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This work proposes a path planning algorithm based on A∗ and DWA to achieve global path optimization while satisfying
security and speed requirements for unmanned aerial vehicles (UAV). The algorithm first preprocesses the map for irregular
obstacles encountered by a UAV in flight, including grid preprocessing for arc-shaped obstacles and convex preprocessing for
concave obstacles. Further, the standard A∗ algorithm is improved based on UAV’s flight environment information and
motion constraints. Further, the DWA algorithm’s limitations regarding local optimization and long planning time are
mitigated by adaptively adjusting the evaluation function according to the UAV’s safety threshold, obstacles, and environment
information. As a result, the global optimal path evaluation subfunction is constructed. Finally, the key points of the global
path are selected as the subtarget points of the local path planning. Under the premise of the optimal path, the UAV real-time
path’s efficiency and safety are effectively improved. The experimental results demonstrate that the path planning based on
improved A∗ and DWA algorithms shortens the path length, reduces the planning time, improves the UAV path smoothness,
and enhances the safety of UAV path obstacle avoidance.

1. Introduction

Unmanned aerial vehicles (UAVs) are widely used in indus-
try, life sciences, logistics, and other fields. In recent years,
path planning has emerged as a critical problem for UAVs.
UAV path planning sets the start and end points in the
UAV environment map and plans a collision-free, optimal,
and safe path using a relevant path planning algorithm.

At the core of the UAV, path planning is the path plan-
ning algorithm. Based on the employed planning scenarios,
path planning can be divided into global path planning
and local path planning. Global path planning utilizes the
environment map with known obstacles, while local path
planning relies on the environment map with unknown
obstacles. The main algorithms used in global path planning
are, for example, A∗ [1, 2], Dijkstra [3], and RPT [4]. The
local path planning algorithms include dynamic window
algorithms (DWA) [5, 6], artificial potential field method
(APF) [7, 8], and ant colony algorithm (ACO) [9]. Many
scholars researching the UAV path planning assume that

the obstacles in the UAV environment are regular in shape
(e.g., circle or rectangle). However, disregarding the obsta-
cles’ irregularities prevents accurate representation and
planning of the UAV flight path.

Lyu et al. proposed a path planning algorithm based on
graph search. The improved algorithm uses the Floyd
algorithm to weight different paths, which greatly reduces
the number of path points and effectively improves the
smoothness of the path [10]. Turker et al. study the problem
of UAV radar evasion by regarding a radar as a circular no-
fly zone and realizing the path planning on a two-
dimensional plane via the simulated annealing algorithm
[11]. Yao and Wang propose an adaptive ant lion optimiza-
tion algorithm for path planning [12]. The authors verified
the proposed algorithm’s effectiveness but only considering
circular and rectangular no-fly zones. Thus, it is more suit-
able for maps with ideal obstacle boundaries [12]. Similarly,
Xu et al. model obstacles as circular no-fly zones and opti-
mize the planning path based on the Laguerre diagram
[13]. Boulares and Barnawe et al. proposed a regression
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algorithm, which used the predicted trajectory of the missing
target to plan the path of the UAV search task [14]. Belkadi
et al. proposed a distributed UAV trajectory generation
strategy, which solved some problems in a group of UAV
control and can be applied to large-scale search, monitoring,
inspection, and rescue [15]. Huang et al. proposed a coordi-
nated path planning method for multiple UAVs based on k
-order smoothing and constructed a complex environment
composed of multiple threat sources. Using the improved
ant colony algorithm, a k-order smoothing algorithm is pro-
posed to obtain a more flexible path [16].

DWA is a commonly used local path planning algo-
rithm, which has good obstacle avoidance ability. However,
it is prone to falling into a local optimum and not reaching
the specified target point. Moreover, the increase in com-
plexity of the UAV application scene and environment
may render the standard DWA incapable of solving the
complex path planning problem. Consequently, DWA typi-
cally needs to be improved through combination with global
path planning algorithms.

According to Yulong et al., in solving the UAV path
planning problem, the decoupling strategy is introduced,
and the messenger UAV path planning problem is described
as a dynamic traveling salesman problem with neighbor-
hood [17]. Huo et al. proposed a hybrid differential
symbiotic organisms search algorithm (HDSOS), which
combines the differential evolution mutation strategy with
the improved symbiotic organisms search (SOS) strategy
[18]. The algorithm maintains the systems’ local search
capability while simultaneously achieving a good global
search performance [18]. To solve the problem of UAV
route planning under different threats in a complex environ-
ment, Phung and Ha proposed a particle swarm optimiza-
tion algorithm that not only is superior to the classical
particle swarm optimization, phase swarm optimization,
and quantum swarm optimization but also outperforms
the genetic algorithm [19]. Jeauneau et al. proposed two
methods for UAV path planning in a real 3D environment.
A single path is provided based on the A-star method, and
multiple paths are provided by the genetic algorithm using
Pareto Frontier (PF). The generated paths must meet the
dynamic characteristics of vehicles [20].

When establishing the environment, the studied litera-
ture regards the planning space as too perfect, rendering it
impractical. Such path planning algorithms are suitable for
simple environmental maps. Considering that most obsta-
cles in the real environment are irregular in shape and UAVs
are often regarded as particles, the direct application of the
listed methods requires expanding the range of obstacles
and affects the planning results. Thus, an improvement is
required.

To support path planning in complex environments, this
paper first studies the irregular obstacles that a UAV may
encounter in a flight. Such a process includes grid processing
of arc obstacles and convex processing of concave obstacles.
Next, the cost function is improved by using the obstacle
weight coefficient in the environment map. The standard
A∗ algorithm is advanced by incorporating the UAV motion
constraints and a safety threshold. While considering the

incompatibility of speed and safety in DWA, the algorithm
is improved through an adaptive speed evaluation function
that considers the density of obstacles and the safety thresh-
old. Finally, critical nodes in the global path planning are
taken as local subobjective points to improve the algorithm
while relying on the improved A∗ and DWA algorithms.
As a result, the optimal, shortest path with greater smooth-
ness from the start to the end is planned.

2. Environment Modeling and
Obstacle Pretreatment

Most of the obstacles in the flight environment of UAV are
irregular in shape, and UAV is often regarded as a particle.
The UAV flight environment is directly regarded as a regular
map, which is easy to expand the range of obstacles and
affect the planning results, so the environment map is first
processed.

2.1. Grid Method for Airspace Modeling. Assuming that the
UAV’s altitude is constant during flight, the UAV motion in
three-dimensional space is simplified to two-dimensional
motion. Suppose that the following UAV path-planning con-
ditions are known:

(1) Starting point and target point

(2) UAV’s physical performance limitations

(3) Information regarding irregular obstacles

Further, note that a cruising UAV can be regarded as a
particle.

2.2. Gridding Treatment of Arc Obstacles. This paper utilizes
the idea of a rough set to obtain a polygon approximating
the arc-shaped obstacles [21]. The main method first deter-
mines a grid of the arc obstacle’s outer edge line, along with
its positioning grid. Then, the polygon processing is per-
formed, and each arc grid’s positioning points are con-
nected, as shown in Figure 1(b). The specific steps are as
follows:

(Step 1) Determine the outer edge line (L) of the arc
obstacle (B). Further, determine the grid posi-
tion of each arc line Li, and denote the marked
grid elements as Mi. Regard the centers of the
marked grid elements as the locating points,
and denote them as Pi, i = 1, 2,⋯, n, where n
is the number of segments of the outer edge line

(Step 2) Connect the locating points P1, P2,⋯, Pn, P1,
obtaining the polygon P1P2 ⋯ PnP1 by regard-
ing each M1,M2,⋯,Mn,M1 clockwise from
the starting marked grid element. Conse-
quently, obtain the result of obstacle B polygon
processing, B ≈ P1, P2 ⋯ PnP1

2.3. Convex Filling of Concave Polygon Obstacles. The convex
filling process commences by determining the coordinates of
each polygon vertex in the grid graph. Starting from the first
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grid element, the polygon vertices are denoted S1, S2,⋯, Sm,
where m is the number of vertices of the polygon. If the
inner angle formed by the two adjacent edges is greater than
180 degrees, the corresponding vertex Si is a concave point.
Otherwise, the vertex is a convex point. In the path-
searching algorithm, if the path point falls into the concave
area, the next path point must be placed outside the concave
area to complete the flight mission. Concave areas affect the
UAV path quality and increase the number of invalid path
points, affecting the solution speed.

Figure 2 shows an example of the convex filling process.
The steps are as follows.

(Step 1) Determine the concave polygon’s vertices S1,
S2,⋯, S7, and judge the concavity and convex-
ity of each vertex according to the concavity
and convexity rules (Figure 2(a))

(Step 2) Based on Step 1, start from the starting convex
point S1, and connect other convex points
clockwise, yielding the polygon S1S3S4S5S6S1
as the convex result (i.e., F ≈ S1S3S4S5S6S1).
Then, the obstacles are gridded according to
the arc obstacles, as shown in Figure 2(b)

3. Improved A∗ Algorithm

There are many turning points and large angles in the path
planned via the standard A∗, which is not conducive to a
UAV flight. Thus, this work improves the standard A∗
according to the motion characteristics and environmental
information of UAVs in flight.

3.1. Improvement of the Heuristic Function. The evaluation
function of A∗ is composed of a cost function gðnÞ and a
heuristic function hðnÞ, and the algorithm’s optimal search-

ing performance depends on the selection of the heuristic
function. The improved A∗ algorithm introduces the obsta-
cle weight coefficient into the heuristic function, as shown in
Equation (2). The obstacle weight coefficient expresses the
grid map complexity, and the environmental information
is analyzed.

The obstacle weight coefficient is defined as the propor-
tion of the number of obstacles in the current map and the
number of grid cells in the whole grid map. Let N stand
for the number of obstacle grid cells and denote UAV start-
ing and ending coordinates as ðxs, ysÞ and ðxg, ygÞ, respec-
tively. The obstacle weight coefficient is defined as

K = N

xs − xg
�� ��� �

× ys − yg
��� ���� �  K ∈ 0, 1ð Þð Þ, ð1Þ

f nð Þ = a ∗ g nð Þ + π

2 − arctan K
� �

∗ h nð Þ, ð2Þ

where gðnÞ is the cost from the starting node to the current
node, hðnÞ is the heuristic function value from the current
node to the target node, ðxn, ynÞ are the current node’s coor-
dinates, and a is the weight of the cost function gðnÞ. The
coefficient a is calculated as the ratio of the distance from
the current node to the target point and the distance from
the starting node to the target point.

According to equation (2), the improved algorithm sets
the weight of the adaptive heuristic function. When the
obstacle weight coefficient K is small, the weight of the heu-
ristic function is increased. The A∗ algorithm reduces the
search space, improves the speed of path planning, and
effectively reduces the inflection points and turning points
of the path. When the obstacle weight coefficient is large,
reduce the weight of the heuristic function and increase the

(a)

Mi
Pi

B

L

(b)

Figure 1: Comparison of the gridding treatment for arc-shaped obstacles. (a) Before treatment. (b) After treatment.
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search space to avoid the algorithm falling into local
optimization.

3.2. Determining the UAV Safety Distance. The improved A∗
sets the safety distance between the path node and the obsta-
cle to prevent the UAV from colliding with the obstacle. As
shown in Figure 3, the vertical distance OE (the vertical dis-
tance from point O to line KG) from the obstacle to the path
is compared with the preset safety distance to judge whether
the planned path is safe and feasible.

Suppose the coordinates of node K are ðx1, y1Þ, and the
coordinates of target node G are ðx2, y2Þ. Denote the coordi-
nates of obstacle node O as ðx3, y3Þ and the coordinates of
node F as ðx4, y4Þ. The length of line segment OF, denoted
as l, is the distance between the obstacle and line segment
KG along the longitudinal axis. The angle between line KG
and the x-axis is α, whereas d denotes the distance from
the obstacle to the path. The specific principle is as follows:

l = y3 − y4j j, ð3Þ

y4 =
y2 − y1
x2 − x1

x3 − x1ð Þ + y1

� �
, ð4Þ

α = arctan y1 − y2
x1 − x2

����
����, ð5Þ

d = l cos α: ð6Þ
The distance d from the obstacle to the path is calculated

following equation (6). Let D denote the safety threshold.
Then, distance d is compared with the safety distance D to
determine whether the path can be used as an alternative
path. If d ≤D, the path is abandoned. Then, according to
the improved A∗ algorithm, continue to search for new
nodes until the optimal path is found. Otherwise (i.e., when
d >D), the path is selected.

3.3. Path Smoothing Optimization. As emphasized previ-
ously, because the algorithm search principle and subnode
search direction of standard A∗ algorithm are 8-node

S1

S2

S4

S3

S5

S6

S7

(a)

S1

S2

S4

S3

S5

S6

S7

(b)

Figure 2: The convex filling of a concave polygon. (a) Before treatment. (b) After treatment.
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Figure 4: Floyd algorithm smoothing path comparison.

4 International Journal of Aerospace Engineering



expansion direction, the path planned by the algorithm is
not conducive to UAV flight. Further, path planning takes
a long time, and the search route is close to the obstacle’s
edge. The improved A∗ algorithm combines the Floyd algo-
rithm with the A∗ algorithm, effectively reducing the num-
ber of turning points in the UAV path [22], improving the
UAV movement efficiency, and meeting the UAV applica-
tion requirements. Considering the kinematic model to
judge whether the derived path is more suitable than the
original regarding distance, time, and angle, the algorithm
optimization path comparison is shown in Figure 4.

As shown in Figure 4, the standard A∗ algorithm yields
the path (S, S1, S2, S3, S4, S5, S6, S7, S8,G). This path has many
inflection points, resulting in poor smoothness.

The Floyd smoothing algorithm can be used to eliminate
redundant path nodes, effectively reducing the number of
turns and optimizing the path length. The Floyd algorithm
combines the UAV motion characteristics to improve the
path smoothness. By judging whether there is an obstacle
between the two nodes, as well as considering the security
threshold D and the distance d between the two nodes con-
nected to the obstacle, one can determine whether the path
is feasible. Finally, the path (S, S1, S7,G) is obtained.

Building on the described principles, the standard A∗
algorithm and the improved A∗ algorithm are simulated
and verified, and the obtained paths are shown in Figure 5.

The path planned by the standard A∗ algorithm
(Figure 5(a)) has many redundant nodes and road sections,
and its turning angles are large. As a result, the path length
is 75.1543 km, which is suboptimal (i.e., not the shortest)
and does not conform to the UAV operation rules. In con-
trast, the path planned by the improved A∗ algorithm
(Figure 5(b)) is relatively smooth, and its length equals
72.0735 km. Thus, the improved algorithm achieves a
4.1% improvement in the path length. Moreover, a certain
safety distance can be observed between the global path
and the obstacles, which is more conducive to the UAV
movement.

4. Improved DWA

In the local path planning, the standard DWA algorithm
only specifies the position of the target point, failing to con-
sider unknown obstacles. Moreover, when there are many
obstacles, the path planning algorithm easily falls into the
local optimum, resulting in an increase in the global path
length. The improved A∗ algorithm regards the global path’s
key nodes as subtarget points of the local path. Then, the
environmental information is used to adjust the weight coef-
ficient in the speed evaluation subfunction. Consequently,
UAVs can successfully avoid unknown obstacles and reach
the target point safely and efficiently.

4.1. Motion Model. The basic idea of DWA [6, 23, 24] is to
predict the UAV’s velocity vector space and state vector
space at a particular time, simulate the UAV’s trajectory at
the predicted time, and finally select the optimal trajectory
based on the evaluation function. Assuming that the UAV
is moving in a uniform manner at every time interval Δt,
the UAV kinematics model is as follows:

x tnð Þ = x t0ð Þ +
ðtn
t0

Vr tð Þ cos θ tð Þ½ �dt,

y tnð Þ = y t0ð Þ +
ðtn
t0

Vr tð Þ sin θ tð Þ½ �dt,

θ tnð Þ = θ t0ð Þ + ω tð ÞΔt,

8>>>>>>><
>>>>>>>:

ð7Þ

where xðtnÞ, yðtnÞ, and θðtnÞ are the position coordinates
and attitude angle coordinates of UAV in world coordinates
at time t and VrðtÞ is the dynamic window (further intro-
duced in the next section).

4.2. UAV Speed Sampling. DWA models the UAV’s obstacle
avoidance problem as an optimization problem with velocity
constraints, including nonholonomic constraints, environ-
mental obstacle constraints, and UAV dynamic constraints.
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Figure 5: Comparison of the standard A∗ and the improved A∗ path planning results. (a) Standard A∗ algorithm. (b) Improved A∗
algorithm.
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The DWA’s velocity vector space diagram is shown in
Figure 6. The abscissa and ordinate represent the UAV
angular velocity (w) and the UAV linear velocity (v). In
accordance, vmax and vmin denote the maximum and mini-
mum linear velocity, whereas wmax and wmin are the maxi-
mum and minimum angular velocities. The whole area is
Vs, the white area (Va) represents the safe area, and Vd is
the UAV speed range considering motor torque limitation
in the control cycle. Finally, Vr is the UAV dynamic window
determined by the intersection of the listed three sets.

According to the UAV speed limit, Vs is the set of the
UAV’s linear velocity and angular velocity fitting within
the maximum dynamic window range:

Vs = v,wð Þ vmin≤v≤vmax,wmin≤w≤wmax

��	 

: ð8Þ

The UAV’s motion trajectory can be subdivided into
several linear or circular motions. In order to ensure the
safety of UAV, under the condition of maximum decelera-
tion, the current speed of UAV shall be able to hover in a
certain accuracy range in the air before encountering obsta-
cles, and the speed shall approach 0. The linear velocity and
angular velocity set Va near obstacles is defined as

Va = v,wð Þ v≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2dist v,wð Þ _vb

p
,w≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2dist v,wð Þ _wb

p���n o
, ð9Þ

where _vb is the UAV’s maximum linear deceleration, _wb is
the UAV’s maximum angular deceleration, and distðv,wÞ
is the shortest distance between the path and the obstacle.

The UAV motor torque’s limitations influence the max-
imum and minimum attainable velocities v and w in a cer-
tain time t. Thus, the dynamic window needs to be further
reduced. Given the current linear velocity vc and angular
velocity wc, the dynamic window Vd at the next period
meets the following requirements:

Vd = v,wð Þ vc− _vbΔt≤v≤vc+ _vaΔt,wc− _wbΔt≤w≤ _waΔt

��	 

, ð10Þ

where _va is the UAV’s maximum linear acceleration and _wa
is the UAV’s maximum angular acceleration.

The final speed range is the set at the intersection of the
three discussed sets, and the dynamic window Vr is defined
as follows:

Vr = Vs ∩Va ∩Vd: ð11Þ

The continuous velocity vector space (Vr) is discretized
based on the number of linear velocity and angular velocity
samples to obtain the discrete sampling points (v,w). For
each sampling point, the UAV motion trajectory at the next
moment is predicted using the UAV kinematics model (see
Figure 7).

4.3. Adaptive DWA Algorithm. DWA controls the speed
using the weight coefficient (β) in the speed evaluation sub-
function. If β is too large, the UAV is very fast, but the safety
is reduced. In contrast, if β is too small, the UAV’s speed is
insufficient, but the safety is very high. Considering the rela-

tionship between UAV safety and speed, the improved
DWA algorithm adaptively calculates the speed evaluation
function’s weight coefficient while relying on environmental
information. The UAV’s sensors are utilized to collect
environmental information. The obstacle density and the
distance between the UAV and the obstacles in the environ-
ment are used to calculate the speed evaluation function’s
weight coefficient. The weight coefficient is adjusted to
achieve higher speed in safe areas, whereas the speed is
reduced in dangerous areas to enhance UAV flight safety.

4.3.1. Safety Threshold for Obstacle Detection. The distance L
between different obstacles is calculated using the distance
and angle between obstacles and the UAV. The specific cal-
culation formula is as follows:4

L =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2
i +D2

j − 2DiDj cos θð Þ
q

, Di ≤Dj, ð12Þ

where Di and Dj are the distances between i-th and j-th
obstacles and the UAV and θ is the angle between the
UAV and the obstacles.

The distance between different obstacles serves to judge
whether the UAV can pass through the obstacles. When L
equals more than twice the two obstacles’ expansion dis-
tance, the UAV can pass between the obstacles.

4.3.2. Adaptive Function Calculation. The UAV safety
depends on the shortest distance between the UAV and
the obstacle (denoted Dmin), which serves as the input for
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Figure 6: Schematic diagram of the velocity vector space.
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Figure 7: UAV trajectory prediction.
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the adaptive dynamic function. The threshold Dl is defined
as

Dl = n ⋅
vmax
_v

� �
, ð13Þ

where vmax is the UAV’s highest speed, _v is the UAV’s linear
acceleration, and n is the parameter. Dl is directly propor-
tional to the maximum speed vmax and inversely propor-
tional to the linear acceleration _v. Thus, the stronger the
UAV’s braking force, the smaller the threshold. The faster
the speed, the larger the threshold, ensuring the UAV’s
safety.

The relationship between the speed evaluation function’s
weight coefficient βr and input Dmin is as follows:

βr = β0‐ηeDmin/Ds , Dmin ≤Ds, β0,Dmin >Ds

	
: ð14Þ

If the UAV flight is within the safety threshold (i.e. the
shortest distance Dmin between the UAV and the obstacle
is less than the UAV safety threshold, the UAV flight speed
was reduced (according to the nature of exponential func-
tion). If the UAV flies outside the safety threshold (i.e., the
shortest distance Dmin between the UAV and obstacles is
greater than the UAV safety threshold), the UAV flight
speed is set according to the maximum speed weight, as
shown in equation (14).

β0 is the maximum speed weight, Ds is the safety thresh-
old, and η is the adjustment parameter. When Ds is greater
than Dmin, the speed weight increases monotonically with
the input Dmin, i.e., βr = β0. When Ds is less than Dmin, the
speed weight is an exponential function of Ds and Dmin. As
the ratio of Dmin and Ds decreases, βr increases. Otherwise,
if Dmin/Ds increases, βr decreases.

4.3.3. Improved Evaluation Function. The standard DWA
algorithm does not refer to the UAV’s global path but only
plans the target points. Moreover, in the case of numerous
obstacles, the process easily falls into a local optimum, yield-
ing a larger path distance. The distðv,wÞ weight in the
evaluation function moves the UAV trajectory away from
obstacles, resulting in a locally optimal trajectory and
increasing the global moving distance. If the corresponding
weighting coefficient (γ) is directly reduced, the UAV faced
with the unknown obstacles cannot avoid them in time,
leading to the collision.

To solve the described problems, the azimuth evaluation
function headingðv,wÞ is designed, which integrates the
global path’s nodes. Let velðv,wÞ denote the evaluation func-
tion of the current simulation speed. Two different obstacle
evaluation functions, dist sðv,wÞ and dist dðv,wÞ, are
designed. dist sðv,wÞ is defined as the evaluation function
for predicting the shortest distance between the end point
of the trajectory and the globally known obstacle. Similarly,
dist dðv,wÞ is the evaluation function for predicting the
shortest distance between the end point of the trajectory
and the unknown obstacle. The trajectory evaluation func-
tion is as follows:

G v,wð Þ = α ⋅ heading v,wð Þ + βr ⋅ vel v,wð Þ + γ ⋅ dist s vwð Þ
+ λ ⋅ dist d v,wð Þ,

ð15Þ

where α, βr, γ, and λ are the coefficients of the four evaluations.

5. Fusion Algorithm

This work combines global and local path planning. The key
nodes on the global path are regarded as the subtarget points
of the local dynamic path to ensure the dynamic path plan-
ning’s global optimality. The global path planning is carried
out on the known map. The UAV’s trajectory information in
the next period is calculated based on the UAV’s current lin-
ear speed and angular speed. Each UAV trajectory is pre-
dicted using the evaluation criteria, and the unreasonable
trajectories or those where an obstacle is encountered are

Start

Global path planning

Extract the critical path
nodes

Local path planning

Improved A⁎ algorithm

Track prediction

The optimal trajectory

Improved dynamic
window algorithm

Path finding
success

Figure 8: The fusion algorithm’s flowchart.
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Figure 9: The initial UAV airspace environment.
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discarded. The path evaluation subfunction evaluates a cer-
tain path, and the evaluation values are accumulated. The
trajectory with the lowest cost is deemed as the optimal tra-
jectory. If the current optimal trajectory is passable, the
UAV moves with the speed corresponding to the optimal
trajectory. The UAV avoids the encountered obstacles based
on the obstacle avoidance rules. The flowchart of the
improved algorithm is shown in Figure 8.

6. Simulation Experiment and Analysis

6.1. Experiment Environment. The main simulation environ-
ment consisted of an Intel (R) Core I i5-8265U CPU
@1.60GHz, Windows10, and the simulations were con-
ducted in MATLAB. A 50 km × 50 km path planning area
and the corresponding grid map were established to verify
the algorithm’s effectiveness. The UAV’s maximum turning

Table 1: Path planning results when the obstacles are known.

Algorithm Path length (km) Time (s) Speed increase rate

Improved A∗ algorithm 73.9423 0.2405

Standard DWA algorithm 77.8257 3427.267
31.6%

Fusion of the improved A∗ and DWA algorithms 75.6582 2531.638

Table 2: Path planning results when the obstacles are unknown.

Algorithm Path length (km) Time (s) Speed increase rate

Improved A∗ algorithm 73.9423 0.2405

Standard DWA algorithm 78.5025 3023.206
34.2%

Fusion of the improved A∗ and DWA algorithms 76.5843 1942.824
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Figure 10: Comparison of the path planning algorithms on known maps. (a) Improved A∗ algorithm. (b) Standard DWA algorithm. (c)
Fusion of improved A∗ and DWA algorithms.
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angle was assumed to equal π/4. In the simulation, the grid
granularity was set so that N = 1 km, the safety threshold
equaled 0.8 km, and the UAV’s starting and ending coordi-
nates were (0.5, 0.5) and (49.5, 49.5). The UAV’s flight envi-
ronment is obtained by grid processing of arc obstacles and
convex processing of concave obstacles. The UAV’s initial
airspace is shown in Figure 9.

6.2. Simulation Studies on Path Planning with Known and
Unknown Obstacles

6.2.1. Path Planning in the Initial Airspace Environment. The
simulation experiment compared the improved A∗ algo-
rithm, the standard DWA algorithm, and the fusion of A∗
and DWA algorithms to obtain the planning time and the
resulting path’s length. The results are shown in Table 1.

The simulation results (Table 2 and Figure 10) demon-
strate that the improved A∗ algorithm plans a globally opti-
mal path. Compared with the improved A∗ algorithm, the
path planned using the standard DWA algorithm is
smoother but not globally optimal. Further, the planned
path is not based on the planned global path, meaning there
are several redundant paths. In Figure 10(c), the DWA algo-

rithm combines the global path planning and considers the
environmental information during the UAV’s flight. Conse-
quently, the weight coefficient of the speed evaluation
subfunction is adaptively adjusted, effectively reducing the
UAV path planning time. Simultaneously, the obstacles are
distinguished to reduce the impact of the known obstacles
on the evaluation function, and the planned path is short
and close to the global planning path.

According to Table 1, the length of the path planned
using the fusion of improved A∗ and DWA algorithm is
reduced by 2.8% compared to that obtained via the standard
DWA algorithm. Further, the planning time is reduced by
26.3%, and the average UAV’s flight speed is increased by
31.6%.

6.2.2. Path Planning When Obstacles Are Unknown. To ver-
ify the proposed algorithm’s path planning performance in
an unknown environment, obstacles are temporarily set on
the path planned by the UAV. The gray box represents the
unknown obstacles (see Figure 11). As can be seen from
Figure 11, the improved A∗ algorithm cannot yield a path
avoiding the unknown obstacle. The standard DWA algo-
rithm successfully avoids the obstacles, but the UAV only
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Figure 11: Comparison of the path planning algorithms on an unknown map. (a) Improved A∗ algorithm. (b) Standard DWA algorithm.
(c) Fusion of improved A∗ and DWA algorithm.
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starts to bypass the obstacles when near them, enhancing the
probability of a collision. In the case depicted in
Figure 11(b), the UAV cannot fly along the initially planned
global path, and there are many redundant paths, increasing
the UAV’s flight distance. By combining the improved A∗
algorithm and DWA algorithm, the local path planning
can be realized, and the unknown obstacles can be avoided
effectively. The local path is similar to the global path, prov-
ing that a smooth and safe path can be obtained.

Similar to the experiment reported in Section 6.2.1, the
simulation experiment compared the improved A∗ algo-

rithm, the standard DWA algorithm, and the fusion of A∗
and DWA algorithms. The obtained path planning time
and the path length are shown in Table 2.

As seen in Table 2, the improved A∗ and DWA algo-
rithm reduces the planned path’s length by 2.4% compared
with the standard DWA algorithm. Further, the planning
time decreases by 35.7%, whereas the average UAV’s flight
speed increases by 34.2%.

Next, environmental maps of different sizes were created
to obtain environments of different complexity. The map
ranges were set to 10 ∗ 10, 20 ∗ 20, 30 ∗ 30, 40 ∗ 40, and
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50 ∗ 50. The shortest path length and path planning time
under different environmental maps were extracted
(Figures 12 and 13).

As shown in Figure 12, the increase in map size results in
an increase in the UAV’s flight path. Compared with the
standard DWA algorithm, the average path planned by the
fusion of the improved A∗ and DWA algorithms is reduced
by 4.22%. The advantages of the improved A∗ and DWA
algorithm become more pronounced with the increase in
map size. Figure 13 shows that the path planning time of
the fused improved A∗ and DWA algorithms is significantly
shorter than that of the standard DWA. In addition, the
increase in map size highlights the advantages of the pro-
posed improved A∗ and DWA algorithm, signaling that
the algorithm is more conducive to the UAV’s path planning
in a wide range.

7. Conclusion

This work alleviates the shortcomings in terms of smooth-
ness and security of the path planned using the standard
A∗ algorithm and tackles the problem of the standard
DWA algorithm regarding its proneness to falling into a
local optimum. The paper proposes a path planning algo-
rithm that combines the improved A∗ algorithm and the
DWA algorithm, leveraging the two algorithms’ advantages
and reducing their limitations. The main conclusions are
as follows:

(1) Through grid modeling of an irregular map, this
work establishes grid processing of arc obstacles
and convex processing of concave obstacles

(2) Environment information and motion constraints
are utilized to improve the A∗ algorithm. When
compared to the standard A∗ algorithm, the path
planned by the improved A∗ algorithm is smoother,
and the UAV’s motion safety is guaranteed

(3) An adaptive DWA is designed to dynamically adjust
the path evaluation function using the safety thresh-
old, UAV information, and environmental informa-
tion regarding the obstacles

(4) The key nodes in the global path planned by the
improved A∗ algorithm serve as the subtargets for
the local path planning. Such a design ensures the
optimal global path and improves the UAV’s real-
time path planning efficiency and safety

(5) The experimental results show that the path
planning based on the fusion of improved A∗ and
DWA algorithms effectively reduces the path length,
shortens the UAV’s path planning time, and
improves both the path smoothness and the safety
of the local obstacle avoidance
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