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A reduced order modeling method based on algorithm fusion and multifidelity framework for nonlinear unsteady aerodynamics is
proposed to obtain a low-cost and high-precision unsteady aerodynamic model. This method integrates the traditional algorithm,
intelligent algorithm, and multifidelity data fusion algorithm. In this method, the traditional algorithm is based on separated flow
theory, the intelligent algorithm refers to the nonlinear autoregressive (NARX) method, and the multifidelity data fusion
algorithm uses different fidelity data for aerodynamic modeling, which can shorten the time cost of data acquisition. In the
process of modeling, firstly, a multifidelity model with NARX description provides a general intelligent algorithm framework
for unsteady aerodynamics. Then, based on the separated flow theory, the correction equation from low-fidelity model to high-
fidelity result is constructed, and the cuckoo algorithm based on chaos optimization is used to identify the parameters. In
order to verify the effectiveness of the method, an unsteady aerodynamic model of NACA0012 airfoil is established. Three
kinds of data with low, medium, and high fidelity are used for modeling. The low-fidelity and medium-fidelity data is obtained
from the CFD-Euler solver and CFD-RANS solver, respectively, while the high-fidelity data comes from the experimental
results. Then, the model is established, and its prediction of unsteady aerodynamic coefficients is in good agreement with the
CFD results and the experimental data. After that, the model is applied to a two-dimensional aeroelastic system, and the
bifurcation and limit cycle response analysis are compared with the experimental results, which further shows that the model
can accurately capture the main flow characteristics in the flow range of low speed and high angle of attack. In addition, the
convergence of the model is studied; the accuracy and generalization ability as well as applicability scope of the model are
compared with other aerodynamic models and finally discussed.

1. Introduction

Most of the problems in aircraft aerodynamic design are
closely related to unsteady aerodynamic forces. Aerody-
namic modeling is a major foundation for flight overall
parameter design, flight trajectory design, and flight maneu-
verability and stability analysis. The accuracy of the aerody-
namic model directly affects the performance of the control
system and the reliability of flight simulation [1]. There are
many factors that can affect the aerodynamic force such as
flight altitude, airspeed, movement form, and rudder inter-
ference, which leads to a strong nonlinear aerodynamic sys-
tem. However, the traditional aerodynamic modeling
method is based on the assumption of quasisteady and line-
arization theory, which cannot meet the requirements for

advanced civil and military aircraft design. So, in recent
years, unsteady and nonlinear aerodynamic modeling
methods have been paid more and more attention. There
are two major problems in the unsteady aerodynamic
modeling, one is the calculation of dynamic derivative, and
the other is the aerodynamic modeling at a high angle of
attack. As the former directly determines flight quality anal-
ysis and flight control system design, the latter is one of the
important ways to evaluate the performance of aircraft at a
high angle of attack. Therefore, it is of great value to study
the flight dynamic derivative identification methods as well
as nonlinear and unsteady aerodynamic modeling at high
angles of attack.

The unsteady aerodynamic modeling method appeared
at the beginning of the 20th century, and a variety of
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modeling methods had been widely developed since the
1980s. These methods can be divided into two categories:
traditional mathematical expression method and intelligent
learning methods. The traditional mathematical expression
methods are a kind of method which obtain mathematical
relationships between aerodynamic force, flight states, con-
trol inputs, and other parameters according to the physical
characteristics and statistical laws of aerodynamic force.
The traditional aerodynamic model is based on a dynamic
stability derivative at the beginning, which is used to predict
the change of flight load after the flight parameters change.
These kinds of models regard each dynamic stability deriva-
tive as a constant value independent of time and other vari-
ables, so these models are linear aerodynamic models and
are only applicable to the linear flight states with a small
angle of attack [2]. In order to expand the application range
of these models, the nonlinear algebraic model [3], Fourier
series model [4–6], integral equation model [7], state space
model [8, 9], etc., were developed. However, generally speak-
ing, the traditional mathematical expression method of aero-
dynamic modeling is more suitable for aerodynamic
modeling with limited flight state range changes, such as
the linear/steady aerodynamic modeling under certain alti-
tude, speed, angle of attack, and other conditions. The rela-
tionship between aerodynamic force and flight height,
velocity, angle of attack, sideslip angle, angular velocity, rud-
der angle, and other parameters is highly nonlinear for the
aircraft with large changes in airspace, airspeed, flight atti-
tude, and control surface deflection range. It is difficult for
traditional mathematical modeling methods to give an accu-
rate description of all the relationships with acceptable
errors.

With the rapid development of computer technology
and the integration of interdisciplinary ideas, many other
mathematical methods have also been introduced into the
field of unsteady aerodynamic modeling, such as the autore-
gressive model [10–12], Volterra series model [13–15], fuzzy
logic method [16], neural network method [17–21], and
support vector machine method [22–24], collectively
referred to as the intelligent algorithm. The unsteady aero-
dynamic model based on these algorithms does not pay
attention to the physical principles; that is to say, the rela-
tionship between the aerodynamic force and the input state
quantity is regarded as a “black box.” The aerodynamic
model is established by a large number of high-quality sam-
ple data, so this kind of model is also called the data-driven
model.

Although these methods can give accurate prediction
within the range of sample flight states, the ability of extrap-
olation is usually very poor. At present, the research of aero-
dynamic modeling based on the intelligent algorithm is
mostly based on the results of the wind tunnel dynamic test
or CFD calculation. However, the model based on wind tun-
nel and flight test is difficult to reflect the aerodynamic char-
acteristics of all the flight states or motion forms we are
interested in, and the high-fidelity CFD calculation may take
a lot of time to obtain enough data, so it is difficult to directly
use these aerodynamic models in flight simulation. In addi-
tion, when the parameters in the aerodynamic system

increase, the number of sample flight states and the calcula-
tion requirement for modeling also increase, which makes
many parameters cannot be identified. Compared with the
traditional methods, these intelligent algorithm models are
based on “sample data” and do not care about the flow char-
acteristics, so they do not have a physical background and
cannot provide more information for the subsequent appli-
cation. Therefore, it is necessary to improve the intelligent
algorithm to make it suitable for practical application.

To sum up, the aerodynamic model based on the tradi-
tional mathematical method needs full understanding of
the flow characteristics. The stability of the model can meet
the requirements, but the modeling process is very complex.
Although the aerodynamic model based on the intelligent
algorithm does not rely on physical equations, the generali-
zation ability of the intelligent model is often unsatisfactory.
Both of the two methods have their own shortcomings,
which makes them difficult to be applied to engineering
practice.

To solve this problem, this paper proposes a reduced
order model (ROM) for unsteady aerodynamics, which
combines the intelligent algorithm with a traditional mathe-
matical model and can consider the aerodynamic nonlinear-
ity at a high angle of attack. Specifically, the intelligent
algorithm based on NARX is used to build the structure of
nonlinear unsteady aerodynamic ROM. Then, the correction
functions based on the aerodynamic physical characteristic
assumption of the modified Leishman-Beddoes dynamic
stall (LB for short) model [25] are added into the intelligent
model, and the parameters of the correction functions are
identified by aerodynamic data and intelligent algorithm.
Finally, the nonlinear aerodynamic ROM is obtained.

For most of the existing data-driven aerodynamic ROM,
the dataset comes from the same data source: numerical
simulation, experiment, or flight testing. However, aerody-
namic data often comes from different sources in practice,
and the cost and accuracy are also different. In order to han-
dle the balance between model accuracy and data generation
cost, data-driven modeling driven by data fusion is receiving
more and more attention [26]. Here, data fusion refers to the
process of combining data and information from multiple
sources in order to refine, estimate, and get a better under-
standing of the data [27], and data-driven modeling based
on data fusion mainly refers to the multifidelity modeling
method based on aerodynamic data with different fidelity.
For aerodynamic data, generally, high-fidelity aerodynamic
data are obtained through the flight test, wind tunnel test,
or direct numerical simulation, while low-fidelity data usu-
ally comes from numerical simulation and simplified, such
as rough discretization, relaxation convergence tolerance,
low precision, and omission of physics [28]. For data with
different fidelity, the cost of data acquisition becomes higher
with the increase of data fidelity, and due to the limitation of
cost, the amount of available data decreases with the increase
of fidelity. In addition, it is difficult for high-fidelity data to
include all interesting information, which makes the aerody-
namic modeling based on these data expensive and unsatis-
factory. For example, most experimental data come from
harmonic motion rather than random motion. That is
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because random motion is vulnerable to external noise inter-
ference, and the data quality of harmonic motion is better.
However, the dynamic information contained in harmonic
motion is limited. Based on the above problem, the multifi-
delity method has been developed and widely used, which
provides a general framework for fusing data with different
fidelity in the modeling process. The basic idea of the com-
monly used multifidelity framework is to use low-fidelity
data or models (physically driven or data-driven) to provide
the dynamic trend, while high-fidelity data is used to correct
the model to better reproduce the high-fidelity results. In
conclusion, the multifidelity model can obtain high-fidelity
results with less cost.

Multifidelity methods have been used in many fields,
such as mechanism analysis, optimization design [29–31],
statistical inference, and uncertainty quantification [32]. In
the field of fluid dynamics, some scholars have applied the
multifidelity method to flapping wing dynamics analysis
[33, 34], aerodynamic optimization [35–38], flight simula-
tion [28, 39, 40], hypersonic aerodynamic load prediction
[41], low-fidelity turbulence model correction [42, 43], and
uncertainty quantification of fluid dynamics system
[44–47]. It is worth noting that most of these studies focus
on the evaluation of steady-state aerodynamics to achieve
rapid simulation and optimization, while there are few stud-
ies on unsteady multifidelity aerodynamic modeling.
Because the generation of unsteady aerodynamic data is
much more expensive than steady aerodynamic data, it is
particularly important to explore the effectiveness of the
unsteady aerodynamic multifidelity method. Ghoreyshi
et al. [48] firstly showed that using both Euler and RANS
data for modeling can improve the prediction results of
aerodynamic ROM, and the results are better than that of
the model based on a single data source. High-fidelity, low-
fidelity, and multifidelity ROM are built by the NARX
framework. The multifidelity ROM is constructed by adding
low-fidelity time delay prediction as additional inputs of
high-fidelity ROM. After that, Kou and Zhang [49] took
the cokriging concept as the underlying theory and system-
atically introduced the problem of unsteady aerodynamic
data fusion modeling. They built the multifidelity aerody-
namic ROM with improved stability of NACA0012 airfoil
under transonic conditions by using the NARX framework.
The correction term of the model is constructed by the mul-
ticore neural network. Euler and unsteady RANS solvers are
used to provide low-fidelity and high-fidelity data, respec-
tively. Results show that only three groups of high-fidelity
training cases of harmonic motion are needed to establish
a high-fidelity model and obtain high-fidelity results.

In this paper, in order to improve the modeling effi-
ciency of the ROM, the multifidelity data fusion modeling
method is also introduced, using a small amount of high-
fidelity data and a large amount of low-fidelity data to build
the high-fidelity model. Using data fusion modeling is aimed
at improving the efficiency of data acquisition as the cost of
high-fidelity data is usually pretty high, which can also
improve the modeling efficiency at the same time. In this
paper, three kinds of data with different fidelity are used
for fusion modeling. The low-fidelity data is obtained by

the CFD solver based on Euler. It should be noted that these
low-fidelity data can also reflect the real situation under cer-
tain restrictions. That is to say, although it is low-fidelity
data, it still meets the accuracy requirements. The
medium-fidelity data is obtained by the CFD solver based
on RANS. The high-fidelity data comes from the existing
experimental data. For the modeling process, firstly, the
low-fidelity aerodynamic ROM is established by using low-
fidelity data. Then, the nonlinear correction function is con-
structed based on the flow separation principle [25] and is
added to the low-fidelity ROM. After that, the parameters
of the nonlinear correction function are preliminarily identi-
fied by using the medium-fidelity data and the intelligent
parameter identification method. Finally, the high-fidelity
data from experiments is used to optimize the correction
parameters, and the final high-fidelity nonlinear aerody-
namic ROM is obtained. In order to verify the proposed
high-fidelity nonlinear aerodynamic ROM, the lift and
moment coefficients of NACA0012 airfoil in pitching and
plunging motion are predicted and compared with the
experimental data and CFD-RANS results. Then, the high-
fidelity ROM is applied to the two-dimensional aeroelastic
system. After that, the convergence of the model is analyzed,
and its performance is compared with the traditional modi-
fied LB model and the intelligent aerodynamic model based
on the RBF neural network.

2. Multifidelity Framework for Nonlinear
Unsteady Aerodynamic ROM Materials
and Methods

In this part, the multifidelity framework for nonlinear
unsteady aerodynamic ROM based on traditional and intel-
ligent algorithm fusion is introduced. It can be divided into
the following parts. First of all, it is necessary to select a suit-
able multifidelity modeling method to develop the relation-
ship between the low-fidelity model and the high-fidelity
model. Secondly, the low-fidelity model is established.
Thirdly, correction functions are constructed for the differ-
ence between the high-fidelity model and the low-fidelity
model, and the parameters are identified. Finally, the nonlin-
ear unsteady multifidelity aerodynamic model suitable for a
certain speed range and high angle of attack can be obtained.

2.1. Multifidelity Modeling Method. The multifidelity model,
that is, the models with different fidelity and computational
efficiency, is combined in a certain way, so that the new
model can obtain the accuracy of the high-fidelity model
with less computational cost. The low-fidelity model can be
divided into three categories, including the simplified model,
data fitting model, and projection-based model [32]. Here,
we use the data fitting model which is also a kind of data-
driven model. To combine the low-fidelity model and the
high-fidelity model, the method based on correction is
adopted; that is, the low-fidelity model is modified by the
data generated by the high-fidelity model. Currently, the
main correction methods can be briefly divided into three
categories [50]:
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(1) Additive and multiplicative corrections:

yHF xð Þ = yLF xð Þ + z xð Þ, ð1Þ

yHF xð Þ = ρ xð ÞyLF xð Þ ð2Þ

(2) Comprehensive corrections:

yHF xð Þ = ρ xð ÞyLF xð Þ + z xð Þ ð3Þ

(3) Space mapping (input correction):

xHF = F xLFð Þ, ð4Þ

where yHFðxÞ is the high-fidelity model and yLFðxÞ is the
low-fidelity model. ρðxÞ represents the multiplicative correc-
tor while zðxÞ represents the additive corrector. x is the
input vector.

In this paper, comprehensive corrections are used. How-
ever, there are some differences with the standard form. We
divide the input factors into two categories according to
their effects on the nonlinear response of the system: x = ½
x1 ; x2�. We think x1 represents the input factor which can
cause strong nonlinearity of the system response, x2 is also
a part of input factors, but the nonlinear response of the sys-
tem caused by x2 is very small. According to the above
assumption, we divide the high-fidelity model and the low-
fidelity model into two parts, respectively:

yHF xð Þ = y1HF x1ð Þ + y2HF x2ð Þ,
yLF xð Þ = y1LF x1ð Þ + y2LF x2ð Þ,

ð5Þ

where yHFðxÞ and yLFðxÞ are the total response of the system
calculated by the high-fidelity model and the low-fidelity
model, respectively. y1HFðx1Þ and y1LFðx1Þ are the response
of the system caused by x1, and y2HFðx2Þ and y2LFðx2Þ are
the response of the system caused by x2. Superscripts 1
and 2 are identifiers without mathematical meaning which
represent the response part caused by x1 and x2, respectively.

Because the previous assumption that the nonlinear
response of the system caused by x2 is very small, we think
that the main difference between the high-fidelity model
and the low-fidelity model is the difference between y1HFðx1
Þ and y1LFðx1Þ, so only this part needs to be modified. And
there is little difference between y2LFðx2Þ and y2HFðx2Þ, so we
regard y2LFðx2Þ = y2HFðx2Þ. Then, the relationship between
the high-fidelity model and the low-fidelity model can be
written as the following equation:

yHF xð Þ = ρ x1ð Þy1LF x1ð Þ + z x1ð Þ� �
+ y2LF x2ð Þ, ð6Þ

where the multiplicative corrector ρðx1Þ and the additive

corrector zðx1Þ are both time-varying functions, which can
be identified from high-fidelity data.

2.2. Reduced Order Modeling Methodology

2.2.1. Nonlinear Autoregressive with Exogenous Input
(NARX) Description. Considering the unsteady time delay
effect of aerodynamic force, the nonlinear autoregressive
model (NARX) modeling method with exogenous input for
typical nonlinear dynamic systems is used [51, 52]. For
MIMO discrete-time systems, the NARX model can be writ-
ten as follows:

y kð Þ = ϕ u kð Þ, u k − 1ð Þ,⋯, u k −Mð Þ, y k − 1ð Þ, y k − 2ð Þ,⋯, y k −Nð Þð Þ,
ð7Þ

where k is the time scale, yðkÞ is the system output at time k,
and uðkÞ is the system input at time k. NARX is aimed at
establishing the nonlinear relationship between the outputs
and the inputs at the current and several previous time steps.

In the current study, the nonlinear aerodynamic ROM for
two-dimensional airfoil with pitching and plunging freedom
at low speed and high angle of attack is modeled; the two-
dimensional aeroelastic system is shown in Figure 1. In this
case, yðkÞ = ½ClðkÞ, CmðkÞ�T . ClðkÞ and CmðkÞ represent the
lift coefficient and pitching moment coefficient at time k,

respectively. uðkÞ = ½θðkÞ, _θðkÞ, €θðkÞ, hðkÞ, _hðkÞ, €hðkÞ�T , θ rep-
resents the pitching angle of airfoils, while h represents the
plunging displacement. Let αðkÞ = ½θðkÞ, hðkÞ�T , uðkÞ can be
also written as uðkÞ = ½αðkÞ, _αðkÞ, €αðkÞ�T .
2.2.2. Model Structure. It is considered that the nonlinearity
of the aerodynamic model mainly comes from the nonlinear
relationship between the input and output of the static part,
while the dynamic part can be represented by a linear sys-
tem. Therefore, the input variables in formula (7) are divided
into two groups, and the input variables related to the static
part are separated:

x1 kð Þ = α kð Þ, α k − 1ð Þ,⋯, α k −Mð Þ½ �T ,
x2 kð Þ = _α kð Þ, _α k − 1ð Þ,⋯, _α k −Mð Þ, €α kð Þ, €α k − 1ð Þ,½

⋯ , €α k −Mð Þ, yLF k − 1ð Þ, yLF k − 2ð Þ,⋯, yLF k −Nð Þ�T :
ð8Þ

It should be noted that when M in x1ðkÞ is sufficiently
larger, the time delayed in the first- and second-order deriv-
atives in x2ðkÞmay not be needed. However, in the modeling
process, with the increase of the value ofM, the model struc-
ture will become more complicated, and the parameters that
need to be identified will increase too, which will influence
the modeling efficiency and model stability. Therefore, gen-
erally,M of the model is not necessarily a large value. At this
time, the first-order and second-order derivatives are still
needed as supplementary parameters to show the dynamic
characteristics of the system.
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According to the multifidelity modeling method, low-
fidelity and high-fidelity models can be written as follows:

yLF kð Þ = ϕLF x1 kð Þð Þ + ϕLF x2 kð Þð Þ,
yHF kð Þ = ϕHF x1 kð Þð Þ + ϕLF x2 kð Þð Þ = ρ w, x1 kð Þð ÞϕLF x1 kð Þð Þ½

+ z w, x1 kð Þð Þ� + ϕLF x2 kð Þð Þ,
ð9Þ

where ρðw, x1ðkÞÞ and zðw, x1ðkÞÞ are the multiplicative and
additive correction functions of the high-fidelity model,
respectively, and w is the set of correction parameters to be
identified. ϕLFðx1ðkÞÞ and ϕLFðx2ðkÞÞ are low-fidelity linear
models, and ϕHFðx1ðkÞÞ is high-fidelity nonlinear models.
In the current study, we can further expand them as the fol-
lowing functions:

ϕLF x1 kð Þð Þ = 〠
M

j=0
Bα
j α k − jð Þ,

ϕHF x1 kð Þð Þ = 〠
M

j=0
Bα
j α k − jð Þ × ρ w, x1 kð Þð Þ + z w, x1 kð Þð Þ,

ϕLF x2 kð Þð Þ = −〠
N

i=0
AiyLF k − ið Þ + 〠

M

j=0
B _α
j _α k − jð Þ + 〠

M

j=0
B€α
j €α k − jð Þ,

ð10Þ

where Ai, Bα
j , B _α

j , and B€α
j are the parameters to be identified

corresponding to different input variables. N and M repre-
sent the order of the model, reflecting the unsteady effect
of the system. Formula (9) can be written as

yLF kð Þ =〠M

j=0B
α
j α k − jð Þ

+ −〠N

i=0AiyLF k − ið Þ +〠M

j=0B
_α
j _α k − jð Þ +〠M

j=0B
€α
j €α k − jð Þ

h i
,

yHF kð Þ =〠M

j=0B
α
j α k − jð Þ × ρ w, x1 kð Þð Þ + z w, x1 kð Þð Þ

+ −〠N

i=0AiyLF k − ið Þ +〠M

j=0B
_α
j _α k − jð Þ +〠M

j=0B
€α
j €α k − jð Þ

h i
:

ð11Þ

It should be noted that in order to improve the accuracy
and efficiency of identification, the parameters of the low-

fidelity model and the high-fidelity model are identified,
respectively. The parameters of the low-fidelity model are
identified firstly. The parameter set Wl of the low-fidelity
ROM can be written as follows:

W l = Ai i = 1, 2,⋯,Nð Þ, Bα
j , B _α

j , B€α
j j = 1, 2,⋯,Mð Þ

n o
: ð12Þ

And the output of the low-fidelity ROM can be written as

yLF = CLF
l , CLF

m
� �T = CLF

l x1ð Þ + CLF
l x2ð Þ, CLF

m x1ð Þ + CLF
m x2ð Þ� �T ,

ð13Þ

where CLF
l ðx1Þ and CLF

l ðx2Þ represent the lift coefficient gener-
ated by input parameters x1 and x2, respectively, whileC

LF
m ðx1Þ

and CLF
m ðx2Þ represent the pitching moment coefficient gener-

ated by input parameters x1 and x2, respectively.

2.2.3. Nonlinear Correction Model Based on Flow Separation.
For the multifidelity model, some scholars use a neural net-
work to model the nonlinear correction term [49]. However,
data-driven models generally have the problems of easy over-
fitting, poor generalization ability, and poor robustness, and a
large number of high-precision calculation data are required
to ensure the accuracy and generalization ability of the model,
which reduces the modeling efficiency, so it is difficult to be
applied to engineering practice. The traditional mathematical
expression modeling method can avoid the above problems,
because it is based on the physical characteristics of the flow
field. Therefore, according to the physical characteristics of
the flow field, the nonlinear aerodynamic correction terms ρ
ðw, x1ðkÞÞ and zðw, x1ðkÞÞ at low speed and high angle of
attack are modeled.

For the case of a high angle of attack, its nonlinearity is
mainly caused by the separation of airflow. The influence
of flow separation on airfoil aerodynamics can be divided
into two aspects. The first is that the flow separation can
directly change the aerodynamics, and the second is that
flow separation causes the generation of vortex which leads
to additional aerodynamics. ρðw, x1ðkÞÞ and zðw, x1ðkÞÞ cor-
respond to the two aspects, respectively. In addition, when
the pitching motion with a high angle of attack is carried
out at a low Mach number, the separation and reattachment
between the flow and wing surface will be delayed, which
will bring additional aerodynamic force called “overshoot”
[25, 53]. Here, the influence of “overshoot” is represented
by zlmaðw, x1ðkÞÞ. To sum up, for the high-fidelity ROM
model at a higher Mach number (generally Ma > 0:3 and
Ma < 0:8), it can be written as formula (11). For the high-
fidelity ROM model at a lower Mach number (generally
Ma < 0:3), it can be written as

yHF kð Þ = 〠
M

j=0
Bα
j α k − jð Þ × ρ w, x1 kð Þð Þ + z w, x1 kð Þð Þ + zlma w, x1 kð Þð Þ

� −〠
N

i=0
AiyLF k − ið Þ + 〠

M

j=0
B _α
j _α k − jð Þ + 〠

M

j=0
B€α
j €α k − jð Þ

" #
:

ð14Þ

h

V

x
c

K𝜃

z

𝜃

Kh

xh

Figure 1: Two-dimensional aeroelastic system.
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ρðw, x1ðkÞÞ, zðw, x1ðkÞÞ, and zlmaðw, x1ðkÞÞ can be fur-
ther expanded according to the outputClðkÞ, CmðkÞ:

ρ w, x1 kð Þð Þ = ρcl w, x1 kð Þð Þ, ρcm w, x1 kð Þð Þ½ ÞT ,
z w, x1 kð Þð Þ = zcl w, x1 kð Þð Þ, zcm w, x1 kð Þð Þ½ �T ,

zlma w, x1 kð Þð Þ = zlma
cl w, x1 kð Þð Þ, zlma

cl w, x1 kð Þð Þ
h iT

:

ð15Þ

(1) Modeling for ρðw, x1ðkÞÞ. Some scholars have found that
the aerodynamic correction term directly caused by flow
separation can be written as a function of the separation
point [25]. The form of the function is shown in formula
(16). Here, we directly use the form of this function, but
the parameters in the function are not fixed and need to be
identified according to the actual situation:

ρcl w, x1 kð Þð Þ =
1 +

ffiffiffiffiffiffiffiffiffiffiffi
f ″ kð Þ

q
2

0
@

1
A

2

,

ρcm w, x1 kð Þð Þ = P1 + P2 1 − f ″ kð Þ
� �

+ P3 sin πf ″ kð ÞP4
� �� �

× CLF
l x1 kð Þð Þ
CLF
m kð Þ ,

ð16Þ

where P1 ~ P4 are the parameters to be identified related to
the airfoil section. f ″ðkÞ is the separation point at time k,
which can be written as the following iterative form:

f ″ kð Þ = f ′ kð Þ‐D1 kð Þ, ð17Þ

where D1ðkÞ =D1ðkÞe−S/T1 + ð f ′ðkÞ‐f ′ðkÞÞe−S/ð2T1Þ, S = 2Vdt
/c. V is the velocity of the incoming flow, dt is the time step,
and c is the chord length of the airfoil. T1 is the time con-
stant of the dynamic separation point and is one of the time
parameters to be identified. f ′ðkÞ can be written in the fol-
lowing forms:

f ′ kð Þ =
1 + F1e

α f kð Þ−P6ð Þ/P5 , if αf kð Þ ≤ P6,

F2 + F3e
α f kð Þ−P6ð Þ/P7 , if αf kð Þ > P6,

8<
: ð18Þ

where P5 ~ P7 are the parameters to be identified according
to different airfoils, and P6 corresponds to the critical sepa-
ration angle of attack of airfoils. F1, F2, and F3 are the
parameters to be identified related to the separation point.
αf ðkÞ is the effective angle of attack at time k.

(2) Modeling for zðw, x1ðkÞÞ. The correction term zðw, x1ðk
ÞÞ of the additional lift and moment generated by the sepa-
ration vortex can also be written as a function of the separa-
tion point, which is also affected by the time parameter T2.
The additional lift zclðw, x1ðkÞÞ generated by the separated
vortex can be calculated by the following equation:

zcl w, x1 kð Þð Þ = Cv kð Þ −D3 kð Þ, ð19Þ

where

D3 kð Þ =D3 kð Þe−S/T2 + Cv kð Þ − Cv k − 1ð Þð Þe−S/ 2T2ð Þ, ð20Þ

Cv kð Þ = CLF
l x1 kð Þð Þ 1 −

1 +
ffiffiffiffiffiffiffiffiffiffiffi
f ″ kð Þ

q� �2

4

2
6664

3
7775, for τv ≤ 2T3,

0, for τv > 2T3:

8>>>>>><
>>>>>>:

ð21Þ
τv is the time parameter of separation vortex failure. T3

is the time constant of the vortex moving on the whole
airfoil.

The correction term zcmðw, x1ðkÞÞ for the pitching
moment coefficient generated by vortex can be given by
the following formula:

zcm w, x1 kð Þð Þ == P8 1 − cos πτv
T3

� �	 

zcl w, x1 kð Þð Þ, ð22Þ

where P8 is the parameter to be identified.

(3) Modeling for zlmaðw, x1ðkÞÞ. For the special “overshoot”
lift at a low Mach number, the lift correction factor zlma

cl ðw
, x1ðkÞÞ of this part is also the function of the separation
point, which can be written as

zlma
cl w, x1 kð Þð Þ =

P9 f ″ kð Þ − f ′ k − 1ð Þ
� �

Vx, for α kð Þ > α k − 2ð Þ,

P9 f ″ kð Þ − f ′ k − 1ð Þ
� �

Vxr , for α kð Þ < α k − 2ð Þ and α kð Þ < αmin,

8><
>: ð23Þ
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where P9 is the parameter to be identified related to the air-
foil, αmin is the initial angle at which the airflow readheres to
the airfoil when the angle of attack decreases, Vx and Vxr are
the shape functions of the lift coefficient generated by the
“overshoot.” The expression is as follows [54]:

Vx =
sin3/2 πτv

2T3

� �
, 0 < τv < T2,

cos2 π τv − T2ð Þ
T3

� �
, τv > T2,

8>>><
>>>:

Vxr =
sin3/2 πτr

2T4

� �
, 0 < τr < T4,

cos2 π τr − T4ð Þ
2T4

� �
, τr > T4:

8>>><
>>>:

ð24Þ

The additional moment coefficient zlma
cm ðw, x1ðkÞÞ on the

wing surface caused by the overshoot effect can be calculated
by the following formula:

zlma
cm w, x1 kð Þð Þ = P10 1 − cos πτv

T4

� �
zlma
cl w, x1 kð Þð Þ, ð25Þ

where P10 and T4 are the parameters to be identified.
To sum up, the nonlinear correction parameter set w can

be written as w = ½P1, P2,⋯, P10, F1, F2, F3, T1, T2,⋯, T4�T ,
and the parameters to be identified can be divided into three
parts: airfoil parameter P, separation point equation param-
eter F, and separation-related time coefficient T . Let

Wn = Pl l = 1, 2,⋯, 10ð Þ, Fm m = 1, 2, 3ð Þ, Tn n = 1, 2, 3, 4ð Þf g:
ð26Þ

Then, the parameter set to be identified for high-fidelity
ROM is Wn.

In conclusion, the construction of the multi-fidelity
model can be divided into two steps. Firstly, identify Wl by
low-fidelity data and then obtain the parameter set Wn of
the correction equation based on high-fidelity data. In addi-
tion, it should be also noted that when identifying Wl and
Wn, airfoil chord length c and flow velocity V are used for
dimensionless processing. Therefore, chord length c and
flow velocity V are also used as additional input parameters
of ROM, which broadens the application scope of the model.
The parameter identification algorithm can be used to iden-
tify the above parameters. The next section will introduce
the parameter identification algorithm in detail.

2.3. Parameter Identification Methodology. In this paper, a
parameter optimization algorithm based on cuckoo search
(CS) is used for parameter identification. CS, proposed by
Yang and Deb in 2009 [55], is a typical swarm intelligence
optimization algorithm with iterative search characteristics.
The CS algorithm originated from egg parasitism of cuckoo
species, and it simplified the biological behavior into three
idealized hypotheses: (I) each cuckoo lays one egg at a time
and places it in randomly selected host nests, (II) high-

quality eggs and the best nest will be passed on to the next
generation, and (III) the number of available host nests is
fixed, and the probability that host birds may find foreign
eggs is P ∈ ð0, 1Þ.

Each egg is represented as a solution, and the last
hypothesis indicates that some host nests will be replaced
by new random nests. For the maximization problem, the
quality or fitness of the solution can be simply proportional
to the value of the objective function. Other forms of fitness
can be defined in a way similar to fitness function in a
genetic algorithm. In terms of the search algorithm, the CS
algorithm does not search data through a simple isotropic
random walk but updates data through the combination of
local random walk and global random walk. Controlled by
switch parameters pa, local random walk can be written as
follows:

xt+1i = xti + αs ⊗H pa − εð Þ ⊗ xtj − xtk
� �

, ð27Þ

where xtj and xtk are two solutions generated by random
walk, H is the heaviside function, ε is the random number
with uniform distribution, and s is the step size. α is the step
size scaling factor. The global random walk adopts the Levy
flight mode, which can be written as follows:

xt+1i = xti + αL s, λð Þ, ð28Þ

where Lðs, λÞ can be written as

L s, λð Þ = λΓ λð Þ sin πλ/2ð Þ
π

1
s1+λ

s>>s0 > 0ð Þ: ð29Þ

However, the above algorithm uses a random number to
initialize the position of the bird’s nest, which is blindness.
The position of the random solution may be far away from
the correct solution. Meanwhile, the data search and update
mechanism of Levy flight reduces the convergence speed in
the iterative process, and it may not be able to find the solu-
tion with the required accuracy in a certain period of time.
In order to solve this problem, chaos optimization is intro-
duced. The randomness and ergodicity of chaos can avoid
the problem of stopping searching when the local minimum
is found, which can overcome the shortcomings of tradi-
tional optimization algorithms. In this paper, the logistic
map, which is commonly used in chaos optimization, is
introduced into the solution updating process of the CS
algorithm:

xt+1i = uxti 1 − xti
� �

, i = 0, 1,⋯,M, ð30Þ

where u ∈ ð2, 4� is the chaos control variable. Before chaos
optimization, the variables to be optimized need to be
mapped to ½0, 1�.

The cuckoo search algorithm with chaos optimization
can be written in the following steps:

(1) Define the number of initial nests N and the initial
solution x0iði = 1, 2,⋯,NÞ
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(2) Obtain a new stochastic solution xi by Levy flight
and calculate its fitness Fi

(3) Compare Fi with the fitness Fj of the other solution
xj in the nest. If Fi ≤ Fj, the solution xj in the nest is
replaced by the new solution xi; otherwise, the solu-
tion xj in the nest is retained. Find the best solution
of this iteration as xbest1

(4) Project xbest1 to ½0, 1� and obtain the chaotic
sequence ychaom by Logistic mapping. Then inversely
map the chaotic sequence to the original solution
space to obtain a new solution xchaom and calculate
the fitness of the new solution. Repeat the above pro-
cess several times and find the optimal solution in
xchaomðm = 1, 2,⋯,MÞ as xbest2. By comparing xbest1
with xbest2, the final best solution of this iteration
xbest is obtained

(5) Discard a certain number of nests by probability P
and replace them with new nests. Retain the optimal
solution xbest after the replacement

(6) Judge whether the optimal solution xbest meets the
accuracy requirements. If it meets the requirements,
stop the iteration process and output xbest. Other-
wise, return to step 2

The whole process can also be illustrated by the flow
chart shown in Figure 2.

It should be noted that for parameters with physical
meaning, the optimization range of these parameters will
be given according to the conclusions of some literatures
such as Ref. [25, 54] to meet the physical meaning.

3. Model Training and Validation

The NACA0012 airfoil is taken as an example for model
training and validation. Firstly, different fidelity data sources
are introduced; then, the model training process is repre-
sented, and finally, the model is verified in aerodynamic pre-
diction and aeroelastic analysis.

3.1. High-Fidelity, Medium-Fidelity, and Low-Fidelity Data.
Theoretically, establishing a multifidelity model only
requires two kinds of datasets with low and high fidelity
and two steps. For the first step, the parameters of the low-
fidelity model are identified through the low-fidelity data.
For the second step, the parameters of the high-fidelity
model are obtained according to the high-fidelity data. How-
ever, for the multifidelity aerodynamic model in this paper,
the high-fidelity data obtained by experiments is limited,
and the airfoil motion corresponding to the experimental
data is usually harmonic motion, which makes the dynamic

Define the fitness function F
Initialize the number of nests N
Initialize the initial solution x0i

(i =1,2…, N) 

Calculate the fitness value F0i of
all initial solutions x0i

Obtain a new stochastic solution xi by Levy flight and calculate its fitness value Fi

 Compare Fi with the fitness value Fj of the other solution xj in the nest

Initialization 

Start iteration k = 1 

If Fi < Fj

k = k + 1 

If k ≤ N

Find the best solution as xbest1

Project xbest1 to [0,1], and obtain the chaotic sequence 
ychaom by logistic mapping 

Inversely map the chaotic sequence ychaom to the original
solution space to obtain a new solution xchaom

Start iteration m = 1 

If m ≤ M

Calculate the fitness Fchaom of the new solution xchaom

m = m + 1 

Find the best solution in xchaom (m =1, 2,…, M) as xbest2

If Fbest1 < Fbest2

Discard a certain number of nests by probability P and replace them with new nests.If Fbest < Faim

Output xbest

True 

True 

False 

False 

True 

False 

True 

False 

True 

False 

xbest = xbest1

xbest = xbest2

xj in the nest is replaced by the new solution xi, 

xj in the nest is retained 

Figure 2: Flow chart of the cuckoo search algorithm with chaos optimization.
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information of the system in high-fidelity data insufficient.
In addition, there are many parameters to be identified in
the high-fidelity model; directly using experimental data to
identify the nonlinear parameters may cause overfitting.
The generalization ability of the model will be very poor.
So, it is not suitable to use limited experimental data alone
for nonlinear modeling. Therefore, it is necessary to obtain
more high-fidelity aerodynamic data with more dynamic
information of the system for modeling. The CFD-RANS
model is a good choice to obtain more aerodynamic data
with relatively high fidelity. On the one hand, the CFD
results based on the RANS solver can reflect the nonlinear
aerodynamic characteristics of a high angle of attack to a
certain extent. On the other hand, the airfoil motion form
can be given randomly according to the actual requirements,
which is not limited by the experimental conditions. As a
result, CFD data based on the RANS model is chosen as
the third kind of data with relatively high fidelity (here
defined as medium fidelity) for multifidelity aerodynamic
model modeling, which can be used for the preliminary
identification of nonlinear high-fidelity model parameters.

For the multifidelity aerodynamic model established in this
paper, the modeling process is divided into three stages.
Firstly, the low-fidelity model is identified through the low-
fidelity data; then, the high-fidelity model parameters are
identified for the first time through the medium-fidelity
data, and finally, based on the results of the first identifica-
tion, the high-fidelity model parameters are modified for
the second time through the high-fidelity data from
experiments.

As just described, in this study, three kinds of data with
different fidelity are used in modeling, which are called high-
fidelity data, medium-fidelity data, and low-fidelity data,
respectively. Here, low-fidelity data is obtained by CFD-
Euler solvers. Medium-fidelity data is obtained by the
CFD-RANS solver. High-fidelity data is obtained by experi-
ments. It should be noted that the final model will be mod-
ified by high-fidelity experimental data, so the CFD-RANS
model only needs to reflect the trend of aerodynamic force
at a high angle of attack. The result of the RANS solver does
not need to be in perfect agreement with the experimental
data, which further saves the time to adjust the parameters

0 0.05 (m)

(a) Mesh for the Euler solver

0 0.05 (m)

(b) Mesh for the RANS solver

Figure 3: Computational meshes.
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and mesh quality of the RANS solver, as well as improve the
modeling efficiency. Therefore, the aerodynamic force calcu-
lated by RANS is taken as the relatively high-fidelity data
and here is defined as medium-fidelity data.

In this study, the ALE (Arbitrary Lagrange Euler) finite
volume method is used as the governing equation. In this

way, the motion of the material structure boundary can be
effectively tracked in the calculation process, and the grid
position can be appropriately adjusted according to the
defined parameters in the calculation process without seri-
ous distortion. The double time step implicit time discretiza-
tion method is used for time discretization, which can
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Figure 4: One of the chirp signals with variable amplitude used for ROM training.
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Figure 5: A group of training data used for low-fidelity ROM training.
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improve computational efficiency. For the turbulence model,
SST k‐ω is selected, which can be applied to the calculation
of flow separation and reverse pressure gradient. The
scheme of the computational grid deformation is based on

diffusion, and the aerodynamic grid for CFD-Euler and
CFD-RANS is shown in Figure 3. For the mesh for the
RANS solver, the grid height of the first boundary layer is
10-3mm, and the growth rate is 1.2.
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Figure 6: A group of training data used for high-fidelity ROM training.

Table 1: Information of cases.

Case number Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Inlet Mach number 0.059 0.118 0.120 0.300 0.300 0.300

Reduced frequency 0.460 0.230 0.124 0.100 0.100 0.100

chord length (m) 1.0 1.0 0.55 0.4064 0.4064 0.4064

Initial angle of attack(°) 0 0 15 5 10 15

Amplitude of motion (°) 10 10 10 10 10 10

Table 2: RMSE of test cases without experimental data.

Case number Case 1 Case 2
Aerodynamic coefficient cl cm cl cm

RMSE

CFD-EULER 0.0514 0.0157 0.0457 0.0052

Low-fidelity ROM 0.0817 0.0155 0.0460 0.0039

High-fidelity ROM 0.0799 0.0130 0.0403 0.0036

Table 3: RMSE of test cases with experimental data.

Case number Case 3 Case 4 Case 5 Case 6
Aerodynamic coefficient cl cm cl cm cl cm cl cm

RMSE

CFD-RANS 0.3344 0.0562 0.1078 0.0285 0.1704 0.0537 0.2002 0.0449

Low-fidelity ROM 0.4642 0.1470 0.1310 0.0370 0.4125 0.0777 0.7208 0.1024

High-fidelity ROM 0.1136 0.0366 0.1013 0.0295 0.1177 0.0374 0.1479 0.0388

11International Journal of Aerospace Engineering



3.2. Model Training. The training data of the unsteady aero-
dynamic model are usually obtained by two methods. One is
to design a training signal with specified excitation (such as
random signal, 3211 signal, and chrip signal), which needs
to contain the dynamic information of the main motion
state in the actual flight situation. The other is to select some
representative states in the sampling space, where each state
corresponds to a specific motion type, such as harmonic
motion with constant frequency and amplitude [49]. Both
of the two methods can be easily applied to numerical simu-
lation, but the first method cannot be applied to the experi-
ment due to the noise. For the nonlinear unsteady

aerodynamic ROM established in this paper, on the one
hand, it needs a large amount of data with a wide range of
characteristics to meet the generalization ability require-
ment; on the other hand, it needs experimental data for sec-
ondary correction, so both of the two methods are used to
obtain the training data.

As described in Section 3.1, the model training process
can be divided into three stages. The first stage is the low-
fidelity linear ROM training. The Euler solver is used to
obtain the aerodynamic training data. It should be noted
that for the Euler solver which ignores the viscosity, the
motion form corresponding to the training signal should
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Figure 7: Prediction of aerodynamic responses of test Cases 1~2.
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be limited in a certain range. Otherwise, due to the influence
of viscous force, the obtained aerodynamic coefficients can-
not meet the actual situation and cannot be used in aerody-
namic modeling. The RANS solver does not have this
problem because it considers the influence of viscosity.
However, whether the training data is obtained by the Euler
solver or RANS solver, it should meet the following require-
ment to achieve a better training result; that is, the training
signal needs to contain a wider range of angle of attack (ini-
tial angle of attack is also included) and reduced frequency

(the reduced frequency is defined as k = ðω × cÞ/2V , where
ω is the angular frequency of pitching and plunging motion).
Therefore, several groups of chirp signals with variable
amplitude as well as initial value are selected as training sig-
nals, one of which is shown in Figure 4. The frequency range
of the signal is 0-5Hz, and the amplitude range is set accord-
ing to the actual situation; for the Euler solver, the amplitude
of the effective angle of attack (defined as αe = θ + arctan ð _h
/VÞ) is limited to ½−5°, 5°�. Each group of training signals
also corresponds to multiple working conditions with
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Figure 8: Prediction of aerodynamic responses of test Cases 3~6.
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different incoming velocities, which can further widen the
reduced frequency range. The aerodynamic training data
corresponding to the signal in Figure 4 is shown in Figure 5.

The second stage is the first time training of the high-
fidelity nonlinear ROM, which is also the initial identifica-
tion of nonlinear correction function parameters. In this
stage, the RANS solver is used to obtain the training data.
The training signals are the same as described above which
are also the chirp signals with variable amplitude, but the
effective angle of attack changes from –30° to 30°. CFD data
based on the RANS model is used for the preliminary iden-
tification of nonlinear correction parameters, and one or

more groups of nonlinear correction parameters with stron-
ger generalization ability can be obtained. A group of train-
ing data is shown in Figure 6. It can be seen that under the
same inflow velocity, the nonlinearity of aerodynamic force
is stronger at the motion with high amplitude and low fre-
quency. In addition, the aerodynamic nonlinearity becomes
more significant with the increase of the velocity, which
may be the result of the decrease of the reduced frequency.

The third stage is the second time training of the high-
fidelity nonlinear ROM, which is also a second time of opti-
mization for nonlinear correction function. Based on the
nonlinear parameters identified in the second stage, the
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Figure 9: FWGN signal used for ROM test.

0 0.5 1 1.5 2 2.5 3
Time (s)

–3

–2

–1

0

1

2

3

4

CL

CFD-RANS
Low-fidelity ROM
High-fidelity ROM

(a) Lift coefficient versus time

CFD-RANS
Low-fidelity ROM
High-fidelity ROM

0.5 1 1.5 2 2.5 3
Time (s)

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

CM

(b) Moment coefficient versus time

Figure 10: Prediction of aerodynamic coefficients of FWGN test case.

15International Journal of Aerospace Engineering



experimental data in McAlister et al.’s [56], Sheng et al.’s
[25], and Leishman’s [57] paper is used as the training data,
and the cuckoo search algorithm with chaos optimization is
used for the optimization. Finally, the high-fidelity nonlinear
ROM with high accuracy and strong generalization ability is
obtained.

For low-fidelity and medium-fidelity training datasets,
six velocity points are selected as the training velocity, which
are 10m/s, 20m/s, 40m/s, 60m/s, 80m/s, and 100m/s,
respectively. There are one Euler training dataset and two
RANS training datasets at each training speed. The training
signal of each dataset is the chirp signal with variable ampli-
tude, and the maximum amplitude of the signal is 5°, 20°,
and 30°, respectively. The unit time step is 0.001 s, and the
number of time points of each training set is 5000. The range
of the Reynolds number of the training datasets is 4 ∗ 105
~ 5 ∗ 106. For high-fidelity experimental training datasets,
three groups of experimental data are used for modeling,
and the parameters contained in the experimental data are
listed in Table 1, corresponding to Case 3, Case 5, and Case
6. The reason for selecting Case 3, Case 5, and Case 6 as the
training dataset is that the high-fidelity model needs to
reflect the strong nonlinear characteristics of aerodynamic
force. Therefore, three sets of data with stronger nonlinearity
are selected as the training datasets. The dataset of Case 4
with relatively weak nonlinearity is used as the test dataset
to test the generalization ability of the model.

Through the above training progress, the parameters of
the low-fidelity model and high-fidelity model can be identi-
fied. For the low-fidelity model, the delay orders M and N
must be determined first. Here, M =N = 2 is determined
by a trial-and-error method. After that, the parameters in
Equations (12) and (26) can be identified by the cuckoo
search algorithm with chaos optimization. In total, there
are 39 parameters needed to be identified by multifidelity
aerodynamic data. After the identification of the parameters,
the low-fidelity and high-fidelity models are established.

3.3. Model Validation

3.3.1. Validation in Aerodynamic Prediction. By estimating
the aerodynamic loads of NACA0012 airfoil under different
pitching and plunging motions at low speed, the effective-
ness of the unsteady nonlinear multifidelity modeling
method based on data fusion is verified.

Firstly, several simple harmonic pitching motions are
selected as test cases. The information and the working
parameters of the test cases are listed in Table 1. Among
them, case3-6 have experimental data and case1-2 are the
test cases without experimental data. Use RMSE (root mean
squared error) to measure the performance of different aero-
dynamic models. The calculation formula of RMSE is as fol-
lows:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
N

i=1

yH ið Þ − yL ið Þj j2
N

vuut , ð31Þ

where i is the time scale and N means the number of time

points of a group of test data. yH and yL represent the aero-
dynamic coefficients obtained by high-fidelity models/data
and low-fidelity models/data, respectively.

Table 2 lists the RMSE of test case1-2 compared with the
CFD-RANS result. Table 3 lists the RMSE of test case3-6,
which is obtained by comparing with the experimental data.
Figures 7 and 8 show the comparison of aerodynamic coef-
ficients predicted by different aerodynamic models.

It can be seen from Figure 7 that for linear test Case 1
and Case 2 which pitching angle changes from [-10°, 10°]
and reduced frequency is 0.46 and 0.23, respectively, the
shape of the hysteresis loop is almost elliptical, and all
models can effectively capture the unsteady characteristics
of CL (lift coefficient) and CM (moment coefficient), which
verifies the low-fidelity ROM and the high-fidelity ROM in
the linear range. In addition, it can be seen from Table 2
and Figure 7 that the results calculated by the low-fidelity
model and CFD-Euler model are almost the same. And
Figures 7(b) and 7(d) show that the curve of the low-
fidelity model is closer to the result of CFD-Euler, while
the curve of the high-fidelity model corrected by CFD-
RANS data is closer to the result of CFD-RANS, which also
proves the effectiveness of the nonlinear correction model to
a certain extent.

For Cases 3-6, the aerodynamic nonlinearity is very
strong, and the low-fidelity model cannot meet the accuracy
requirements. CFD-RANS can reflect the trend of nonlinear
aerodynamics to a certain extent, but they are not accurate
enough to fit the details. The proposed high-fidelity ROM
improves this defect, as its parameters are optimized based
on experimental data. Results show that the prediction
results of the proposed high-fidelity ROM have the best con-
sistency with the experimental data, which can be seen from
the fitting degree of the hysteresis loop in Figure 8 as well as
the RMSE data in Table 1. In addition, we also found from
Table 1 and Figure 8 that with the increase of the initial
angle of attack, the aerodynamic nonlinear characteristics
will become more significant, and the consistency between
CFD results and experimental data will become worse. This
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Figure 11: Bifurcation diagrams.
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may imply that when the initial angle of attack or total motion
amplitude increases to a certain value, the computational
accuracy of CFD will no longer meet the requirements. The
proposed high-fidelity ROM based on multifidelity data can
avoid the above problem to a certain degree, because it can
modify itself based on the experimental data, which makes it
more extensible for different conditions.

In order to prove the generalization ability of the model,
more random test signals are needed. We choose a group of
fwgn signals with random parameters as the test signal. The
motion of the test case is a combination of pitching motion
and plunging motion. The test signal is shown in Figure 9.
Figure 10 shows the comparison among the output results
from different models and CFD solvers. It can be seen from
Figure 10 that the established high-fidelity ROM well reflects
the nonlinear aerodynamic characteristics, which proves its
good generalization and extrapolation ability.

As shown in the test case, the proposed aerodynamic
modeling method only needs a group of low-fidelity and
medium-fidelity CFD data and a few high-fidelity data with
a specified harmonic motion to establish high-fidelity aero-
dynamic ROM with satisfactory generalization ability.

3.3.2. Verification in Two-Dimensional Aeroelastic Response.
In order to further verify the validity of the model, the non-
linear ROM is applied to two-dimensional aeroelastic analy-
sis, and the results are compared with the experimental
results in Ref. [58].

The two-dimensional aeroelastic system is already
shown in Figure 1, which has two degrees of freedom: pitch-
ing motion and plunging motion. The important experiment
parameters in Ref. [58] are listed in Table 3.

The dynamic equation of the system can be written as
follows:

m Sθ

Sθ Iθ

" #
€h

€θ

" #
+

Ch 0
0 Cθ

" #
_h

_θ

" #
+

Kh 0
0 Kθ

" #
h

θ

" #
=

Qh

Qθ

" #
,

ð32Þ

where θ is the pitch angle and h is the amplitude of plunge
motion. Kh and Kθ are spring stiffness of plunging and
pitching freedom, respectively. Ch and Cθ represent struc-
tural damping. m is the mass per unit length. Sθ represents
the mass static moment, and Iθ is the moment of inertia at
quarter chord length. Qh and Qθ are external aerodynamic
forces and aerodynamic moments, which can be calculated
by the proposed nonlinear aerodynamic ROM with the fol-
lowing equation:

Qh

Qθ

" #
=

−
1
2 ρV

2CLcl

1
2 ρV

2CMc
2l + 1

2 ρV
2CLclxh

2
664

3
775, ð33Þ

where CL and CM are aerodynamic coefficient and aerody-
namic moment coefficient, respectively, which are calculated
by nonlinear aerodynamic ROM. c is chord length and l is
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Figure 12: Phase plane between α and α.

Table 4: Training cases in convergence analysis.

Training group
number

Velocity
intervals (m/s)

Velocity in groups (m/s)

1 50 10, 60

2 25 10, 35, 60

3 10 10, 20, 30, 40, 50, 60

4 5
10, 15, 20, 25, 30, 35, 40, 45,

50, 55, 60
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span length. xh is the distance between elastic wheelbase and
quarter chord line. ρ represents air density. V represents
flow velocity.

The Runge-Kutta method is used to solve Equation (32)
in the time domain, and the bifurcation and limit cycle anal-
ysis can be carried out, as shown in Figures 11 and 12. The x
-axis parameter α in Figure 12 can be expressed by pitching
angle θ and plunging velocity _h : α = θ + arctan ð _h/VÞ.

It can be seen from Figures 11 and 12 that the results of
two-dimensional aeroelastic bifurcation and limit cycle anal-
ysis based on nonlinear aerodynamic ROM proposed in this
paper are in good agreement with the experimental results,
which further verifies the effectiveness of the aerodynamic
reduced order model established in this paper.

4. Model Analysis and Comparison

In the previous section, the proposed high-fidelity aerody-
namic ROM based on the multifidelity framework is verified
by the accurate prediction of the nonlinear unsteady aerody-
namic coefficients as well as the simulation of two-
dimensional limit cycle response induced by nonlinear aero-
dynamics. However, the performance of the model still
needs to be investigated. This section studies the perfor-
mance of the model from three aspects, respectively. Firstly,
the convergence of model error with the velocity interval of
training samples is studied. Then, the calculation accuracy of
the proposed model is compared with the modified dynamic
stall model (also called the modified LB model proposed in
Ref. [25]) and nonlinear aerodynamic model based on RBF
neural network. After that, the application scope and gener-
alization ability of the proposed ROM model is explored and
compared with other aerodynamic models.

4.1. Convergence Analysis. As described in Section 3.2, the
modeling process of the nonlinear ROM can be divided into
three stages. The first stage is to identify the low-fidelity
model, and the second and the third stages are to identify
the high-fidelity correction equation. However, due to the
limited training data in the third stage, only the convergence
of the first two stages is studied. The study of the conver-
gence is divided into two parts also, according to different
training stages.

The study is conducted as follows. Firstly, we need to
define the velocity range of the training model. In this study,
the velocity range is 10-60m/s. Then, the training cases
should be grouped according to different velocity intervals.
Here, four training groups with different velocity intervals
are set up; the corresponding speed intervals are 50m/s,
25m/s, 10m/s, and 5m/s. The velocity included in each
training group is shown in Table 4. After that, the training
data of each group are calculated, and the different ROM
models are obtained after training. In order to eliminate
the influence of signal forms, the training signals for each
velocity point are the same, as shown in Figure 4. Finally, a
set of test cases are selected, and the aerodynamic coeffi-
cients are predicted by different ROM models. The signal
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Figure 13: Test signal for convergence analysis.

Table 5: Test cases in convergence analysis.

Test case number Velocity of test case (m/s)

1 55

2 33

3 22

4 12

5 10
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form of the test cases is shown in Figure 13, and the veloci-
ties of the test cases are listed in Table 5.

As can be seen from Figure 14, for the low-fidelity ROM,
the RMSE of different test cases all decreases with the
decreasing of velocity interval. However, it should be noted
that reducing the velocity interval means more training data
need to be obtained, which will increase the time cost for
modeling. So, it is necessary to balance the accuracy and effi-
ciency. For the case of this paper, the change of the RMSE is

very limited when the interval of training velocity points is
less than 10m/s. Therefore, it is the best to select training
group 3 as the training case for low-fidelity ROM.

For the high-fidelity ROM, as shown in Figure 15, RMSE
of different test cases change differently with the decreasing
of training velocity interval. For test Cases 3~5 where inlet
velocity is less than 30m/s, RMSE increases first and then
reduces, while for other test cases with higher inlet velocity,
the opposite is true. This is because the influence of gas
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Figure 14: RMSE of low-fidelity ROM test cases with the decreasing velocity interval.
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Figure 16: Continued.
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viscosity on aerodynamic force is different from the change
in flow velocity. When the flow velocity is pretty low, the vis-
cous effect of the gas will be stronger and the influence on
the aerodynamic force will be greater. Therefore, for the
same pitching motion at 10m/s and 60m/s, there are some
differences in aerodynamic characteristics. If the training
data contains more cases at a higher speed, the aerodynamic
characteristics reflected by the training data are more consis-
tent with the aerodynamic situation at a higher speed.
Therefore, for test Cases 1 and 2, the result of training group
2 is the best, as it contains only one case whose inlet velocity
is less than 30m/s, while the other two cases are both at a

higher speed. After reducing the velocity interval and
increasing lower incoming flow speed as training points,
the model is adjusted to fit the aerodynamic characteristics
at a lower velocity, so that the fitting degree at 30-60m/s is
reduced. However, compared with the improvement of
model generalization ability, the loss of accuracy is accept-
able. In addition, it can be seen from Figure 15(a) that for
the lift coefficient, RMSE increases slightly when the velocity
interval decreases to 5m/s. This may be due to the overfit-
ting of the model, which should be avoided as far as possible.
Therefore, for the high-fidelity ROM, the best training veloc-
ity interval is 10m/s, corresponding to training group 3.
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Figure 16: Prediction of aerodynamic responses of test Cases 3~6 under different algorithms.
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Table 6: RMSE of the test cases under different algorithms.

Case number Case 3 Case 4 Case 5 Case 6
Aerodynamic coefficient cl cm cl cm cl cm cl cm

Modified LB model 0.1435 0.0742 0.1480 0.0334 0.1043 0.0348 0.1896 0.0380

RBF model 0.0192 0.0195 0.0177 0.0023 0.0113 0.0037 0.0275 0.0070

High-fidelity ROM in this paper 0.1136 0.0366 0.1013 0.0295 0.1177 0.0374 0.1479 0.0388
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Figure 17: Prediction of lift coefficients of test cases: (a) inlet velocity is 100m/s, (b) inlet velocity is 150m/s, (c) inlet velocity is 200m/s, and
(d) inlet velocity is 250m/s.
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4.2. Calculation Accuracy Analysis and Comparison. In this
part, the calculation accuracy of the proposed high-fidelity
ROM is compared with that of the modified LB model and
aerodynamic ROM based on the RBF neural network. The
training data of the aerodynamic ROM based on the RBF
neural network is exactly the same as that of the high-
fidelity model proposed in this paper. The time delayed
orders M,N of the RBF model are also the same with the
high-fidelity ROM. The comparison cases are the cases with

experimental data listed in Table 1. The comparison of three
aerodynamic ROM is shown in Figure 16 and Table 6.

It can be seen from Figure 16 and Table 6 that the aero-
dynamic ROM based on the RBF neural network has the
best fitting degree for the test case. This is because the RBF
neural network has the ability to fit any nonlinear function,
and the test cases are also in the training set, so the results of
the RBF model are the best. However, the generalization
ability of the RBF model needs to be further verified because
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Figure 18: Prediction of moment coefficients of test cases: (a) inlet velocity is 100m/s, (b) inlet velocity is 150m/s, (c) inlet velocity is
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of the limited training data, which will be explained in the
next subsection.

The fitting degree of the proposed algorithm of test cases
is basically equivalent to that of the traditional modified LB
algorithm, which can be seen from Figure 16 and Table 6.
However, this traditional modified LB model is based on a
large amount of experimental data, and parameter determi-
nation is based on subjective experience, which costs a lot of
time and brings a lot of uncertainty for modeling. Moreover,
after changing the experimental parameters and airfoil con-
ditions, it is necessary to redesign the experiment and obtain
the data, so the modeling process of the LB model will cost a
pretty long time. The aerodynamic ROM proposed in this
paper only needs a group of CFD data with low-fidelity or
medium-fidelity and few experimental data for modeling,
which improves the modeling efficiency.

4.3. Generalization Ability and Application Scope Analysis
and Comparison. In this section, the generalization ability
and the application scope of the proposed high-fidelity aero-
dynamic ROM are explored and compared with the RBF
model. Firstly, the training data are obtained in a certain
speed range (10-60m/s), and the unsteady aerodynamic
ROM is established by the RBF neural network algorithm
and the algorithm proposed in this paper, respectively. The
signal of training data is the same as that in Figure 4. Five
velocities (10m/s, 20m/s, 30m/s, 40m/s, 50m/s, and
60m/s) are selected as training points. Then, the two kinds
of ROM are applied to the test cases beyond the training
speed range, and the prediction results are compared with
the CFD-RANS calculation results. There are two main rea-
sons for taking CFD-RANS calculation results as the refer-
ence. Firstly, the experimental data at a higher speed is
insufficient. CFD-RANS data is a good supplement as the
relatively high-fidelity data, and it has been proved in the
article that the CFD-RANS model can reflect the trend of
nonlinear aerodynamic force to a certain extent. And the
generalization ability can be also seen as the ability to follow
the response of the aerodynamic trend under different con-
ditions. Therefore, we think it is reasonable to take the
CFD-RANS data as the reference, because CFD-RANS data
can reflect the trend of aerodynamic force. Another reason
for taking CFD data as a reference is that CFD data is the
easiest to obtain. In order to more clearly reflect the varia-
tion of aerodynamic nonlinear characteristics with different
incoming flow velocities, the chirp signal with variable
amplitude is also used as the test case.

Figures 17 and 18 show the comparison of the aerody-
namic coefficients predicted by the CFD-RANS solver and
the two kinds of ROM under different inlet velocities of
100-250m/s. It can be seen that the aerodynamic coefficients
predicted by high-fidelity ROM proposed in this paper are in
good agreement with the CFD-RANS results, which shows
that the model has a strong generalization ability in the
speed range of 100-250m/s. However, the fitting degree of
the RBF model to CFD data decreases rapidly with the
increase of airspeed, which indicates that the generalization
ability of the RBF model is really poor, and the RBF model
needs more data in modeling. Therefore, the modeling effi-

ciency of the proposed ROM is higher than that of the aero-
dynamic model based on the RBF neural network.

It is worth noting in Figures 17 and 18 that with the
increase of the incoming flow velocity, the fitting degree of
ROM proposed in this paper will become lower, which
means that the ROM proposed in this paper may no longer
be applicable when the incoming flow velocity is higher than
250m/s. This is because when the velocity of the incoming
flow continues to grow, shock waves will be generated locally
on the wing surface, which will affect the aerodynamic char-
acteristics. The proposed aerodynamic models cannot reflect
the effect of shock wave, which means it is no longer appli-
cable. Moreover, when the inflow velocity is less than
10m/s, the adaptability of the ROM model also becomes
worse due to the enhanced viscous effect of the gas. In gen-
eral, the prediction accuracy of the lift coefficient is higher
than that of the moment coefficient, because the nonlinearity
of the moment coefficient is stronger. Based on the above
analysis, we can draw the conclusion that the ROM based
on algorithm fusion and multifidelity framework established
in this paper is suitable for the airspeed condition at
0.03~0.8Ma.

5. Conclusions

A multifidelity modeling framework for low-speed nonlinear
unsteady aerodynamic ROM is presented in this paper,
which combines traditional and intelligent aerodynamic
modeling methods. The intelligent algorithm based on
NARX is used to build the nonlinear aerodynamic model
framework, and the traditional LB separation equation based
on the flow characteristics is used to build the modified
equation. The framework integrates data with different fidel-
ity and extends the multifidelity method of nonlinear system
identification to simulate the unsteady effects of nonlinear
aerodynamics. The low-fidelity data and the medium-
fidelity data are obtained by the CFD-Euler solver and
CFD-RANS solver, respectively, and the high-fidelity data
is obtained from the experimental results. The main conclu-
sions drawn from the results can be summarized as follows:

(1) The proposed high-fidelity ROM performs well in
aerodynamic coefficient prediction and two-
dimensional nonlinear aeroelastic analysis of
NACA0012 airfoil at low speed and high angle of
attack, which indicates that the proposed aerody-
namic modeling method only needs a group of
low-fidelity or medium-fidelity CFD data and few
high-fidelity data with a specified harmonic motion
to establish the high-fidelity ROM with satisfactory
generalization ability. The results are in good agree-
ment with the experimental data

(2) Compared with the traditional modified LB aerody-
namic model, the proposed high-fidelity ROM is
more flexible and more adaptable

(3) Compared with the aerodynamic model based on the
RBF neural network, the proposed high-fidelity
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ROM has stronger generalization ability, higher sta-
bility, and modeling efficiency

(4) Data fusion can further reduce the modeling cost and
improve modeling efficiency. Thus, the efficiency of
calculation and simulation is greatly improved com-
pared with high-precision CFD and experiments

(5) Future work includes improving the modeling and
identification algorithm to better represent the cor-
rection term and involving it in three-dimensional
configurations
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