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The major advantage of the passive multiple-target tracking is that the sonars do not emit signals and thus they can remain covert,
which will reduce the risk of being attacked. However, the nonlinearity of the passive Doppler and bearing measurements, the
range unobservability problem, and the measurement to target data association uncertainty make the passive multiple-target
tracking problem challenging. To deal with the target to measurement data association uncertainty problem from multiple
sensors, this paper proposed a batch recursive extended Rauch-Tung-Striebel smoother- (RTSS-) based probabilistic multiple
hypothesis tracker (PMHT) algorithm, which can effectively handle a large number of passive measurements including clutters.
The recursive extended RTSS which consists of a forward filter and a backward smoothing is used to deal with the nonlinear
Doppler and bearing measurements. The target range unobservability problem is avoided due to using multiple passive
sensors. The simulation results show that the proposed algorithm works well in a passive multiple-target tracking system under
dense clutter environment, and its computing cost is low.

1. Introduction

Passive multiple-target tracking has gained more and more
attention in the fields of military and civilian, such as naviga-
tion, monitoring and early warning, and salvage [1–3]. How
to discover targets timely and to track targets accurately
becomes one of the hot topics. The aim of the multiple-
target tracking is to estimate the expected targets’ states,
such as position, velocity, and acceleration, from the linear
or nonlinear measurements [4–6]. The advantage of the pas-
sive target tracking is that the sonar can remain covert,
which will reduce the risk of being attacked. The challenges
for underwater passive multiple-target tracking include that
the measurements are usually nonlinear, the target range
may be unobservable, and the measurement to target data
association is complex [5, 6].

In general, the passive measurements include bearing,
Doppler, and bearing rate. So the passive multiple-target
tracking is a typically nonlinear tracking problem [7–15].
One method to handle the nonlinear measurements is the

pseudo linearization estimation (PLE) algorithm [16–18].
The other approach is the recursive nonlinear Bayesian filter
and smoother, such as the extended Kalman filter (EKF)
[19–22], the unscented Kalman filter (UKF) [23, 24], the
cubature Kalman filter (CKF) [11, 12], and the particle filter
(PF) [16]. EKF locally linearizes the targets’ state and mea-
surement equations using the first-order Taylor series
expansion of the nonlinear transformations around the pre-
dicted target state. The merit of the EKF is that it is very easy
to understand and apply to target tracking problem duo to
its linear approximations to the nonlinear system or mea-
surement function, and its computational cost is lower than
that of other nonlinear filter, such as UKF and PF. The dis-
advantage of the EKF is that the tracking performance may
be not good if the system model is seriously nonlinear or
non-Gaussian.

The UKF uses a deterministic sampling method to cap-
ture targets’ posterior distribution of mean and covariance
based on the unscented transform. So the UKF has better
tracking capability than the EKF to some extent, but its
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computational cost is larger than that of the EKF. The PF
algorithm forms the Monte Carlo approximation to the
solution of the Bayesian filter. It uses a set of particle samples
to approximate the target distribution. The PF is used in the
cases that the tracking system is highly nonlinear or non-
Gaussian. The Bayesian filters only estimate the state of the
targets from the history of measurements. On the contrary,
the Bayesian smoother can use the forthcoming measure-
ments to estimate the current state of targets. Corresponding
to the Bayesian filter, the Bayesian smoother includes Rauch-
Tung-Striebel smoother (RTSS), extended RTSS, unscented
RTSS, and particle smoother [25].

The other challenge for passive sonar multiple-target
tracking is the complexity and particularity of the underwa-
ter environment, which is characterized by many of false
alarms caused by reverberation and multipath effect [3, 4].
Furthermore, the low target detection will cause tracking
uncertainty in target location. All of those will cause a data
association uncertainty problem. To handle the data associ-
ation uncertainty problem, some algorithms are proposed,
such as the multiple hypothesis trackers (MHT) [26], the
joint PDA filter (JPDA) [27], the probabilistic MHT
(PMHT) [28, 29], the random finite set framework-based
probability hypothesis density (PHD) [30], the cardinalized
PHD (CPHD) [31–33], and multi-Bernoulli filter (MBF).
The MHT makes all the data association hypotheses proba-
bility optimal. The JPDA makes multiple hypotheses into a
single hypothesis and performs the Kalman update with
composite measurements. The PMHT is based on the expec-
tation maximization (EM), which optimizes the multiple-
target states’ maximum a posteriori (MAP) estimation
[34–36]. Different from the data association algorithms, the
PHD, CPHD, and MBF are based on the random finite set
theory, which makes all the measurements a measurement
set and all the targets a target set.

The information entropy theories are also used to esti-
mate the target states. The fuzzy c-means clustering method
based on maximum information entropy and the probabilis-
tic data association filter (PDA) is proposed in [37], which
uses a value optimized by the maximum information
entropy to represent the measurement to target association

probability. The multiple-target tracking problem is also
solved by the maximum entropy intuitionistic fuzzy data
association [38], cross entropy [39], maximum fuzzy
entropy-based Gaussian clustering algorithm [40], entropy
distribution and game theory based on the probability
hypothesis density (PHD) method [41], maximum entropy
fuzzy based on the fire-fly and PF [42], and the distributed
cross entropy-based δ-generalized labelled multi-Bernoulli
filter [43].

As for the target range unobservability problem, the tar-
get range is observable from bearing and Doppler measure-
ments if and only if the bearings are not constant [44, 45].
So in order to avoid the range unobservability problem, this
paper uses multiple passive sensors to track targets. In addi-
tion, the target tracking accuracy of using multiple sensors is
better than that of the single sensor generally.

The most commonly used passive measurement is bear-
ing. In this paper, in order to improve the multiple targets’
range observability and tracking performance, we introduce
the nonlinear Doppler measurement and use multiple sen-
sors. The extended RTSS method is used to deal with the
nonlinear Doppler and bearing measurements. The batch
recursive multiple-sensor PMHT algorithm is used to handle
the measurement to target data association complexity
problem.

The remainder of this paper is as follows. The passive
multiple-target tracking system model and measurement
model are given in Section 2. Section 3 develops the
multiple-sensor PMHT algorithm which is suitable for
multiple-target tracking under dense clutter environment.
The simulation result is given in Section 4. At last, a sum-
mary is given in Section 5.

2. System Model and Measurement Model

We consider the passive multiple-target tracking problem in
a two-dimensional space.

2.1. Tracking SystemModel.Assume there areM targets in the
tracking space. The mthðm = 1, 2,⋯,MÞ target’s state is xmðtÞ
= ðxmðtÞ, _xmðtÞ, ymðtÞ, _ymðtÞÞT , where xmðtÞ and ymðtÞ are
the location of targetm in the x and y coordinate, respectively,

(y·s(t)–y·m(t))cos(𝜃m,s(t))

[xs(t),y s(t), x·s(t),y· s(t)]

[xm(t),ym(t), x·m(t),y·m(t)]T

(x·s(t)–x·m(t))sin(𝜃m, s(t))
𝜃m, s(t)
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Figure 1: Multiple-target tracking scenario using Doppler and
bearing measurement.

Table 1: Batch recursive multiple-sensor PMHT.

1. Initialization
Initialize the target states x̂m 0 ∣ 0ð Þ and Pm 0 ∣ 0ð Þ.
2. Set the EM iteration n = 1. Calculate the target state prediction
x nð Þ
m t ∣ t − 1ð Þ and state covariance P nð Þ

m t ∣ t − 1ð Þ.
3. Calculate the posterior association probabilities w nð Þ

m,r t, sð Þ in
(15).
4. Evaluate the synthetic Doppler and bearing measurements ~zm,s
tð Þ and covariance ~Rm,s tð Þ in (20) and (21).
5. Evaluate the innovation covariance and filter gain for each
target and passive sensor.

6. Update the target state x nð Þ
m t ∣ tð Þ and state prediction covariance

P nð Þ
m t ∣ tð Þ for each target m according to the extended RTSS.

7. Forward n = n + 1. Repeat the EM algorithm of steps 3 to 6 until
the iteration convergent.
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and _xmðtÞ and _ymðtÞ are the velocity of target m. Assume the
tracking time is from t = 1 to t =N. The overview of the
multiple-target tracking using Doppler and bearing measure-
ments is shown in Figure 1.

Assume that all the targets move according to the follow-
ing constant velocity (CV) model or constant acceleration
(CA) model [46].

xm tð Þ = Fxm t − 1ð Þ + um tð Þ, ð1Þ

where umðtÞ is the system process noise which is assumed as
Gaussian white noise. F is the system state transition matrix.
For the CV and CA models, F is denoted as FCV and FCA,
respectively, and

FCV =

1 Δt 0 0

0 1 0 0

0 0 1 Δt

0 0 0 1

2
666664

3
777775, ð2Þ

FCA =

1 Δt 0:5Δt2 0 0 0

0 1 Δt 0 0 0

0 0 1 0 0 0

0 0 0 1 Δt 0:5Δt2

0 0 0 0 1 Δt

0 0 0 0 0 1

2
666666666664

3
777777777775
, ð3Þ

where Δt is the sampling interval.

The process noise covariance matrices for the CV and
CA models are denoted as QCV and QCA, respectively, which
are given by

QCV = δ2p

Δt4

4
Δt2

2
0 0

Δt2

2
Δt2 0 0

0 0
Δt4

4
Δt2

2

0 0
Δt2
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Δt2
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6666666666664
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7777777777775
, ð4Þ

QCA = δ2p
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, ð5Þ

where δ2p is the process noise intensity.

2.2. Measurement Model for Multiple Sensors. Assume there
are S passive sensors in the target tracking space, and the sth

sensor’s states is xsðtÞ = ðxsðtÞ, _xsðtÞ, ysðtÞ, _ysðtÞÞT , in which
xsðtÞ and ysðtÞ are the location of the sensor s and _xsðtÞ
and _ysðtÞ are the velocity of passive sensor s.

The Doppler and bearing measurements are nonlinear
with respect to targets’ states and sensors’ states, which are
given by

zm,s tð Þ = hm,s tð Þ +wm,s tð Þ, ð6Þ

Table 2: The five targets’ initial position and velocity.

Target Position Velocity

1 (800, 2000) m (-22, -20) m/s

2 (1500, 1500) m (20, -30) m/s

3 (500, -500) m (23, 17) m/s

4 (0, 0) m (-13, -27) m/s

5 (500, -1000) m (13, -20) m/s
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Figure 2: Sequential fusion implementation of multiple sensors.
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in which wm,sðtÞ is the measurement noise with a covariance
matrix Rm,sðtÞ.

The Doppler and bearing measurement function hm,sðtÞ
is given by

where c is the sound speed in water, f0 is targets’ radiation
frequency, and θm,sðtÞ is bearing from target m and sensor
s.

3. Multiple-Sensor PMHT

3.1. PMHT for Multiple Sensors. The following notations are
used in this section.

S is the total number of passive observers.
M is the total number of targets.
nt is the number of measurements.
T is the total number of tracking time.
XðtÞ = fxm,sðtÞg is the set of target states at time t.
ZðtÞ = fzm,sðtÞg is the set of measurements at time t.
KðtÞ = fkr,sðtÞg is the set of measurement-target assign-

ments at time t.
X = fXðtÞg is the set of the target state for time 1, 2,⋯, T.
Z = fZðtÞg is the set of measurements for time 1, 2,⋯, T.
K = fKðtÞg is the set of measurement-target assignments

for time 1, 2,⋯, T .
The PMHT is a Bayesian framework-based batch recur-

sive algorithm, which obtains the maximum a posteriori
estimation of the target states based on the expectation max-
imization (EM) method [47].

Let kr,sðtÞ =m indicate that measurement r from sensor s
at time t is associated with target m. Assume the measure-
ment to target assignment is independent from each other.

Define the prior probability of the rth measurement from
the sth sensor and mth target as

p kr,s tð Þ =mð Þ = πm tð Þ: ð8Þ

The MAP estimate of X is

X̂MAP = arg max
X

E log p X ∣ Zð Þð Þf g: ð9Þ

In order to calculate the MAP, define the following aux-
iliary function as

Q X n+1ð Þ ;X nð Þ
� �

=
ð
Κ
log p X n+1ð Þ,Κ ∣ Z

� �� �
� p K ∣X nð Þ, Z
� �

dK,
ð10Þ

where n is the number of EM iteration.
The goal is to maximize the auxiliary function over Xðn+1Þ

using an initialized target state Xð0Þ. In each EM iteration step,
the goal of the PMHT is to solve the following equation.

X n+1ð Þ = arg max
X n+1ð Þ

Q X n+1ð Þ ;X nð Þ
� �

: ð11Þ

We have

p X, Zð Þ =
YM
m=1

p xm 1ð Þð Þ
YT
t=2

YM
m=1

p xm tð Þ ∣ xm t − 1ð Þð Þ

�
YS
s=1

YT
t=1

Ynt
r=1

〠
P

p=1
πpN zr,s tð Þ ; ẑm,s tð Þ, Rm,s tð Þ

� �" #
,

ð12Þ

p K, Z,Xð Þ =
YM
m=1

p xm 1ð Þð Þ
YT
t=2

YM
m=1

p xm tð Þ ∣ xm t − 1ð Þð Þ

·
YS
s=1

YT
t=1

Ynt
r=1

πmN zr,s tð Þ ; ẑm,s tð Þ,Rm,s tð Þ
� �

:

ð13Þ

According to the conditional probabilistic theory,

p K ∣ Z,Xð Þ = p K, Z,Xð Þ
p X, Zð Þ =

YS
s=1

YN
t=1

Ynt
r=1

w nð Þ
m,r t, sð Þ: ð14Þ

From (12), (13), and (14), the posterior association proba-
bility is

w nð Þ
m,r t, sð Þ ≜ p km tð Þ ∣ xm tð Þ, zr,s tð Þð Þ

=
πmN zr,s tð Þ ; ẑm,s tð Þ,Rm,s tð Þ

� �
∑M

m=1πmN zr,s tð Þ ; ẑm,s tð Þ, Rm,s tð Þ
� � , ð15Þ

in which

ẑm,s tð Þ = h xm tð Þ, xs tð Þð Þ: ð16Þ

According to the conditional probabilistic theory,

p Κ,X ∣ Zð Þ = p Κ,X, Zð Þ
p Zð Þ : ð17Þ

Substituting equation (17) into equation (10), the defined
auxiliary function is calculated as

hm,s tð Þ = 1 −
_xm tð Þ − _xs tð Þð Þ sin θm,s tð Þ + _ym tð Þ − _ys tð Þð Þ cos θm,s tð Þ

c

� �
f0 arctan

xm tð Þ − xs tð Þ
ym tð Þ − ys tð Þ

� 	� �
, ð7Þ
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Q X n+1ð Þ ;X nð Þ
� �

=
ð
Κ
log p Κ,X n+1ð Þ, Z

� �� �
� p K ∣X nð Þ, Z
� �

dK − log p Zð Þ:
ð18Þ

The log pðZÞ has no effect with regard to maximizing the
auxiliary function QðXðn+1Þ ;XðnÞÞ in (18). So it can be
removed from (18).

So the auxiliary function is given by

In order to maximize the auxiliary function, we compute
its derivative and set the derivative to zero.

It turns out that the Xðn+1Þ is given by applying the
extended RTSS method, in which the synthetic measure-
ment ~zm,sðtÞ and ~Rm,sðtÞ are calculated by

~zm,s tð Þ =
∑nt

r=1w
nð Þ
m,r t, sð Þzr,s tð Þ

∑nt
r=1w

nð Þ
m,r t, sð Þ

, ð20Þ

~Rm,s tð Þ
Rm,s tð Þ

∑nt
r=1w

nð Þ
m,r t, sð Þ

: ð21Þ

The implementation of the batch recursive multiple-
sensor extended RTSS-based PMHT is depicted in Table 1.

3.2. Recursive Extended RTSS. The recursive extended RTSS
is a linearized RTS smoother, which is based on analogous
approximation to the EKF. It is a Gaussian approximation to
the Bayesian smoother for the nonlinear target state and mea-
surement model. The extended RTSS firstly performs the
extended Kalman filter; then, a Kalman smoother is applied.
That is, the extended RTSS consists of a forward filter and a
backward smoother, which is summarized as follows:

Forward filter:
For i = 1,⋯, T ,
Time update

x̂m t ∣ t − 1ð Þ = Fx̂m t − 1 ∣ t − 1ð Þ, ð22Þ

Pm t ∣ t − 1ð Þ = FPm t − 1 ∣ t − 1ð ÞFT +Qm tð Þ: ð23Þ

Q X n+1ð Þ ;X nð Þ
� �

= 〠S

s=1〠
T
t=1〠

nt
r=1〠

M

m=1logπmw
nð Þ
m,r t, sð Þ

QΠ

+ log
YM

m=1
p x n+1ð Þ

m 1ð Þ
� �YT

t=2
p x n+1ð Þ

m tð Þ ∣ x n+1ð Þ
m t − 1ð Þ

� �� �
+〠S

s=1〠
T
t=1〠

nt
r=1〠

M

m=1logp zr tð Þ ∣ x nð Þ
m tð Þ

� �
w nð Þ

m,r t, sð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
QX

:

ð19Þ
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Figure 3: The tracking scenario of multiple targets, given two passive static sensors, true target trajectories, and estimated tracks.
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Measurement update

x̂m t ∣ tð Þ = x̂m t ∣ t − 1ð Þ +Gm,s tð Þ zm,s tð Þ − hm,s t ∣ t − 1ð Þ½ �,
ð24Þ

Pm t ∣ tð Þ = I −Gm,s tð ÞHm,s tð Þð Þ ⋅ Pm t ∣ t − 1ð Þ
� I −Gm,s tð ÞHm,s tð Þð ÞT +Gm,s tð ÞRm,s tð ÞGT

m,s tð Þ,
ð25Þ

where the filter gain is

Gm,s tð Þ = Pm t ∣ t − 1ð ÞHT
m,s tð Þ ⋅ Hm,s tð ÞPm t ∣ t − 1ð Þ½

�HT
m,s tð Þ + Rm,s tð Þ

�−1 , ð26Þ

Hm,s tð Þ =
∂hm,s tð Þ
∂xm tð Þ

����
xm tð Þ=x̂m t∣t−1ð Þ

: ð27Þ

Backward smoothing:

For i = T‐1,⋯, 1,

x̂m t ∣ Tð Þ = x̂m t ∣ tð Þ +Cm tð Þ x̂m t + 1 ∣ Tð Þ½
− x̂m t + 1 ∣ tð Þ�, ð28Þ

Pm t ∣ Tð Þ = Pm t ∣ tð Þ +Cm tð Þ Pm t + 1 ∣ Tð Þ½
− Pm t + 1 ∣ tð Þ�CT

m tð Þ,
ð29Þ

where

Cm tð Þ = Pm t ∣ tð ÞFTP−1
m t + 1 ∣ tð Þ: ð30Þ

For the Doppler and bearing measurement, the measure-
ment Jacobian matrix is given by

where r =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxmðtÞ − xsðtÞÞ2 + ðymðtÞ − ysðtÞÞ2

q
.

3.3. Data Fusion for Multiple Sensors. For the tracking prob-
lem using multiple sensors, we need to fuse the target and
measurement information from multiple sensors. The most
used data fusion methods are parallel fusion and sequential
fusion [48].

In this paper, we use the sequential data fusion for mul-
tiple sensors which updates the target state and covariance
by each sensor sequentially. The multiple sensors deal with
the measurements one after another with an intermediate
target state and covariance at one time.

Let x̂m,sðt ∣ tÞ and Pm,sðt ∣ tÞ denote the target state esti-
mation and corresponding covariance processed by the sen-
sor s. The Doppler and bearing measurements from the first
passive sensor are used to calculate the first intermediate tar-

get state x̂ðnÞm,1ðt ∣ tÞ and covariance PðnÞ
m,1ðt ∣ tÞ for each of the

targets using a single sensor filter. Then, the measurements
from the next passive sensor are used to update the interme-
diate target state and covariance as follows:

x̂m,s t ∣ tð Þ = x̂m,s−1 t ∣ tð Þ +Gm,s tð Þ zm,s tð Þ − hm,s t ∣ tð Þ½ �, ð32Þ

Pm,s t ∣ tð Þ = I −Gm,s tð ÞHm,s tð Þð Þ ⋅ Pm,s−1 t ∣ tð Þ
� I −Gm,s tð ÞHm,s tð Þð ÞT
+Gm,s tð ÞRm,s tð ÞGT

m,s tð Þ,
ð33Þ

where Gm,sðtÞ is the filter gain, and

x̂m,0 t ∣ tð Þ = x̂m t ∣ t − 1ð Þ, Pm,0 t ∣ tð Þ = Pm t ∣ t − 1ð Þ, ð34Þ

x̂m t ∣ tð Þ = x̂m,S t ∣ tð Þ, Pm t ∣ tð Þ = Pm,S t ∣ tð Þ: ð35Þ
The sequential fusion implementation of multiple sen-

sors is shown in Figure 2.

4. Simulation

Assume the targets move in the two-dimensional space, and
there are two static passive sensors. The two passive sensors
deal with Doppler and measurements from targets and clut-
ter. The two passive sensors located at (0, -3500) m and (0,
-5500) m, respectively.

Assume that the clutter number is a Poisson distribution,
and they are uniformly distributed in the Doppler and bear-
ing measurement space. The average number of clutter in

Hm,s tð Þ =
∂hm,s tð Þ
∂xm tð Þ

∂hm,s tð Þ
∂ _xm tð Þ

∂hm,s tð Þ
∂ym tð Þ

∂hm,s tð Þ
∂ _ym tð Þ

� �

=

ym tð Þ − ys tð Þ
r2

0 −
xm tð Þ − xs tð Þ

r2
0

0
−f0 xm tð Þ − xs tð Þ½ �

cr
0

−f0 ym tð Þ − ys tð Þ½ �
cr

2
6664

3
7775,

ð31Þ

6 International Journal of Aerospace Engineering



each sampling scan is 20 in the Doppler and bearing mea-
surements domain. The target detection probability is the
same for all targets; here, we set it to 0.8. The tracking time
is 160 s with a sampling interval 1 s. The Monte Carlo run is
200. The process noise intensity is 1m. The Doppler mea-
surement noise variance is 1Hz, and the bearing noise vari-
ance is 0:8∘.

4.1. Case of the CV Model. The five targets’ initial position
and velocity for the CV model are given in Table 2.

For the CV model, the simulated initial position p and
velocity v are generated from the position p0 and velocity
v0 of ground truth with an estimation error such that p =
p0 + e1 and v = v0 + e2, where e1 = 30m and e2 = 2m/s.

The tracking scenario of true target trajectories and
PMHT-estimated trajectories for the CV model is shown
in Figure 3. The true Doppler and measurements for two
static passive sensors without clutter and the PMHT syn-
thetic Doppler and bearing measurements under dense clut-
ter are given in Figures 4 and 5, respectively.
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Figure 4: Bearing measurements for two static passive observers: (a) the true bearing measurements without clutter; (b) synthetic bearing
measurements with clutter.
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Figure 5: Doppler measurements for two static passive sensors: (a) the true Doppler measurements without clutter; (b) synthetic Doppler
measurements with clutter.
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In Figure 3, the extended RTSS-based PMHT algorithm
can track all the five targets effectively; even if the target 1
and target 4 tracks are away from the true trajectory, the
proposed algorithm can get the true target track after several
time scans in the middle tracking time scan.

As seen in Figures 4 and 5, the density of Doppler and
bearing measurement from clutter is high, and the synthetic
Doppler and bearing measurement of the proposed algo-
rithm broadly consists of the true Doppler and bearing mea-
surements without clutter, which means that the proposed
algorithm has good declutter ability.

The position and velocity RMSE of the five targets are
given in Figures 6 and 7. Accordingly, the average position
and velocity RMSE are shown in Tables 3 and 4. As shown

in Figures 6 and 7, the position RMSE and velocity RMSE
for target 1 are increasing in the middle sampling scans,
and as time goes on, the RMSE is decreased to a low lever,
which is similar to other targets. This also can be seen from
Tables 3 and 4. The average position and velocity RMSE is
small which can meet the tracking accuracy requirement.

This paper uses the average normalized estimation error
squared (ANEES) to evaluate the consistency of the pro-
posed algorithm. For one target, the ANEES is defined as fol-
lows:

ANEES tð Þ = 1
Nm

〠
Nm

i=1
xi tð Þ − x̂i tð Þ� �TPi tð Þ−1 xi tð Þ − x̂i tð Þ� �

,

ð36Þ

where Nm is Monte Carlo runs, xiðtÞ is the true target state,
x̂iðtÞ is the estimated target state, and PiðtÞ is the target state
covariance.

The ANEES for fives targets is shown in Figure 8. As can
be seen in Figure 8, the consistency of the proposed algo-
rithm is good.

4.2. Case of the CA Model. The four targets’ initial position,
velocity, and acceleration for the CA model are given in
Table 5.
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Figure 6: The position RMSE versus time scans of five targets.
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Figure 7: The velocity RMSE versus time scans of five targets.

Table 3: The average position RMSE of five targets.

Targets 1 2 3 4 5

RMSE (m) 34.94 9.93 23.71 20.23 13.25

Table 4: The average velocity RMSE of five targets.

Targets 1 2 3 4 5

RMSE (m/s) 2.116 0.991 1.216 1.002 0.590
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Figure 8: The average NEES versus time scans for five targets.
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For the CA model, the simulated initial position p, veloc-
ity v, and acceleration a are generated from the position p0,
velocity v0, and acceleration a0 of ground truth with an esti-
mation error such that p = p0 + e1, v = v0 + e2, and a = a0 +
e3, where e1 = 30m, e2 = 2m/s, and e3 = 0:5m/s2.

The tracking scenario of the CA model for target true
trajectories and the estimated tracks is shown in Figure 9.
Similar to the CV model, the estimated tracks are consistent
with the true targets’ trajectories.

The position RMSE and velocity RMSE for the CA
model are shown in Figures 10 and 11. As shown in
Figures 10 and 11, the position RMSE and velocity RMSE
for target 3 are increasing in the middle sampling scans,
and as time goes on, the RMSE is decreased to a low lever.
The average position and velocity RMSE for the CA model
is small which can meet the tracking accuracy requirement.

5. Conclusion

The major advantage of the passive sonars multiple-target
tracking is that the sonars do not emit signals, and thus they
can remain covert, which will reduce the risk of being
attacked. But there are also challenges. Firstly, the Doppler
and bearing measurements are nonlinear which makes the
multiple-target tracking difficult. Secondly, the target states
may be unobservable. Thirdly, the underwater environment
is with dense clutter which will cause the measurement to
target data association uncertainty problem. To deal with
those problems, this paper proposed the extended RTSS-
based batch PMHT method for multiple sensors and applied
it to the passive multiple-sensor tracking system under dense
clutter environment. This paper uses the extended RTSS
algorithm to handle the nonlinear Doppler and bearing
measurements. Multiple passive sonars are used to avoid
the target state range unobservable problem. The multiple-
sensor batch PMHT is used to deal with the data association
uncertainty problem under dense clutter. The experiment
results demonstrated that the proposed extended RTSS-
based multiple-sensor PMHT algorithm can track multiple
targets efficiently in the dense clutter environment, and the
computing time is low.
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Figure 9: The tracking scenario of multiple targets, given two
passive static sensors, CA model, true target trajectories, and
estimated tracks.
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Figure 11: The velocity RMSE for four targets (CA model).

Table 5: The five targets’ initial position and velocity.

Target Position Velocity Acceleration

1 (800, 2000) m (-22, -20) m/s (0.3, 0) m/s2

2 (1500, 1500) m (20, -30) m/s (0, -0.3) m/s2

3 (500, -500) m (23, 17) m/s (0.4, 0.4) m/s2

4 (0, 0) m (-13, -27) m/s (0.1, 0.1) m/s2
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