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In this study, we develop a method based on the Theory of Functional Connections (TFC) to solve the fuel-optimal problem in the
ascending phase of the launch vehicle. The problem is first transformed into a nonlinear two-point boundary value problem
(TPBVP) using the indirect method. Then, using the function interpolation technique called the TFC, the problem’s
constraints are analytically embedded into a functional, and the TPBVP is transformed into an unconstrained optimization
problem that includes orthogonal polynomials with unknown coefficients. This process effectively reduces the search space of
the solution because the original constrained problem transformed into an unconstrained problem, and thus, the unknown
coefficients of the unconstrained expression can be solved using simple numerical methods. Finally, the proposed algorithm is
validated by comparing to a general nonlinear optimal control software GPOPS-II and the traditional indirect numerical
method. The results demonstrated that the proposed algorithm is robust to poor initial values, and solutions can be solved in
less than 300ms within the MATLAB implementation. Consequently, the proposed method has the potential to generate
optimal trajectories on-board in real time.

1. Introduction

With the recent development in space exploration, launch
vehicles are very important as they are the only means for
humans to explore space from the earth. In general, a launch
vehicle mission has been planned over a long period, and the
trajectory was designed in advance, and it cannot be updated
during flight, which means it is not robust or flexible. The fast
launch and trajectory reconstruction are the main research of
the guidance system, and both need rapid trajectory planning
technology. Rapid trajectory planning can shorten the launch
mission cycle and quickly update the trajectory in case of
thrust failure during the flight of the vehicle to ensure the
success of the mission.

The primary aim of the trajectory planning algorithm is
to solve the optimal control problem that is generally based
on nonlinear dynamics, which achieves specific performance
indicators under the constraints of state and control vari-
ables. The solution of such problems is mainly achieved

using the indirect method [1–3] and the direct method
[4–6]. The direct method transforms the optimal control
problem of continuous space into a nonlinear programming
problem and uses a numerical method to directly optimize
the performance index [7–9]. Although the direct method,
represented by a sequential quadratic programming algo-
rithm with the pseudospectral discrete, has advanced a lot
over a period of time, it still has considerable issues between
the on-board application. The algorithm for the general
nonlinear programming, for example, the famous sequential
quadratic programming algorithm, had low algorithm effi-
ciency and low sensitivity to the initial value and was unable
to guarantee convergence in the past, but now, these issues
have easily resolved by using a convex optimization method.
Ralph Rockafellar, a renowned mathematician, pointed out
that the key determinant of the performance of a numerical
optimization algorithm is neither the linearity nor nonline-
arity of the problem, but the convexity or nonconvexity of
the problem [10]. In 2007, JPL proposed lossless convexity
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technology for the dynamic descent guidance of the Mars
lander [11]. After that, a systematic summary of the research
and development of lossless convexity technology is pre-
sented in [12]. The applicability of the lossless convexity
method is extended to general linear systems with multiple
state constraints using the concepts of control theory.
Unfortunately, only a few nonconvex constraints can be
used for lossless convexification, and there is no analytical
convexification method for the system dynamic constraints
in the trajectory optimization problem of aircraft. A method
based on the Newton–Kantorovich/pseudospectral and
sequence convexification is used for the ascending phase of
the launch vehicle [13]. However, the sequential convex
optimization algorithm is a convexification method based
on linearization, which increases the dependence on the ref-
erence trajectory. This not only offers higher requirements
for the reference trajectory but also annihilates the advan-
tage of the convex optimization algorithm that does not rely
on the good initial value. Nevertheless, considering the
rapidity of the convex optimization algorithm in solving
convex problems, in recent years, trajectory planning based
on the convex optimization algorithm, such as planetary
landing [14–16], rocket ascent guidance [17], and entry
guidance [18], has been widely studied.

The indirect method solves the optimal control problem
by using the classical variational method and the Pontryagin
Minimum Principle, derives the first-order necessary condi-
tions of the optimal control, and transforms the optimal
control problem into a two-point boundary value problem
(TPBVP) [19] that is comprised of initial conditions,
Hamiltonian differential equations, optimal conditions, and
terminal boundary conditions (including terminal transver-
sal conditions and terminal constraints). However, since
the convergence radius of the indirect method is small, and
the convergence of the numerical iteration is extremely sen-
sitive to the initial value estimation, which requires a higher
accuracy of the initial value estimation, determination of the
initial value is highly difficult. To overcome this problem, the
deep learning algorithm is used to obtain a higher accuracy
of initial value estimation and a better target shooting
success rate [20–22]. In general, the higher sensitivity of
TPBVP to the initial value makes the problem difficult to
solve. Therefore, although the indirect method yields a more
accurate solution, it is rarely used in practice.

Recently, a mathematical framework called the Theory
of Functional Connections (TFC) has been proposed in
[23] to derive the expressions with embedded constraints.
The expressions, called constrained expressions, are
composed of functionals and functions of functions. The
constrained expression is written as

y tð Þ = g tð Þ + 〠
k=1

n

Φk tð Þpk tð Þ, ð1Þ

where gðtÞ is a free function and ΦkðtÞ are the switch func-
tions composed of the support function skðtÞ with unknown
coefficients αk. The support function is a set of linearly inde-
pendent functions. If one of the switch functions is equal to

1, the constraint it is referencing is evaluated; otherwise, that
is, if it is equal to 0, all other constraints are evaluated. The
switch functions can be expressed asΦkðtÞ = skðtÞαk. The pro-
jection functionals pkðtÞ are derived by constraint functions.
The constrained optimization problem is transformed into
an unconstrained one using the constrained expressions,
which reduces the search space of the solution to the admis-
sible solutions that satisfy all constraints. Finally, using com-
mon basis functions such as Chebyshev polynomials or
Legendre polynomials to express the free function and then
using the least-square method to find its unknown coefficient,
the solution of the problem can be found. In [24, 25], the TFC
algorithm quickly solves the nonlinear differential equations
and obtains high-precision solutions. In [26, 27], it is applied
to fixed-time asteroid landing and optimal energy landing.
The results show that the solution time is basically less than
100ms, which proves that the algorithm has real-time appli-
cation potential.

This paper is organized as follows. Section 2 gives a brief
description of the TFC mathematical framework to solving
TPBVP. In Section 3, the fuel-optimal ascent trajectory
problem is described in detail, and the necessary conditions
are derived. In Section 4, the fuel-optimal problem in the
ascending phase of the launch vehicle is formulated using
the TFC framework. Finally, the result and discussion are
provided in Section 5.

2. Theory of Functional Connections

In this section, we present an outline of the TFC mathe-
matical framework and a method for solving second-
order TPBVP with TFC.

2.1. TFC for TPBVP. In general, trajectory optimization prob-
lems are second-order TPBVP [28], which is expressed as

F t, y tð Þ, _y tð Þ, €y tð Þð Þ = 0 subject to :

y t0ð Þ = y0,

y t f
� �

= yf ,

_y t0ð Þ = _y0,

_y t f
� �

= _yf ,

8>>>>><
>>>>>:

ð2Þ

where t0 and t f represent the initial time and the terminal
time, respectively, and y0, yf , _y0, _yf are the initial and terminal
constraints, respectively. As mentioned earlier, the constraints
are expressed by (1), and then, (2) is simply rewritten as

y tð Þ = g tð Þ +Φ1 tð Þp1 +Φ2 tð Þp2 +Φ3 tð Þp3 +Φ4 tð Þp4, ð3Þ

where pkðtÞ is expressed as

p1 t, gi tð Þð Þ = y0i − gi t0ð Þ,
p2 t, gi tð Þð Þ = yf i − gi t f

� �
,

p3 t, gi tð Þð Þ = _y0i − _gi t0ð Þ,
p4 t, gi tð Þð Þ = _yf i − _gi t f

� �
:

ð4Þ
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The algorithm to derive the term of the constrained
expression is given as follows:

(1) Choose skðtÞ, which are k linearly independent
support functions

(2) Calculate switching functions ΦkðtÞ as a linear com-
bination of the support functions with k unknown
coefficients

(3) Formulate a system of equations to solve for the
unknown coefficients based on ΦkðtÞ

The support functions are defined as skðkÞ = tk−1,
according to [28]. The switching function is then obtained
by solving equations. When the first switch function is
activated, the equations are

Φ1 t0ð Þ = 1,

Φ1 t f
� �

= 0,

Φ1′ t0ð Þ = 0,

Φ1′ t f
� �

= 0:

8>>>>><
>>>>>:

ð5Þ

The equations of the first switch functions are com-
bined into the matrix form as

1 t0 t20 t30

1 t f t2f t3f

0 1 2t0 3t20
0 1 2t f 3t2f

2
666664

3
777775

α11

α21

α31

α41

2
666664

3
777775 =

1

0

0

0

2
666664

3
777775: ð6Þ

Similarly, application of this method to the other three
switch functions yields the following matrix:

1 t0 t20 t30

1 t f t2f t3f

0 1 2t0 3t20
0 1 2t f 3t2f

2
666664

3
777775

α11 α21 α31 α41

α21 α22 α32 α42

α31 α23 α33 α43

α41 α24 α34 α44

2
666664

3
777775 =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

2
666664

3
777775:

ð7Þ

The coefficient αk is obtained by matrix inversion, and
the expression of the switch functions is obtained as

Φ1 tð Þ = 1
t f − t0
� �3 −t2f 3t0 − t f

� �
+ 6t0t f t − 3 t0 + t f

� �
t2 + 2t3

� �
,

Φ2 tð Þ = 1
t f − t0
� �3 −t20 t0 − 3t f

� �
− 6t0t f t + 3 t0 + t f

� �
t2 − 2t3

� �
,

Φ3 tð Þ = 1
t f − t0
� �2 −t0t

2
f + t f 2t0 + t f

� �
t − t0 + 2t f
� �

t2 + t3
� �

,

Φ4 tð Þ = 1
t f − t0
� �2 −t20t f + t0 t0 + 2t f

� �
t − 2t0 + t f
� �

t2 + t3
� �

:

ð8Þ

The boundary conditions of (2) are effectively embed-
ded within the constrained expression by substituting (4)
and (8) into (3). Then, by substituting (3) into the vector
differential equation Fðt, yðtÞ, _yðtÞ, €yðtÞÞ, the constrained
TPBVPs are transformed into an unconstrained problem.
According to (3), yðtÞ is replaced by gðtÞ; thus, the origi-
nal vector differential equation Fðt, yðtÞ, _yðtÞ, €yðtÞÞ is
transformed into F̂ðt, gðtÞ, _gðtÞ, €gðtÞÞ, which is only a
function of t, the free functions gðtÞ, and their derivatives

F̂ t, g tð Þ, _g tð Þ, €g tð Þð Þ = 0: ð9Þ

As mentioned earlier, F̂ðt, gðtÞ, _gðtÞ, €gðtÞÞ is uncon-
strained because the boundary is represented by the switch
function ΦkðtÞ and the projection function pkðtÞ.

After determining the switch function and the projection
function, we next discuss the free function gðtÞ.
2.2. Definition of the Free Function. In selecting a free func-
tion, we are essentially looking for the best function approx-
imator. A natural choice for the free function is a linear
combination of basis functions, as this is capable of spanning
the entire function space that the basis spans, as the number
of basis functions approaches infinity. The free function is
expressed as

g tð Þ = ξTh, ð10Þ

where ξ are m × 1 unknown coefficients and h are m basis
functions.

Next, the problem domain t is mapped to the domain of
the basis functions z, and Chebyshev and Legendre polyno-
mials are commonly used, the domains of which are defined
in ½−1, 1�. To implement the basis functions, a map between
t and z is defined as

z = z0 +
zf − z0
t f − t0

t − t0ð Þ↔ t = t0 +
t f − t0
zf − z0

z − z0ð Þ: ð11Þ

By using (11), the derivatives of gðtÞ are computed as

dkg
dtk

= ckξT
dkh zð Þ
dzk

, where k ∈ 0, n½ �, ð12Þ

where c≔ dz/dt = ðzf − z0Þ/ðt f − t0Þ.
2.3. Domain Discretization. For solving TPBVPs numeri-
cally, the domain t ∈ ½t0, t f � must be discretized by N + 1
points. The common method is uniform distribution, but
the advantage of Chebyshev–Gauss–Lobatto collocation
points is that when the number of basis functions increases,
the condition number should also increase slowly, which is
useful for improving computational efficiency. The Cheby-
shev–Gauss–Lobatto collocation points are defined as

zk = − cos
kπ
N

� �
 for k = 1, 2,⋯,N: ð13Þ
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Thus, the new vector differential equation F̂ðt, gðtÞ, _g
ðtÞ, €gðtÞÞ becomes ~Fðz, ξÞ, where the unknown coefficient ξ
is the variable that needs to be solved. ~Fðz, ξÞ is expressed
in the form of loss functions at each discrete point

L i ξð Þ =

~Fi z0, ξð Þ
⋮

~Fi zd , ξð Þ
⋮

~Fi zN , ξð Þ

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
: ð14Þ

By setting L i = 0, the unknown coefficient ξ is solved
using optimization schemes such as iterative least-squares.

To solve the nonlinear least-square problem, we need the
Jacobian matrix of the loss function, which is written as

J ξð Þ =

∂~Fi z0, ξð Þ
∂ξ1

∂~Fi z0, ξð Þ
∂ξ2

⋯
∂~Fi z0, ξð Þ

∂ξj
⋮ ⋮ ⋮

∂~Fi zd , ξð Þ
∂ξ1

∂~Fi zd , ξð Þ
∂ξ2

⋯
∂~Fi zd , ξð Þ

∂ξj
⋮ ⋮ ⋮

∂~Fi zN , ξð Þ
∂ξ1

∂~Fi zN , ξð Þ
∂ξ2

⋯
∂~Fi zN , ξð Þ

∂ξj

2
6666666666666664

3
7777777777777775

: ð15Þ

The estimation is updated by

ξk+1 = ξk − Δξ, ð16Þ

where Δξ = ðJðξÞT JðξÞÞ−1 JðξÞTLðξÞ.
The iterative process stops when the convergence toler-

ance is met:

L2 L ξð Þ½ � < ε, ð17Þ

where ε is the stopping criterion that is defined by the
user.

Figure 1 shows the outline of the TFC framework.
Recently, the position of numerical calculation in the

current guidance and control field is emphasized in [29],
which, based on numerical calculation, is called as the Com-
putational Guidance and Control (CG&C). The CG&C
replaces offline planning and closed-loop guidance with
on-board computing, which is more robust, more accurate,
and more flexible and can adapt to more complex environ-
ments and missions, but offers high requirements for com-
putational efficiency. As mentioned earlier, the algorithms
used in the CG&C are basically divided into two: direct
and indirect. In this study, we used the indirect method,
because the optimal control problem is transformed into
TPBVP, and then, the TFC method is used to transform
and solve the problem.

We found that the TFC method is quite similar to the
collocation method in which all three methods using orthog-
onal polynomials over the global domain, according to the
different method. In the collocation method, the states and
costates are expanded by using orthogonal polynomials,
and the boundary conditions are considered as part of the
optimization scheme [30]. It is similar that the pseudospec-
tral method used orthogonal polynomials like Chebyshev or
Legendre polynomials to approximate the states and cost-
ates, and the boundary conditions are also considered as part
of the optimization scheme. The TFC method may use a
similar operation, but the fundamental difference between
the TFC method and the other two methods lies in handling
the constraints of the problem. The TFC method uses
orthogonal polynomials to expand the free function gðtÞ in
a constrained expression and then expresses the problem con-
straints analytically step by step as mentioned above, which
can reduce the search space of the solution and thus improve
the computational efficiency. In fact, the advantages of the
TFC method are presented in [27]; the results in [27] show
that the TFC method is two orders of magnitude faster than
the pseudospectral method in a fixed time optimal control
problem and one order of magnitude faster than the pseudos-
pectral method in a free time optimal control problem.

3. Fuel-Optimal Problem in the Ascending
Phase of the Launch Vehicle

In this section, the problem is transformed into a TPBVP,
and the first-order necessary conditions and transversal con-
ditions of the problem are derived using the Pontryagin
Minimum Principle.

3.1. Dynamical Model. In this section, the last stage of the
launching vehicle is studied. The dimensionless equations
of motion of a three-dimensional (3-D) launch vehicle can
be expressed in the Earth Center Inertial Coordinate System
as follows:

_r = v,

_v =
T
m

+ ag,

_m =
T

Ispg0
,

ð18Þ

where r is the inertial position, which is normalized by the
radius of the Earth R0 = 6378145m. v is the velocity, which
is normalized by

ffiffiffiffiffiffiffiffiffiffi
R0g0

p
, in which g0 = 9:81m/s2 represents

the gravitational acceleration magnitude on the surface of
the Earth. The mass of the launch vehicle is denoted by m.
The thrust is denoted by T = TIb, where Ib is the unit vector
of the body axis satisfying

Ibk k ≡ 1: ð19Þ

For most launch vehicles, the mass flow is uncontrollable;
thus, the thrustmagnitude T = kTk is constant and uncontrol-
lable during the same flight phase. The gravity acceleration
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ag = −r/r3, where r = krk. The specific impulse of the engine is
denoted by Isp. The differentiation of the equations in (18) is

with respect to dimensionless time normalized by
ffiffiffiffiffiffiffiffiffiffiffi
R0/g0

p
.

As the mass flow is constant, the optimal ascent problem
is treated as a minimum-time problem:

min J = t f , ð20Þ

subject to

_r = v,  _v =
T
m

+ ag,  _m =
T

Ispg0
,

r 0ð Þ = r0, v 0ð Þ = v0, m 0ð Þ =m0,

r t f
� �

= rf , v t f
� �

= vf :

ð21Þ

3.2. First-Order Necessary Conditions. On the basis of the
Pontryagin Minimum Principle, the mass of the vehicle is
treated as a prescribed function of time instead of a state
variable. The Hamiltonian function is written as

H = 1 + λTr v + λTv
T
m
Ib −

r
r3

� �
, ð22Þ

where Ib = −λv/λv is called the primer’s vector, according to
Lawden’s theory [31]. Thus, (22) is rewritten as

H = 1 + λTr v −
T
m

λvk k − λTv r
r3

: ð23Þ

The first-order necessary conditions for optimality then
give the differential equations of the costate variables:

_λr = −
∂H
∂r

=
λTv r
r5

,

_λv = −
∂H
∂v

= −λr:

ð24Þ

The transversality condition is expressed as

H tf
� �

= 0: ð25Þ

4. Solution via TFC

4.1. TPBVP in TFC Framework. As mentioned in the previ-
ous section, to find the optimal state, the following nonlinear
TPBVPs must be solved:

_r = v, ð26Þ

_v = −
T
m
λv
λv

−
r
r3
, ð27Þ

_m =
T

Ispg0
, ð28Þ

_λr = −
∂H
∂r

=
λTv r
r5

, ð29Þ

_λv = −
∂H
∂v

= −λr , ð30Þ

Projection function pk  (t)
Support function sk  (t)
Switch function 𝛷k  (t)

Free function
g (t) = 𝜉T h (z)

𝜉 = 𝜉k

𝜉k

dz
dt

zf – z0
tf – t0

c : = =

TFC

N

Y

L2 𝜀(𝜉k)

i (𝜉) = 0

F (z, 𝜉) = 0

y (t) = g (t) + 𝛴𝛷k (t)pk (t)
k=1

n

F t, y(t), y(t), y(t) = 0

Figure 1: TFC framework.
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H tf
� �

= 1 + λTr t f
� �

v t f
� �

−
T
m

λv t f
� �		 		 − λTv t f

� �
r t f
� �

r3 t f
� � = 0,

ð31Þ
where (26) and (27) are subject to

r 0ð Þ = r0, v 0ð Þ = v0, m 0ð Þ =m0,

r t f
� �

= r f , v t f
� �

= vf :
ð32Þ

Additionally, there is a redundant equation and can be
removed by the TFC constraints. The derivative of rðtÞ is
exactly the function vðtÞ because TFC constraints are analyt-
ical expressions; thus, (26) can be disregarded. The problem
is now reduced. The new equations are expressed as

La tð Þ = a − _λr −
λTv r
r5

,

Lr tð Þ = _λr −
λTv r
r5

,

Lv tð Þ = _λv + λr ,

LH = 1 + λTr v −
T
m

λvk k − λTv r
r3

:

ð33Þ

To solve the above equations, the TFC constraints with
rðtÞ, λrðtÞ, λvðtÞ need to be constructed by the TFC method.
The unknown coefficients in the TFC constraint expressions
are expressed as ξa, ξλr , ξλv , and vðtÞ, aðtÞ, _λrðtÞ, _λvðtÞ can be
obtained by taking the derivative of the TFC constraint
expression rðtÞ, λrðtÞ, λvðtÞ, respectively.

The initial and terminal constraints of the problem dis-
cussed in this paper are position and velocity constraints,
respectively. The TFC constraint expressions of rðtÞ, vðtÞ, a
ðtÞ are written as

r tð Þ = g tð Þ +Φ1 tð Þp1 +Φ2 tð Þp2 +Φ3 tð Þp3 +Φ4 tð Þp4,
v tð Þ = g tð Þ + _Φ1 tð Þp1 + _Φ2 tð Þp2 + _Φ3 tð Þp3 + _Φ4 tð Þp4,
a tð Þ = g tð Þ + €Φ1 tð Þp1 + €Φ2 tð Þp2 + €Φ3 tð Þp3 + €Φ4 tð Þp4,

ð34Þ

where the projection function is written as

p1 tð Þ = r0 − g t0ð Þ,
p2 tð Þ = r f − g t f

� �
,

p3 tð Þ = v0 − _g t0ð Þ,
p4 tð Þ = vf − _g t f

� �
:

ð35Þ

Next, consider constructing a free function. According to
(10)–(12), the time domain is mapped to the Chebyshev
domain. However, it should be noted that in the time-free
TPBVP, the parameter c is a function of t f . Combined with
the TFCmethod, the new unknown variable ξt is used to repre-
sent the parameter c, and the optimal time is obtained by solv-

ing ξt. In addition, to ensure the solved final time is positive, b is
used instead of b, where b2 = c. Then, rðtÞ is rewritten as

r tð Þ = r zð Þ =Φ1 zð Þr0 +Φ2 zð Þr f +Φ3 zð Þ v0
b2

+Φ4 zð Þ vf
b2

+ h zð Þ −Φ1 zð Þh0 −Φ2 zð Þhf −Φ3 zð Þh0′ −Φ4 zð Þhf′
� �T

ξa,

v tð Þ = b2v zð Þ = b2 Φ1′ zð Þr0 +Φ2′ zð Þrf +Φ3′ zð Þ v0
b2

+Φ4′ zð Þ vf
b2




+ h′ zð Þ −Φ1′ zð Þh0 −Φ2′ zð Þhf −Φ3′ zð Þh0′ −Φ4′ zð Þhf′
� �T

ξa

�
,

a tð Þ = b4r zð Þ = b4 Φ1″ zð Þr0 +Φ2″ zð Þrf +Φ3″ zð Þ v0
b2

+Φ4″ zð Þ vf
b2




+ h″ zð Þ −Φ1″ zð Þ0 −Φ2″ zð Þhf −Φ3″ zð Þh0′ −Φ4″ zð Þhf′
� �T

ξa

�
,

ð36Þ

where h0 = hðz0Þ and hf = hðzf Þ.
The expression of the switch function is similar to (8):

Φ1 zð Þ = 1
zf − z0
� �3 −z2f 3z0 − zf

� �
+ 6z0zf z − 3 z0 + zf

� �
z2 + 2z3

� �
,

Φ2 zð Þ = 1
zf − z0
� �3 −z20 z0 − 3zf

� �
− 6z0zf z + 3 z0 + zf

� �
z2 − 2z3

� �
,

Φ3 zð Þ = 1
zf − z0
� �2 −z0z

2
f + zf 2z0 + zf

� �
z − z0 + 2zf
� �

z2 + z3
� �

,

Φ4 zð Þ = 1
zf − z0
� �2 −z20zf + z0 z0 + 2zf

� �
z − 2z0 + zf
� �

z2 + z3
� �

:

ð37Þ

Next, the TFC constraint expressions of the costates are
constructed by the same steps as above:

λr tð Þ = λr zð Þ = h zð ÞTξr ,
_λr tð Þ = b2λr′ zð Þ = b2h′ zð ÞTξr ,
λv tð Þ = λv zð Þ = h zð ÞTξv,
_λv tð Þ = b2λv′ zð Þ = b2h′ zð ÞTξv:

ð38Þ

Substitution of the above TFC constraint expression into
the loss function yields the loss function with respect to
unknown coefficient ξ. Then, the solution of the problem
is obtained using the nonlinear least-square method. The
unknown coefficient ξ is expressed as

ξ = ξTa1 ξ
T
a2
ξTa3 ξ

T
λr1

ξTλr2 ξ
T
λr3

ξTλv1 ξ
T
λv2

ξTλv3 ξt

n oT
∈ℝ9m+1:

ð39Þ

The loss function can be expressed as

L = LT
a1
LT

a2
LT

a3
LT

λr1
LT

λr2
LT

λr3
LT

λv1
LT

λv2
LT

λv3
LH

n oT
:

ð40Þ
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To use the nonlinear least-square method, the partial
derivative of the loss function needs to be calculated as

a tð Þ = b4r tð Þ = b4 Φ1′′ zð Þr0 +Φ2′′ zð Þr f +Φ3′′ zð Þ v0
b2

+Φ4′′ zð Þ vf
b2




+ h″ zð Þ −Φ1′′ zð Þh0 −Φ2′′ zð Þhf −Φ3′′ zð Þh0′ −Φ4′′ zð Þhf′
� �T

ξa

�
:

ð41Þ

The terms of (41) are defined by

Ja,ξa =

∂La1

∂ξa1

∂La1
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∂ξa3
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2
6666666664

3
7777777775
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∂ξv1

∂La1

∂ξv2
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∂ξv1
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∂ξv3

2
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3
7777777775
,

Ja,ξt =
∂La1

∂ξt

∂La2

∂ξt

∂La3

∂ξt
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2
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 �T
,

JH,ξa =
∂LH

∂ξa1

∂LH

∂ξa2

∂LH

∂ξa3


 �
,

JH,ξr =
∂LH

∂ξr1

∂LH

∂ξr2

∂LH

∂ξr3


 �
,

JH,ξv =
∂LH

∂ξv1

∂LH

∂ξv2

∂LH

∂ξv3


 �
,

JH,ξt =
∂LH

∂ξt
, ð42Þ

where all partial derivatives are provided in the
Appendix.

4.2. Initialization. When using the iterative least-square
method to calculate, some parameters need to be estimated
reasonably, so that the iterative process of the algorithm
can go on without violating the basic mathematical princi-
ples. The simplest initialization is to set them equal to zero.
This is equivalent to connecting the boundary value problem
with the simplest interpolating expression. However, the λv
is related to the thrust direction; initialization of λv = 0 will
cause issues in the TFC method because Ib = −λv/λv and ∥
Ib∥≡1. Thus, the coefficient ξv is initialized using

ξv0 =
v0
v0k k , ξvf = −

r0
r0k k : ð43Þ

In addition, the first guess of ξr , ξa is set equal to zero,
and for setting the first guess of ξt , an estimate of the final
time t f is needed; in this paper, the initial t f is set to be
300, and the initial ξt can be expressed as

ξt =
ffiffiffiffiffiffiffiffiffiffiffiffi
2

t f − t0

s
: ð44Þ

These are uniformly discrete according to the number of
polynomials m.

5. Simulations

In this section, we apply the proposed algorithm to the
ascent problem of the launch vehicle to verify the feasibility
of the algorithm, and the results are compared with those of
the GPOPS-II and classical indirect method solutions of the
other two algorithms. All numerical results are obtained on a
desktop with Intel Xeon E3-1230 3.4GHz. Table 1 lists the
parameters of the launch vehicle and mission in the numer-
ical simulations.

Table 2 shows the initial and terminal parameters of
the experiment, where the orbital elements corresponding
to the terminal position and velocity are also given because
the launch vehicle generally uses the orbital elements for
the target.

To prove the validity and effectiveness of the algorithm
proposed in this study, the results of the algorithm pro-
posed in this paper are compared with those obtained by
the traditional indirect method and GPOPS-II. The final
time calculated by GPOPS-II is 300.97 s, that obtained by
the single shooting method is 301.01 s, and the final time
obtained by TFC is 301.25 s. The locations of the vehicle
and the velocity vector are provided in Figures 2 and 3,
respectively. Figure 4 shows the thrust vector of the launch
vehicle. In the bottom part of Figure 4, the purple line
representing the sum of squares of thrust directions is
equal to 1, which also indicates the validity of the TFC
solution, and the other three lines are the vector of the
body axis. Considering that the pitch angle and yaw angle
are generally used as the guidance command of the launch
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vehicle, the results of pitch angle and yaw angle are also
given here. Figures 5 and 6 show the results of the height
and the velocity, respectively. It can be seen that the results

solved by the three methods are basically the same, which
again shows the validity of the TFC algorithm proposed in
this study. To quantify the accuracy of the TFC method,

Table 1: Parameters for launch vehicle.

Parameter Value

Longitude of launch point (°) 110.95

Latitude of launching point (°) 19.61

Launch azimuth (°) 90

The specific impulse, Isp (m/s) 3365

Thrust, T (N) 2843599.98

Mass rate, _m (kg/s) 845.052

Table 2: Parameters of the boundary conditions.

Parameter Value

Initial position, r0 (m) [371973.739, 6493779.849, -13899.978]

Initial velocity, v0 (m/s) [3652.033, 556.843, -2.666]

Initial mass, m0 (kg) 350306

Semimajor (m) 6595487

Eccentricity 0.0053

Inclination (°) 20.009

Ascending node (°) 17.250

Argument of perigee (°) 32.390

True anomaly (°) 77.969

Terminal position, rf (m) [1912866.558, 6304148.648, 2551.256]

Terminal velocity, vf (m/s) [7457.930, -2220.619, 178.661]
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Figure 2: Vector of velocity solution by TFC, GPOPS-II, and single shooting.
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Figure 7 shows the residual of acceleration, and it can be
seen that the residual of TFC is about 10−14 or less for
the whole solution domain.

In this simulation, the cost time of the proposed method
is 0.23 s and those of GPOPS-II and the single shooting
method are 3.88 and 0.34 s, respectively. It is also known that
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Figure 3: Vector of position solution by TFC, GPOPS-II, and single shooting.
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Figure 4: Vector of thrust solution by TFC.
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the MATLAB programming language is 10 times slower
than C++; thus, the algorithm proposed in this study has
online application potential. In terms of solution accuracy,
the TFC method is not dominant among the three methods,
but combined with the analysis of calculation efficiency, it
shows that the proposed method is an effective method.

The above results show the comparison between the
results of the proposed algorithm, GPOPS-II, and single
shooting method, which verifies the validity of the proposed
algorithm. Next, the effect of the number of discrete points
and polynomials on the algorithm is studied. Table 3 shows
that the excessive number of discrete points will not only
reduce the calculation efficiency, but also reduce the accu-
racy of the solution. In addition, the selection of the number

of polynomials is also analyzed in this paper. In [28], the
number of state polynomials and costate polynomials is the
same and not studied separately. In our simulation, the
results show that the selection of the number of state poly-
nomials and costate polynomials can be different, and a
better result can be obtained. If the number of the state poly-
nomials is selected too much, then not only the calculation
performance will be degraded but also the accuracy of the
solution will be greatly affected. It is seen from Table 3 that
when the number of costate polynomials is as large as the
number of state polynomials, the allowed iteration number
is reached and the iteration progress will not converge; it
means the solution of the problem cannot be solved. In addi-
tion, appropriately increasing the number of costate polyno-
mials can increase the accuracy of the solution, but it will
reduce the computational efficiency. Thus, the number of
discrete points and polynomials should be select carefully.
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Figure 5: Height solution by TFC, GPOPS-II, and single shooting.
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Figure 6: Velocity solution by TFC, GPOPS-II, and single shooting.

Table 3: Solutions of different discrete points and polynomial
numbers.

Discrete
points

State and costate
polynomial numbers

First-order
optimality

Cost
time
(s)

Iteration
number

100 10, 4 0.414 0.15 61

100 30, 4 0.00138 0.16 14

100 60, 4 2.09e-06 0.23 15

100 80, 4 0.00526 0.29 14

100 80, 10 2.13e-05 0.42 29

100 60, 60 50.3 — Max

50 10, 4 0.349 0.16 54

50 30, 4 5.94e-05 0.23 45

50 50, 4 0.000555 0.25 26
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6. Conclusion

In this study, we proposed a new approach to solve the fuel-
optimal problem in the ascending phase of the launching
vehicle using TFC. The main conclusions can be summa-
rized as follows:

(1) The first-order necessary condition of the optimiza-
tion problem is constructed by the indirect method;
the problem’s constraints are embedded in the
expression by using the TFC method

(2) The constrained optimization problem is trans-
formed into an unconstrained optimization problem
by using the TFC method, which reduces the search
space of the solution, and a simple root-finding algo-

rithm can be used to obtain the solution of the
problem

(3) The residual of the solution is about 10−14 or less; for
obtaining more accurate numerical solutions, the
number of discrete points and polynomials should
be selected carefully

(4) The proposed algorithm has the potential for online
application. The calculation time of the algorithm is
within 300ms with MATLAB programming

Appendix

Partial Derivative of Loss Functions

The partial derivative of loss functions is

∂Lai

∂ξv j
=

T
m

hTv zð Þ
λvk k −

hTv zð Þλ2v j
λvk k3

 !
, i = j,

−
hTv zð Þλviλvj

λvk k3
, i ≠ j,

8>>>>><
>>>>>:

ðA:1Þ

∂Lai

∂ξt
= 4b3 h″ zð Þ −Φ1″ zð Þh0 −Φ2″ zð Þhf −Φ3″ zð Þh0′ −Φ4″ zð Þhf′

� �T
ξai

+ 2b Φ3″ zð Þv0i +Φ4″ zð Þvf i
� �

−
−2T

m0 − z + 1ð Þ _m/b2
� �2 z + 1ð Þ _m

b3

+
−2 Φ3 zð Þv0i +Φ4 zð Þvf i
� �

b3 rk k3
+
6 rk k Φ3 zð Þv0i +Φ4 zð Þvf i

� �
b3 rk k5

,

ðA:2Þ

∂Lri

∂ξvj
=

hTv
r1
rk k3 , i = j,

0, i ≠ j,

8<
:  

∂Lri

∂ξt
= 2bh′Tr ξri , ðA:3Þ

∂Lvi

∂ξr j
=

h′Tr , i = j,
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(
 

∂Lvi
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