the LOS-referenced one is adopted by the exoatmo-
spheric interceptor which generates overload by body-
installed lateral jet engines [33]. Considering that most
maneuvering targets fly or perform maneuver inside the
atmosphere, we transform the law in (22) into the form of

am =
amθ

nm ⋅ eθ
nm,

amθ = −_rω − _r
dvθc
dr

+ α1x2 + α2x2
dβ x1ð Þ
dx1

+ k1s + k2 sj jμ sgn sð Þ + bκs
2ε2

,

8>><>>:
ð41Þ

where am is the missile guidance acceleration and nm is a
unit vector perpendicular to the missile velocity [5]. Thus,
the transformed law is applicable to intercept the maneu-
vering target inside the atmosphere. In (41), to guarantee
nm ⋅ eθ ≠ 0, we assume

nm ⋅ eθ = λ, ð42Þ

where 0 < λ ≤ 1. Moreover, nm is subject to the constraints

nm ⋅ tm = 0,

nmj j = 1,

(
ð43Þ

where tm is the unit vector along the missile velocity. By
combining (42) with (43), the existence condition for nm
is given as

1 − tm ⋅ eθð Þ2 ≥ λ2: ð44Þ

According to (44), λ is selected as follows:

λ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − tm ⋅ eθð Þ2

q
− σ, ð45Þ

where σ > 0 is sufficiently small. Then, two solutions can
be achieved to nm and denoted by nm1 and nm2. In view
of the guidance command continuity, the solution should
be adopted satisfying the following condition:

nm = nmi ∣max cos < nmi, nm′ >
h i

; i = 1, 2
n o

, ð46Þ

where nm′ is nm at previous moment. The above conver-
sion is depicted in Figure 4 where ν = arccos λ.

4.4. Guidance Law Realization in Practical Interceptions.
From (41) and the derivation, the involved guidance infor-
mation includes the relative range r, the closing velocity _r,
the LOSR ω, the unit vector eθ, and the missile velocity vector
vm. The missile seeker (usually Doppler radar or the combi-
nation with optical sensor) can directly obtain the
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measurements as r, _r, the elevation angle qε, and the azimuth
angle qβ of the LOS in the inertial reference system. The rela-
tion between the LOS angles and the inertial reference system
is given in Figure 5. With filtering techniques, the LOS angle
rates _qε and _qβ can be achieved.

From Figure 5, the angular velocity of the LOS coordinate
system osxsyszs is obtained as

ωs =

cos qε sin qε 0

−sin qε cos qε 0

0 0 1

2664
3775

0

_qβ

0

2664
3775 +

0

0

_qε

2664
3775 =

_qβ sin qε

_qβ cos qε
_qε

2664
3775:

ð47Þ

Thus, we have ω = ½0 _qβ cos qε _qε�T ≠ which is equiva-

lent to (2) in essence. Due to er = 1 0 0½ �T, eθ has the
form

eθ = eω × er =
1
ω

0

_qε

− _qβ cos qε

2664
3775, ð48Þ

where ω =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð _qβ cos qεÞ2 + _q2ε

q
. Notice that vm can be mea-

sured or estimated by onboard inertial measurement unit
or the combination with the satellite positioning system.
Therefore, the designed guidance law is realizable in
practical interceptions. The similar realization can be
seen in [34].

5. Simulations

In this section, a series of numerical simulations are con-
ducted to examine the performance of the devised guidance
law. As depicted in [8], the guidance command in (41) will
be continuous and smooth via replacing sgn ð⋅Þ by the sig-
moid function

sgmf sð Þ = 2
1

1 + e−χs
−
1
2

� �
, ð49Þ

where χ is a positive constant. For simplicity, the modified
law is abbreviated to PTB-AGL (profile-tracking-based adap-
tive guidance law). Meanwhile, the PTB-GL, where the adap-
tive term is removed from (41), the observed-embedded
finite-time convergent guidance law (OE-FTC-GL) in [22],
and the classical pure PN (PPN) in [2] are used to make com-
parisons. The latter two expressions are written as

am PPN =N1ω × vm,

am OE−FTC−GL =
−N2 _rω + âtθ + α ωj jυsatδω ωð Þ

nm ⋅ eθ
nm,

8><>:
ð50Þ

where N1 > 0, N2 > 2, α > 0, 0 < υ < 1, âtθ is the estimated
value of atθ from an extended state observer, satδωð⋅Þ denotes
the saturation function, and the approach to determining nm
is the same as in PTB-AGL. With the help of the command
conversion, the true PN (TPN) in [35] and the augmented
TPN (ATPN) in [5] are converted into the following forms:

am TPN‐C =
−N3 _rω
nm ⋅ eθ

nm,

am ATPN‐C =
atθ −N3 _rω
nm ⋅ eθ

nm,

8>>><>>>: ð51Þ

where N3 > 2. Then, TPN-C and ATPN-C are same as PPN
in terms of the command direction, which can take part in
the comparison with PTB-AGL. The required information
of the above-mentioned laws is listed in Table 1. In ATPN-
C, the target maneuver information is included which is dif-
ficult to be achieved in most cases. Hence, ATPN-C is almost
unrealizable in practice and only for comparison here.
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n
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Figure 4: Guidance command conversion.
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Figure 5: Relation between LOS angles and inertial reference
system.

Table 1: Required information of guidance laws.

Guidance law
Required information

r _r qε qβ _qε _qβ tm atθ

PTB-AGL ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗

PTB-GL ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗

OE-FTC-GL ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗

PPN ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✗

TPN-C ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✗

ATPN-C ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Note:✓ denotes “the information is required”; ✗ denotes “the information is
not required.”
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In order to reflect the realistic intercept, maximum accel-
eration constraint and command lag from autopilot are taken
into account. The missile acceleration is restricted as

am =
am, if amj j ≤ amax,

amax
am
amj j , if amj j > amax,

8<: ð52Þ

where amax is the maximum achievable value of the missile
acceleration magnitude. The missile autopilot dynamics is
considered as a first-order differential equation in the form of

_ama = −
1
ϖ
ama +

1
ϖ
amc, ð53Þ

where ama and amc are the delayed and commanded acceler-
ation, respectively, and ϖ is the time constant. To evaluate
control efforts of the guidance laws, an energy consumption
function is defined as

J =
ðt
t0

amj jdτ: ð54Þ

In addition, ΔJ is defined as the total energy consump-
tion during the guidance process, that is, ΔJ = Jðt f Þ, where
t f is the final time of guidance. The simulations below are
performed on a laptop with Intel Core i5-3470 3.20GHz
CPU. The result in this section is obtained by using
MATLAB 2016a.

5.1. Case 1: Pursuing a Low-Velocity Maneuverable Target.
The first set of simulations is carried out for the case where
a missile with a velocity advantage is pursuing a maneuver-
able target. The initial state of the missile and the target in
oIxIyIzI is given in Table 2.

Three different types of target motion are considered as
follows: (1) constant velocity (CV): at = ð0, 0, 0Þ; (2) constant
maneuvering (CM): at = ð0, 3g0, 4g0Þ, g0 = 9:80665 m/s2;
and (3) sinusoidal maneuvering (SM): at = ð0, 3g0, 5g0 cos
0:5tÞ. The simulation step is 1ms when r ≥ 2 km and 0.1ms
when r < 2 km. The simulation terminates when _r > 0, and
the miss distance is defined as the minimum value of r. The
missile acceleration is limited by amax = 10g0. The seeker
blind-zone distance is selected as 100m, and the guidance
command keeps unchanged when r is less than the distance.
The time constant of the autopilot dynamics is set as 0.1 s. At
the initial time t0, nm = (0.3948, 0.9092, -0.1324), and bκ = 0
are adopted. The key parameter settings involved in the guid-
ance laws are listed in Table 3, and the other parameters for
modification are chosen as δ = 0:05r0, σ = 0:01, and χ = 5.

Based on the above conditions, the simulation results
are presented in Figures 6(a)–6(j) and Table 4. In
Figure 6(d), the profile-tracking error of PTB-AGL rapidly
converges to a small neighborhood of zero in comparison
to that of PTB-GL, especially when against the CM and
SM targets. This indicates that the addition of the adaptive
term can better reject the target maneuver disturbance in
PTB-AGL. It can be seen in Figure 6(e) that all the laws
are able to reduce the LOSR to a low level in terms of
intercepting the CV target. In addition, the least energy
is consumed in PPN from Table 4. However, when dealing
with the maneuvering targets, PPN and TPN-C, compared
with the other four laws, cannot suppress the LOS rotation
well because the target maneuver disturbance is not
addressed. Thus, as shown in Table 4, they have larger
miss distance and total energy consumption. Because of
the direct target maneuver compensation, ATPN-C is sig-
nificantly better than TPN-C. The histories of the guid-
ance acceleration command are plotted in Figures 6(f)–
6(h). When intercepting the SM target, the command of
PTB-AGL is smooth while the unexpected chattering
emerges in PTB-GL and ATPN-C, which demonstrates
that the designed adaptive term works well. The CPU time
costs of the laws are presented in Figure 6(j) where PTB-
AGL has an advantage over OE-FTC-GL. This may be
because an additional observer for estimation is required
in OE-FTC-GL while the target maneuver is addressed
by a simply adaptive term in PTB-AGL. PPN possesses
the least time cost as predicted, but the unsatisfactory miss
distance when against the SM target.

According to the above results, the guidance perfor-
mance of PTB-AGL is superior to those of PTB-GL, PPN,
TPN-C, and ATPN-C and, regardless of the CPU cost,
comparable to that of OE-FTC-GL where the unknown tar-
get maneuver is accurately estimated and compensated due
to the employment of the true guidance information. In
addition, the convergence rate of the LOSR can be flexibly
and quantitatively regulated by adjusting a. By contrast,
OE-FTC-GL can only roughly control the convergence
time of the LOSR because of the guidance scheme and
the uncontrollable estimation error. The time histories of
the LOSR under the different profile parameters are pre-
sented in Figure 7(a) where the convergence rate of the
LOSR is flexibly controlled. Figure 7(b) shows the trends
of the guidance performance versus the profile parameter
at a proper interval. It can be observed that the miss dis-
tance always fluctuates within a low level and the total
energy consumption varies with a. For intercepting a

Table 2: Initial state of missile and target.

Initial state Missile Target

Position (km) (2, 8, 0.5) (12, 4, 1.5)

Velocity (m/s) (1101.24, -459.84, 125.76) (500, 0, 0)

Table 3: Parameter settings for guidance laws.

Guidance law Parameter

PTB-AGL
a = 0:5, b = 0:05, α1 = α2 = 2, γ = 0:8,
ξ = 0:01, k1 = k2 = 2, μ = 0:1, k3 = 0:1,

k4 = 0:001, ε = 0:8

OE-FTC-GL
N1 = 3:0, α = 10:0, υ = 0:1,

δω = 5:0 × 10−4

PPN/TPN-C N2 =N3 = 3:0
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Figure 6: Continued.
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maneuverable target, PTB-AGL can easily give a proper
convergence rate via a when the energy consumption is
taken into account.

5.2. Case 2: Head-On Intercepting a High-Velocity
Maneuverable Target. In this subsection, an engagement
scenario is constructed where a missile with a velocity
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Figure 6: Simulation results under Case 1.

Table 4: Summary of guidance performance—Case 1.

Guidance law
Miss distance (m) Total energy consumption (m/s)

CV CM SM CV CM SM

PTB-AGL 0.0042 0.0116 0.0222 294.99 1148.87 1037.89

PTB-GL 0.0048 0.0158 0.1234 294.99 1149.48 1044.18

OE-FTC-GL 0.0325 0.0241 0.0175 289.03 1146.27 1036.69

PPN 0.0206 0.0276 4.4362 266.20 1323.66 1174.06

TPN-C 0.0141 59.9252 74.5088 321.11 1525.42 1252.22

ATPN-C 0.0141 0.0075 0.1555 321.11 1182.19 1061.31
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disadvantage is head-on intercepting a high-velocity
maneuverable target. The initial state of the missile and
the target in oIxIyIzI is given in Table 5.

Similarly, three different patterns of target motion are
considered as follows: (1) CV: at = ð0, 0, 0Þ; (2) CM: at =
ð0, 2g0, 3g0Þ; and (3) SM: at = ð0, 2g0, 4g0 cos 0:5tÞ. The
simulation step jumps to 0.1ms when r < 5 km. The mis-
sile acceleration is limited by amax = 12g0, and the seeker
blind-zone distance is set as 300m. At the initial time t0,
nm = ð−0:1369, 0:2383,−0:9615Þ is adopted. The parameters
for the guidance laws are the same as in the previous sub-
section expect for δ = 0:1r0 and b = 0:1.

With the above conditions, the simulation results are
shown in Figures 8(a)–8(j) and Table 6. From Figure 8(d),
the adaptive term in PTB-AGL dramatically enhances the
tracking precision of the profile, as shown in Figure 6(d). In
Figure 8(e), PPN has no capacity to control the rotation of
the LOS, which leads to the target missing as listed in
Table 6. Likewise, the guidance acceleration of PTB-AGL is
always smooth in Figures 8(f)–8(h). By contrast, ATPN-C,
OE-FTC-GL, and PTB-GL yield different levels of chattering
against the maneuvering targets. In terms of the energy con-
sumption, PTB-AGL is less than TPN-C, especially when
against the CM and SM targets, since the target maneuver
is not considered in TPN-C. Therefore, the performance of

PTB-AGL is preferable to the other four laws. Figure 8(j)
gives the CPU time cost of the each law. It can be found from
Figures 6(j) and 8(j) that the CPU cost is larger when inter-
cepting the maneuvering targets, which mirrors the difficulty
of dealing with maneuvering targets to some extent.

Figures 9(a)–9(b) give the time histories of the LOSR
under the different profile parameters and the variations
of the guidance performance versus the profile parameter,
respectively. Generally, the parameter a should not be too
large in view of finite tracking capability. As same as in
Figure 7(a), the LOSR convergence rate of PTB-AGL can
be regulated easily through adjusting a moderately in
Figure 9(a). In Figure 9(b), the miss distance is kept at a
low level, and the trend of the total energy consumption
is different in terms of the different maneuvering types
of targets. It is indicated that lowering the LOSR exces-
sively requires more overload consumption when inter-
cepting the CM target.

5.3. Monte Carlo Simulations with Measurement Noises. In
the previous simulations, the guidance laws are imple-
mented in a perfect scenario without measurement noise.
However, in realistic scenarios, the required guidance
information is inevitably contaminated with inherently
noisy sensors. To examine the robustness of PTB-AGL,
Monte Carlo simulations of Case 2 are conducted consist-
ing of 500 sample runs. For the performance comparison,
OE-FTC-GL is also examined. The measurement noises of
the relative distance r and the closing velocity _r are taken
as normal distributions with zero mean and triple stan-
dard deviation of 100m and 10m/s, respectively, and
those of the LOS angle and the LOS angle rate are zero
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Table 5: Initial state of the missile and the target.

Initial state Missile Target

Position (km) (45, 10, 1) (5, 15, 1.5)

Velocity(m/s) (1691.10, 497.52, 364.14) (2400, 0, 0)
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Figure 8: Continued.

12 International Journal of Aerospace Engineering



mean and triple standard deviation of 0.1 deg and 0.01 deg/s,
respectively. The measurement frequency of seeker is 50Hz.
According to Figure 9(b), the value of a is modified into
0.5, 0.4, and 0.6 when intercepting the CV, CM, and SM tar-

gets, respectively, and the other simulation settings are the
same as in Case 2.

The Monte Carlo simulation results of the miss distance
and the total energy consumption are presented in
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Figure 8: Simulation results under Case 2.

Table 6: Summary of guidance performance—Case 2.

Guidance law
Miss distance (m) Total energy consumption (m/s)

CV CM SM CV CM SM

PTB-AGL 0.1682 0.1455 0.0291 462.41 492.34 592.21

PTB-GL 0.1615 0.1641 0.1875 462.43 492.17 589.86

OE-FTC-GL 0.0730 0.0442 0.1322 455.15 472.23 591.76

PPN 193.6181 91.5074 495.5556 749.64 579.92 730.59

TPN-C 0.1831 0.0106 0.0800 478.04 564.50 668.25

ATPN-C 0.1831 0.1507 0.1338 478.04 476.30 609.25
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Figure 10. The RMS values of the results are summarized
in Table 7. It can be seen that the performance of
PTB-AGL is satisfactory in the Monte Carlo sense, and
largely better than that of OE-FTC-GL when intercepting
the SM target.

6. Conclusions

In this paper, the terminal guidance problem for a hit-to-kill
missile is addressed with demands for antichattering and
quantitatively controlling the convergence rate of the LOSR.
The proposed guidance law can precisely intercept maneu-

vering targets without chattering and the information of tar-
get maneuver. The performance is superior to the existing
guidance laws, especially the traditional PPN. The conclu-
sions are summarized as follows:

(1) The combination of the nonsingular fast terminal
SMC and the adaptive algorithm can reject the dis-
turbance of target maneuver well. It is realized that
the tracking error of the profile rapidly converges
to a small neighborhood of zero in finite time
and the convergence rate of the LOSR can be reg-
ulated flexibly and quantitatively
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(2) The guidance-command-conversion scheme works
well and can be served as a bridge from the law nor-
mal to the LOS to the one normal to missile velocity

(3) Reducing the LOSR as fast as possible may require
more control efforts. When energy consumption is
taken into account, PTB-AGL can give an appropri-
ate convergence rate of the LOSR with respect to a
maneuverable type of target
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