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The advantages of the Low Earth Orbit (LEO) satellite include low-latency communications, shorter positioning time, higher
positioning accuracy, and lower launching, building, and maintenance costs. Thus, the introduction of LEO satellite
constellation as a regional navigation augmentation system for the current navigation constellations is studied in this paper. To
achieve the navigation performance requirement with the least system cost, a synthetic approach is presented to design and
deploy a cost-efficient LEO navigation augmentation constellation over 108 key cities. To achieve lower construction costs, the
constellation is designed to be deployed by constrained piggyback launches, which brings additional complexity to the
constellation design. Two optimization models with discrete and continuous performance indices are established. They are
solved by the genetic algorithm and differential evolution algorithm, and both Walker and Flower constellations are adopted.
Results for 77 and 70 satellites are obtained. During the construction phase, a synthesis procedure containing five impulses is
proposed by utilizing natural drift under J2 perturbation. This work presents a method for designing the optimal LEO
navigation constellation under a constraint deployment approach with the lowest construction cost and a strategy to deploy
the constellation economically.

1. Introduction

Navigation constellation design has received interest for
years. Most existing navigation constellations are deployed
in Medium Earth orbits and geosynchronous Earth orbits,
such as Global Positioning System (GPS), Global Navigation
Satellite System (GLONASS), and GALILEO constellations
(the orbital data is obtained from http://delestrak.com).
Resent research presents that a Low Earth Orbit (LEO) satel-
lite constellation provides a significant advantage over a geo-
stationary (GEO) satellite in terms of low-latency
communications, shorter positioning time, higher position-
ing accuracy, and lower launching, building, and mainte-
nance costs [1–3]. Thus, introducing Low Earth Orbit
(LEO) constellation for navigation augmentation can reduce
the cost of mission, shorten the position time, and improve
the positioning accuracy. Therefore, LEO navigation aug-
mentation has attracted a great deal of research interest.

There has been much deep investigation focusing on
LEO constellation design, and various constellation design
techniques have been proposed, such as streets of coverage
(SOC) [4], the Walker constellation theory [5, 6], and the
Flower constellation theory [7]. In the Walker constellation,
the orbital parameters are dependent on one another in a
particular way, thereby reducing the complexity. The Walker
technique provides the most symmetric geometry among all
constellation design techniques. Thus, it is most suitable for
navigation systems that are related to global coverage. To
facilitate the use of on-orbit active spares, Patterson further
developed the Walker theory and then proposed the Telede-
sic model, in which phasing between satellites in adjacent
planes is not required [8]. Moreover, Palmade et al. com-
bined two identical Walker constellations and proposed the
SkyBridge constellation, in which the architecture of the
constellation is made of 64 satellites distributed in two sub-
constellations shifted by -10° in the longitude of the
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ascending node and +14° in mean anomaly. This configura-
tion offers better coverage performance with fewer satellites
[9]. The Flower constellation theory [7, 10] was initially pro-
posed as an alternative design strategy to the previous the-
ory. By removing some design constraints, Flower
constellations have been demonstrated to have better navi-
gation performance than the existing GPS, GLONASS, and
GALILEO using the same numbers of satellites or achieve
the same performance using fewer satellites [11–13]. In
recent years, this theory has also been applied to the constel-
lation design problem domains including navigation, Earth
observation space-based systems, regional coverage, and
reconnaissance [14]. Remarkably, Lee and Ho presented an
approach to design the Flower constellation patterns for
regional coverage with predefined seed-satellite elements
[15, 16]. In this paper, a design strategy for full constellations
is presented, which consists the seed-satellite elements and
configuration parameters under constrained deployment
approaches.

In addition to the constellation design, optimized
deployment can significantly reduce the system cost.
Budianto and Olds noted that the cost can be decreased by
collaboratively optimizing the configuration, orbit design,
spacecraft design, and launch manifest [17]. Furthermore,
de Weck et al. presented an approach for deploying a con-
stellation progressively and finding the best reconfigurable
constellations within a given design space during deploy-
ment, thereby obtaining significant economic benefits [18].
Additionally, Lee et al. proposed a design method to opti-
mize a multistage configuration for multiple possible scenar-
ios with minimal lifecycle cost [19]. In addition, GMV
analyzed the possible strategies for most of the fundamental
phases of the constellation life cycle, including constellation
launch, setup, replacement of failed satellites, and end-of-life
policy [20]. The authors suggested that orbit transfer can be
performed by taking advantage of the secular drift of the
right ascension of the ascending node (RAAN) due to the
J2-term of the terrestrial gravitational potential. This effect
can be used to create a relative precession motion between
two orbital planes to obtain the desired RAAN separation.
This strategy allows the amount of fuel allocated to the orbit
transfer to be reduced since it avoids out-of-plane maneu-
vers that are generally expensive.

Based on Problem B of the 9th China Trajectory Optimi-
zation Competition (CTOC9 B) [21], several researchers
made efforts to design a suitable constellation configuration
and optimize the construction cost to satisfy the required
navigation performance for selected key cities in China. This
paper presents a synthetic approach to design and deploy a
cost-efficient LEO regional navigation augmentation con-
stellation. For the constellation design, in previous, the effec-
tiveness of navigation constellation is generally considered a
discrete index [15, 16, 21]. In this paper, an optimization
model with a continuous performance index is developed
to replace the discrete performance index and improve con-
vergence. To validate this model, the Walker constellation
and the Flower constellation are employed, and constella-
tions that achieve the navigation performance requirement
with fewer satellites are obtained. For the constellation

deployment under predefined mission duration and limited
fuel, a five-impulse transfer strategy is proposed to save fuel.
A small tangential impulse at the start of the construction
phase is applied to adjust the initial state of the satellite to
achieve the proper phase after a period of natural drift.
Moreover, an entire optimization procedure for the transfer
process is presented. Overall, our investigation provides a
method to design the optimal LEO navigation constellation
under a constraint deployment approach with the fewest satel-
lites and a strategy to deploy the constellation economically.

2. Background

2.1. Problem Description. Problem B of the 9th CTOC [21]
focuses on the design and deployment of a regional augmen-
tation system offering navigation services to 108 key cities in
China. The goal is to design a suitable constellation configu-
ration and optimize the navigation performance of key cities
under the conditions of limited construction costs.

Figure 1 shows the positions of 108 key cities in China.
Additionally, 100 available piggyback launches are provided;
detailed information can be found in [21]. The constellation
design process can be divided into two phases: construction
and service. The construction phase is from Modified Julian
Day 2000 (MJD2000) 7305 to 7396. During the construction
phase, the navigation constellation can be constructed by
new launches or piggyback launches. In the first approach,
the distributer carries at most 16 navigation satellites and
is located in a circular parking orbit with an altitude of
900 km. In the second approach, the distributer carries at
most 8 navigation satellites and is located in any orbit of
the piggyback launches. After that, for the two deployment
methods stated above, the navigation satellites are separated
from the distributer and are transferred to target orbits with
chemical propulsion. If an elliptical orbit is employed, a crit-
ical inclination orbit at approximately 63.4° should be
adopted. At MJD2000 = 7396, the constellation construction
ends, and the service phase begins. The constellation service
phase starts at MJD2000 = 7396. Then, the navigation per-
formance of the constellation for all cities is evaluated on
the 1st, 7th, and 30th days (i.e., MJD2000 = 7396 to 7397,
MJD2000 = 7402 to 7403, and MJD2000 = 7425 to 7426)
with a fixed interval Δt = 120 s.

The primary index Obj1 is aimed at maximizing the total
navigation revenue of all key cities:

Obj1 = max 〠
K

k=1
δkwk

 !

δk =
1, ifmax GDOPk,lð Þ < 10
0, ifmax GDOPk,lð Þ > 10

, l = 1, 2,⋯, L ; k = 1, 2,⋯, K ,
(

ð1Þ

where δk is a 0-1 variable, which is used to measure whether
the kth city can meet the navigation accuracy requirements,
and wk is the weight of the kth city. GDOPk,l is the geometric
dilution of precision (GDOP) of the kth city at the lth sam-
pling point. Ideally, if the GDOP values of all the cities at all
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sampling points are below 10, Obj1 is equal to 229, which is
the maximum value of Obj1. The secondary index Obj2 is
aimed at minimizing the entire cost of constellation con-
struction. The construction phase is from MJD2000 = 7305
to 7396. During this phase, the navigation constellation can
be constructed by new launches or piggyback launches.

Obj2 = min N launchClaunch +NcarryCcarry +NnaviSatCnaviSat
� �

,
ð2Þ

where N launch, Ncarry, and NnaviSat are the number of new
launches, the number of piggyback launches, and the num-
ber of navigation satellites in the constellation, respectively.
Claunch = 1:2, Ccarry = 0:2, and CnaviSat = 0:05 are the cost of
a new launch, the cost of a piggyback launch, and the cost
of a navigation satellite, respectively, denoted in monetary
units.

During the construction and service phases, Earth’s cen-
tral gravitational field and the J2 perturbation are consid-
ered. The dynamic models are described as follows:
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ð3Þ

where μ is the gravitational constant of the Earth, x, y, z are
the position components of the satellite in the Earth-
centered inertial (ECI) coordinate system, r =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2 + z2

p
is the geocentric distance, Re is the equatorial radius, and
J2 is the Earth oblateness gravity coefficient.

During the service phase, mean orbital elements are
implemented to propagate the constellation and evaluate
the GDOP. The dynamic models of mean elements under
J2 perturbation are described as follows:

_a = 0
_e = 0

inc = 0

_Ω = −
3AnJ2

2 1 − e2ð Þ2
Re

a

� �2
cos i

_ω = 3AnJ2
4 1 − e2ð Þ2

Re

a

� �2
5 cos2i − 1
� �

_M = 3AnJ2
4 1 − e2ð Þ3/2

Re

a

� �2
3 cos2i − 1
� �

,

ð4Þ

where a is the semimajor axis, e is the eccentricity, inc is the
inclination, Ω denotes the RAAN, ω denotes the argument
of the perigee, M denotes the mean anomaly, and An =ffiffiffiffiffiffiffiffiffi

μ/a3
p

is the mean motion of the orbit. When Ω0, ω0, and
M0 are given at t0, the elements at time t can be calculated
by

Ω =Ω0 + _Ω t − t0ð Þ
ω = ω0 + _ω t − t0ð Þ
M =M0 + An + _M

� �
t − t0ð Þ:

ð5Þ

During the construction phase, the satellites are pro-
pelled by a chemical engine, and the residual mass mf after
an impulse is given by

mf =mi exp
−Δv
Ispg0

 !
, ð6Þ
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Figure 1: Locations of the 108 key cities.
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where mi is the satellite mass before the impulse, Δv is the
magnitude of the velocity impulse, Isp is the specific impulse,
and g0 is the gravitational acceleration at sea level. All the
parameters are set according to [21].

2.2. Walker Constellation Theory. Based on the contributions
of Walker [5, 6], a Walker constellation includes the star pat-
tern, δ pattern, σ pattern, omega pattern, and rosette pat-
tern. The σ pattern and rosette pattern are individual cases
of Walker-δ patterns. Among all of these patterns, the
Walker-δ pattern is the most widely used. According to the
problem, if an elliptical orbit is employed, a critical inclina-
tion orbit should be adopted (63.4° for a prograde orbit;
116.6° for a retrograde orbit); however, there are few piggy-
back missions around this critical inclination, which can
lead to difficulties in deployment. Thus, our work is based
on a circular Walker constellation. The Walker constellation
below refers to the Walker-δ pattern. The Walker-δ pattern
consists of a group of satellites that share the same orbit
radius and inclination, and these satellites are distributed
evenly in several orbital planes. Walker developed a notation
that is commonly used as a starting point for constellation
design for labeling the orbits, and the Walker-δ pattern
can be identified by T/P/F, where T is the total number of
satellites, P is the total number of orbital planes, and F is
the relative spacing between satellites in adjacent planes,
which may assume any value between 0 and ðP − 1Þ. The
number of satellites per plane, N , is given as N = T/P. The
ascending nodes of all orbital planes are distributed evenly
around the equator at intervals of 360°/P. Within each
orbital plane, the N satellites are distributed at intervals of
360°/N . The only remaining issue is the relative phase
between satellites in adjacent orbital planes. To identify this,
Walker defined the phase difference (DF) in a constellation
as the angle of the direction of motion from the ascending
node of a satellite in one place to the nearest satellite in the
next most westerly plane. The relative angular shift between
satellites in adjacent orbital planes is equal to F · ð360°/TÞ.
The relevant equations are as follows:

Ωij 0ð Þ =Ω0 + i − 1ð Þ 2π
P

Mij 0ð Þ =M0 + i − 1ð Þ · F · 2π
T

+ j − 1ð Þ · P · 2π
T

,
ð7Þ

where i = 1, 2,⋯, P ; j = 1, 2,⋯,N , and Ω0, ω0 are the initial
RAAN and the initial mean anomaly of the starting point,
respectively. Ωijð0Þ and Mijð0Þ are the RAAN and mean
anomaly, respectively, of the jth satellite in the ith orbital
plane at the initial time t = 0. Thus, a specific Walker-δ pat-
tern can be uniquely determined by 7 parameters: orbital
radius a, inclination inc, total number of satellites T , number
of orbital planes P, initial RAAN value, and mean anomaly
value of the starting point Ω0 and M0, and phase factor F.

In this work, a quasi-Walker constellation model is
established, which is a circular Walker-δ pattern that is dis-
tributed in a restricted region. The satellites are evenly
deployed into several orbital planes with a certain separation

angle in the RAAN between adjacent orbital planes instead
of the orbital planes being evenly distributed around the
equator. Therefore, a quasi-Walker constellation can be
uniquely defined by

Satij t0ð Þ = a, 0, inc,Ωij t0ð Þ, 0,Mij t0ð Þ� �
Ωij t0ð Þ =Ω00 + i − 1ð Þ ΔΩ

P

Mij t0ð Þ =M00 + i − 1ð Þ · F · ΔΩ

T
+ j − 1ð Þ · P · 2π

T
,

ð8Þ

where Satijðt0Þ, Ωijðt0Þ, and Mijðt0Þ denote the Kepler orbit
elements, the RAAN, and the mean anomaly of the jth satel-
lite in the ith orbital plane at the initial time t = t0, i = 1, 2,
⋯, P, j = 1, 2,⋯,N . In this work, t0 = MJD2000 = 7396. P,
N , a, inc,Ω00, ΔΩ, and F denote the number of orbit planes,
number of satellites in each plane, orbit radius, inclination,
initial RAAN of the starting point, RAAN span of the con-
stellation, and phase factor, respectively. In the typical
Walker-δ pattern, the phase factor F is set to an integer
value. In this work, F is defined as a continuous variable,
which can enlarge the search space significantly and contrib-
ute to a better solution.

2.3. Flower Constellation Theory. The Flower constellation
[7] is built by satellites that follow the same relative trajec-
tory in the Earth-centered Earth-fixed (ECEF) coordinate
system, so the orbits in a Flower constellation yield a per-
fectly repeated ground track. According to the above analy-
sis, circular restricted Flower constellations [7] are adopted
in this work. A circular Flower constellation can be identi-
fied by the following parameters: the number of petals Np,
number of sidereal days to repeat the ground track Nd , num-
ber of satellites Ns, phasing parameters Ω00, ΔΩ,M00, orbital
radius a, and orbit inclination inc (a and inc are orbit
parameters and equal for all satellites). To obtain a repeating
ground track, which will repeat after the satellite completes
Np revolutions over Nd days, the following relationship is
required

NpTΩ =NdTΩG, ð9Þ

where TΩ and TΩG are the nodal period of the orbit and
nodal period of Greenwich, respectively. In this paper, Nd
is set to 1 according to the mission requirements. The orbits
in a Flower constellation can be defined by the following
equations [7]:

Sati t0ð Þ = a, 0, inc,Ωi t0ð Þ, 0,Mi t0ð Þ½ �

Ωi t0ð Þ =Ω00 + i − 1ð Þ ΔΩ

Np − 1

Mi t0ð Þ =M00 − i − 1ð Þ · n + _M0
ωE + _Ω

 !
· ΔΩ

Np − 1 ,

ð10Þ
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where

_Ω = −2ξn cos inc
_M0 = −ξn 3 sin2inc − 2

� �
ξ = 3R2

e J2
4p2 ,

ð11Þ

where Satiðt0Þ, Ωiðt0Þ, and Miðt0Þ are the Kepler orbit ele-
ments, RAAN, and mean anomaly of the ith satellite at the
initial time t = t0, i = 1, 2,⋯,Np; a, inc,Ω00, ΔΩ, and M00
are the orbit radius, inclination, initial RAAN of the starting
point, RAAN span of the constellation, and mean anomaly
of the starting point, respectively; n =

ffiffiffiffiffiffiffiffiffi
μ/a3

p
is the mean

motion; ωE is the Earth spin rate.

3. Problem Analysis

The deployment of a constellation with constrained piggy-
back launches brings additional complexity to the constella-

tion design. The search space should be reduced in the
optimization of the constellation configuration to ensure
that the constellation can be constructed by piggyback
launches.

3.1. Constraint on Inclination. Specifically, to reduce the fuel
consumption of the satellites, the inclination of the constel-
lation is expected to be equal to that of some piggyback
launches. Thus, the inclinations of the given 100 piggyback
launches are rounded to the nearest whole number and
counted in Figure 2. As Figure 2 shows, among the 100 pig-
gyback launches, the number of those inclined at angles of
approximately 74°, 84°, and 98° with respect to the equator
is the three largest.

Figure 3 shows how the primary index Obj1 changes
with increasing inclination. Four configurations are used
for the experiments, which differ only in the orbit radius.
Their basic configuration is 100/20/1, e = 0,Ω00 = 0,M00 = 0
, and the span of the RAAN ΔΩ is set to 360°. The results
are shown in Table 1 and Figure 3. The maximum inclina-
tion for the best Obj1 value increases with increasing orbit
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radius, and the Obj1 value decreases rapidly with an increase
in the inclination when it is larger than the maximum incli-
nation for the best Obj1 value. Additionally, the range of the
optimal inclinations grows broader with increasing orbit
radius. Notably, the configuration with an orbital radius of
9250 km provides high-grade navigation performance at
approximately 72°, while the other configurations that have
lower orbital heights cannot achieve the maximum Obj1 at
that angle. That is, if high-grade navigation performance is
expected at a high inclination, the orbit radius should be suf-
ficiently large. Therefore, 74° is chosen as the fundamental
inclination in designing constellations, and the piggyback
launches whose inclinations can be rounded to 74° are con-
sidered the candidate piggyback launches.

3.2. Constraints on Orbital Height. The coplanar maneuver-
ability of the satellite restricts the orbital height of the con-
stellation. Based on the Hohmann transfer theory, the
reachable maximum orbit radii of the candidate piggyback
launches are estimated, assuming that all fuel is consumed
to increase the height. The results are shown in Table 2.
Detailed information of the piggyback launches, including
the mission indices and orbital elements, can be found in

[21]. The values of the reachable maximum orbit radii of
these piggyback launches are approximately 9400-9500 km
except for mission 3 and mission 32. This range of values
is used as the boundary for the search space of the orbit
radius.

3.3. Constraints on RAANs. For the distribution of orbital
planes, Ulybyshev developed a method to analyze the cover-
age requirements of satellite constellations [22, 23]. For a
satellite located at orbital altitude h, the projection of its
footprint onto Earth’s surface defines a circle of coverage
with angle Θ as follows:

Θ = cos−1 Re

Re + h
cos ϵ

� �
− ϵ ð12Þ

where ϵ denotes the minimum elevation angle, which is set
to 10° in this problem. Ulybyshev defined a two-
dimensional space associated with the satellite: the x axis is
the RAAN, and the y axis is time. The visibility conditions
for the satellite in this space can be represented by a polygon
of boundary points. Figure 4 shows a map of coverage poly-
gons for the 108 key cities, which are associated with the sat-
ellite at a = 9450 km, inc = 74°. Therefore, the satellites
should be distributed in the span of the RAANs at 60°-350°.

Furthermore, the boundary of the RAANs of the orbital
planes is also constrained within the RAAN drift range of
the candidate piggyback launches, as the RAAN difference
can be minimized with J2 perturbation during construction.
The RAAN drift range of each candidate piggyback launch
during the construction phase is evaluated by Equation (5).
The analysis results are shown in Figure 5. Each horizontal
line segment represents the RAAN drift range of the corre-
sponding piggyback launch during the construction phase,
and the corresponding mission indices are labeled above
the line segments. Detailed information of the piggyback
launches, including the mission indices and orbital elements,
can be found in [21]. The RAAN drift range of each orbit is
approximately 60°, and an orbital plane at an RAAN of 100-
380° can be covered by multiple piggyback launches. Thus,
the initial RAAN value of the starting point Ω00 is set to
100-160°, and the orbital planes are expected to be distrib-
uted in Ω ∈ ð100°, 375°Þ. Therefore, the span of the RAAN
ΔΩ is set to ½120°, ð255° −Ω00Þ�.

4. Configuration Optimization

In this section, two optimization models for the constellation
configuration design are constructed, taking discrete and

Table 1: Navigation performance of the four configurations.

Constellation index Orbit radius (km)
Minimum inclination for the best

Obj1 value (deg)
Maximum inclination for the best

Obj1 value (deg)
1 8500 57 57

2 8750 41 68

3 9000 40 64

4 9250 38 72

Table 2: Maximum orbit radius estimations of the piggyback
launches that are inclined at angles of approximately 74°.

Mission
index

Orbit radius
(km)

Inclination
(deg)

Maximum orbit
radius (km)

13 7802.489484 73.98400001 9462.087485

92 7818.911117 74.00040001 9484.031118

44 7845.741149 74.00220002 9519.899150

98 7822.795266 74.00620001 9489.222267

10 7864.360174 74.00670003 9544.800175

53 7859.111068 74.00869999 9537.779069

33 7850.459563 74.01220002 9526.208564

61 7861.005309 74.01260000 9540.313310

75 7828.742114 74.01509999 9497.172115

48 7831.935530 74.01590001 9501.440531

30 7824.724115 74.01900000 9491.801116

8 7850.098940 74.02849998 9525.725941

47 7818.776592 74.02909998 9483.851593

82 7822.145265 74.03459998 9488.354266

3 7157.951397 74.03909999 8606.443398

32 7159.343825 74.03909999 8608.279826

6 7762.008920 74.04399998 9408.024921
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continuous performance indices. The genetic algorithm
(GA) [17] is a stochastic optimization technique inspired
by the evolution of living beings. The differential evolution
algorithm (DE) [18] is a simple population-based, stochastic,
and powerful function minimizer. Both algorithms are
widely used global approaches to global numerical optimiza-
tion. In this section, they are applied to solve the constella-
tion design problem.

4.1. Optimization Model with Discrete Object. In this model,
the inclination of the constellation inc is set to 74°, and the
mean anomaly of the starting point M0 is set to 0. Thus,
the quasi-Walker constellation configuration can be defined
by Equation (8) in terms of x = fP,N , a,Ω00, ΔΩ, Fg. Then,
the performance index takes the form of the negative of Obj1
and can be calculated by Equation (1) with the predefined
data of the 108 cities. The optimization model can be repre-
sented by

find x = P,N , a,Ω0, ΔΩ, Ff g
min JD xð Þ = −Obj1
s:t:xL < x < xU :

8>><
>>: ð13Þ

GA [24] is one of the most widely used evolutionary
algorithms. The mechanisms that govern the evolution are
natural selection, reproduction, and mutation, which guar-
antee a robust convergence to a global numerical optimiza-
tion. In this section, GA is employed to solve Equation
(13) under the constraints on the design variables in
Table 3. Among the design variables, P and N are integer
variables, and N is set to be N ≤ 8 because the distributer
can carry at most 8 navigation satellites. The integer vari-
ables P and N are estimated by experience and then reduced
gradually until there is no convergence. The parameters in
GA are set as follows. The population size and maximum
number of generations are set to 100 and 50, respectively.
In detail, the crossover probability and mutation probability
are 0.8 and 0.2, respectively.

With the GA, a circular Walker constellation is obtained,
which is a quasi-Walker constellation that consists of 77 sat-
ellites distributed evenly in 11 orbit planes; a = 9337:001 km,
inc = 74°, ΔΩ = 202:924°,Ω00 = 105:311°, F = 5:914: This is
a 77/11/5.914 quasi-Walker constellation. Seven orbital
planes with a 20.29° separation angle in the RAAN are dis-
tributed evenly in the RAAN span of 105.31°-308.23°. With
this constellation, the maximum primary index (Obj1 = 229)
is obtained with the fewest satellites, which contributes to a
system cost of Obj2 = 5:85. Figure 6 shows the configuration
of the optimized constellation in ECI frames.

4.2. Optimization Model with Continuous Object. An
improved optimization model with a continuous perfor-
mance index is established here and adopted with two
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Figure 4: Coverage polygons for the 108 key cities, a = 9450 km, inc = 74°.
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Figure 5: Accessible RAAN range of the piggyback launches that
are inclined at angles of approximately 74° under the J2
perturbation.

Table 3: Constraints on the design variables.

Design variables Lower boundary Upper boundary Unit

P 0 20 —

N 0 8 —

a 9300 9500 Km

Ω00 100 130 Deg

ΔΩ 120 320 Deg

F 0 P − 1 —

7International Journal of Aerospace Engineering



(a)

Figure 6: Continued.

8 International Journal of Aerospace Engineering



constellation configurations. According to Equation (1), the
primary index (Obj1) is evaluated by the GDOP value at
2163 sampling points for each city. Therefore, there are
233,604 (2163 × 108) GDOP sampling values in total. To
maximize the primary index (Obj1), the objective function
in this model, which is to be minimized, can be defined as
the rate of the unqualified sampling values:

JC xð Þ = 1 − num SPGDOP ≤ 10ð Þ
Nt ·Ncity

, ð14Þ

where Nt = 2163 is the number of sampling points of each
city, Ncity = 108 is the number of key cities, and numðS

(b)

Figure 6: 77-satellite Walker constellation, which is the result for the optimization model with discrete object. (a) View from azimuth = 160°
and elevation = 45°; (b) view from azimuth = 110° and elevation = 90°.

Table 4: Constraints on the design variables.

Design variables Lower boundary Upper boundary Unit

P 0 20 —

N 0 8 —

a 9300 9500 km

inc 73.5 75.5 deg

Ω00 100 160 deg

ΔΩ 120 255-Ω00 deg

F 0 P − 1 —

M00 0 360 deg
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Figure 7: Continued.
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PGDOP ≤ 10Þ is the number of qualified sampling values for
which the GDOP values are lower than 10.

DE [25] originated from the Genetic Annealing algo-
rithm and was initially presented to minimize continuous
space functions. Later, as indicated by many studies, it
exhibits better performance on many other problems than
several other evolutionary algorithms [26]. Thus, for this
optimization model with a continuous objective function,
the DE/best/1/bin algorithm [25] is employed. In this sec-
tion, the population size and maximum number of genera-
tions are set to 50 and 500, respectively. In detail, the
scalar control parameter and crossover rate are 0.8 and 0.8,
respectively.

(b)

Figure 7: 70-satellite Walker constellation, which is the result for the optimization model with continuous object. (a) View from
azimuth = 160° and elevation = 45°; (b) view from azimuth = 110° and elevation = 90°.

Table 5: Constraints on the design variables.

Design variables Lower boundary Upper boundary Unit

Np 66 70 —

a 9300 9500 km

inc 73.5 75.5 deg

Ω00 100 160 deg

ΔΩ 120 255-Ω00 deg

M00 0 360 deg
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For a quasi-Walker constellation, the inclination inc of
the quasi-Walker constellation and mean anomaly of the
starting point M0 are listed as the design variables. Thus,
the constellation can be defined by Equation (8) in terms
of x = fP,N , a, inc,Ω00, ΔΩ,M00, Fg, which is the set of
design variables. The constraints on the design variables
are listed in Table 4.

By optimizing Equation (14) under the constraints in
Table 4 with DE, an improved quasi-Walker constellation
of 70 satellites, which are evenly distributed in 7 orbit planes,
is obtained; a = 9486:475 km, inc = 74:359°, ΔΩ = 174:083°,
Ω00 = 100:795°, F = 0:004999, and M00 = 2:272°. Figure 7
shows the configuration of this constellation in ECI frames.

For a restricted Flower constellation, the constellation
can be defined by Equation (10) in terms of x = fNp, a, inc,
Ω00, ΔΩ,M00g, which is the set of design variables. The con-
straints on the design variables are listed in Table 5.

By optimizing Equation (14) under the constraints in
Table 5 with DE, a restricted Flower constellation of 70 sat-
ellites is obtained; a = 9487:106 km, inc = 74:377°, ΔΩ =
219:399°, Ω00 = 100:554°, and M00 = 136:231°. Figure 8
shows the configuration of this constellation in ECI frames.

4.3. Simulation and Analysis. To analyze the navigation per-
formance of the two constellations, the orbits are propagated
on the 1st, 7th, and 30th days (i.e., MJD2000 = 7396 to 7397,

(a) (b)

Figure 8: 70-satellite Flower constellation, which is the result for the optimization model with continuous object. (a) View from azimuth
= 160° and elevation = 45°; (b) view from azimuth = 110° and elevation = 90°.
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Figure 9: Navigation performance of the 77-satellite Walker constellation.
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MJD2000 = 7402 to 7403, and MJD2000 = 7425 to 7426,
respectively), and the time step is set to Δt = 120 s, which
results in 2163 sampling points for each city. Then, the nav-
igation performance for each city is evaluated. The GDOP
values at all sampling points of each constellation are shown
in Figures 9–11. The x scale denotes the sampling points in
three days, so it is separately set to MJD2000 = 7396 to
7397, MJD2000 = 7402 to 7403, and MJD2000 = 7425 to
7426. As these figures show, all GDOP values of the three
constellations are below 10, which indicates that both con-
stellations can provide stable coverage for the target cities.

Among all 108 key cities, Qiqihar (123.95° E, 47.33° N) is
located at the highest latitude, and Sanya (109.50° E, 18.25°

N) is located at the lowest latitude. By taking Qiqihar, Bei-
jing (116.40° E, 39.90° N), and Sanya as examples,
Figures 12–14 show the navigation performance features of
the constellations for high-, middle-, and low-latitude areas,

respectively. As these figures show, the GDOP values period-
ically exhibit variations. The 70-satellite constellations gen-
erate more GDOP values above 6 than the 77-satellite
Walker constellation. Because of the high inclination, these
three constellations show better navigation performance
for higher-latitude areas. Although the three constellations
showed different characteristics in terms of navigation per-
formance, all of them satisfy the requirements of this
regional navigation augmentation mission. Compared to
the original discrete function, this new objective function,
which is an approximate continuous function, effectively
enlarges the convergence range. In addition, the improved
optimization model generates constellations that can satisfy
the navigation augmentation requirement with fewer
satellites.

As indicated by [21, 27], the 77-satellite Walker constel-
lation was ranked first in Problem B of the 9th China
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Figure 10: Navigation performance of the 70-satellite Walker constellation.
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Figure 11: Navigation performance of the 70-satellite Flower constellation.
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Trajectory Optimization Competition because this result can
provide continuous high-accuracy navigation services for all
key cities with the lowest system cost of 5.85. After the com-
petition, the optimization model with continuous objective
function was proposed, and better results have been
obtained. Meanwhile, the quasi-Walker configuration was
applied by Xi’an Satellite Control Center (XSCC) and com-
pared with the Flower constellation [28]. The results
obtained by XSCC [27] indicate that the optimal quasi-
Walker constellation consists 75 satellites, which leads to a
system cost of 5.75. In this paper, a promoted optimal
quasi-Walker constellation with 70 satellites and the optimal
Flower constellation are obtained by the optimization model

with continuous objects. The system cost is reduced to 5.30,
which verifies the effectiveness of the improved optimization
model. Table 6 shows the optimization results in this paper
and those obtained by XSCC.

5. Constellation Deployment

In this section, a synthetic procedure to insert each satellite
is proposed by applying the Hohmann transfer and the Lam-
bert transfer and utilizing the natural drift under J2 pertur-
bation. A cross-plane deployment strategy is proposed,
which is a creative method for economical constellation
construction.
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Figure 12: Navigation performance for three typical cities of the 77-satellite Walker constellation.

7397 7402 74267403 7425

Time/MJD 2000 

0
7396

10

8

6

4

2

G
D

O
P 

va
lu

e

Sanya
Beijing
QiQihar

Figure 13: Navigation performance for three typical cities of the 70-satellite Walker constellation.
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Figure 14: Navigation performance for three typical cities of the 70-satellite Flower constellation.

Table 6: Configuration model and optimization results in our studies and XSCC’s.

Configuration model
Results in this work Results obtained by XSCC

Quasi-Walker
constellation

Quasi-Walker
constellation

Restricted Flower
constellation

Quasi-Walker
constellation

Restricted Flower
constellation

Performance index Discrete Continuous Continuous Penalty function

Satellite 77 70 70 75 70

P 11 7 70 25 70

N 7 10 1 3 1

a (km) 9337.00 9486.48 9487.11 9484.86 9487.39

e 0 0 0 0 0

inc (deg) 74.00 74.36 74.38 73.90 74.39

Ω00 (deg) 105.31 100.80 100.55 43.30 152.94

ΔΩ (deg) 202.92 174.08 219.40 218.69 218.59

M00 (deg) 0 2.27 136.23 285.36 12.63

F 5.91 0.005 -9.35 — -9.35

System cost
(monetary units)

5.85 5.30 5.30 5.75 5.30
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Figure 15: Correspondence of piggyback launches and target orbital planes.
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5.1. Cross-Plane Constellation Deployment Strategy.
Figure 15 shows the correspondence between the piggyback
launches and target orbit planes. The vertical dashed lines
represent the RAAN of the orbit planes at the initial time
of the service phase in sequence, and each horizontal line
segment represents the RAAN drift range of the correspond-
ing piggyback launch during the construction phase. In cases
where the vertical and horizontal lines cross, satellites in the
piggyback launch can transfer to the target plane. If the
RAAN drift range of a piggyback launch intersects with
more than one orbit plane, the 8 satellites in that launch
can be transferred to different planes. Ten piggyback
launches are chosen to deploy a constellation consisting of
11 orbit planes. The piggyback launch indices are 6, 44, 33,
13, 8, 92, 61, 47, 10, and 82, and some groups of 8 satellites
in one piggyback launch transfer to different planes. The
deployment scheme is shown in Figure 16. As this figure
illustrates, the 56 satellites of missions 33, 13, 8, 92, 61, 47,
and 10 are deployed into 8 planes, and therefore, 1 piggy-
back launch is saved by this strategy. This cross-plane
deployment strategy efficiently reduces the cost of constella-
tion construction.

5.2. Five-Impulse Orbit Transfer. J2 perturbation is expected
to create a relative precession motion between two orbital
planes to obtain the desired RAAN separation. Thus, a small
tangential impulse Δv0 (<4m/s) at the start of the construc-
tion phase (t = 7305) is applied to adjust the initial state of
the satellite in order to achieve the proper phase after a
period of natural drift. Then, the satellites are maneuvered
to the target height by two burns at the perigee and apogee
of the transfer orbit. These two burns contribute to signifi-
cant changes to the orbital height as well as moderate
changes to the inclination and RAAN. Following these two
burns, the satellites are propagated to the end of the con-
struction phase. This drift period is also employed to allow
the satellites to drift to the target phase. Finally, the satellites
are precisely inserted through two burns by the Lambert
transfer under J2 perturbation. As above, a five-impulse
transfer procedure is applied to each satellite to achieve its
target position. The entire procedure is performed as
described below.

In the first optimization model, grid search is used to
find T0, which is the interval between the start of the deploy-
ment and the second impulse Δvp, for the minimal error of
the RAAN at the insertion point. The initial values of Δvp
and Δva are calculated by the Hohmann transfer [29, 30],
and the initial value of Δv0 is set to 0. Then, taking the
weighted sum of the error of the orbit radius, error of eccen-
tricity, and error of the RAAN at the insertion point as the
objective function, we optimize T0, the second and third
impulses Δvp and Δva, and the small velocity increment at
the start of the construction phase Δv0 by using the sequen-
tial quadratic programming algorithm. Notably, Δvp is
expected to be performed at the perigee for a lower fuel con-
sumption, but the optimization and grid search result for T0
may not be exactly the perigee. Thus, the orbit is propagated
to the perigee after T0; then, Δvp is performed. The third

impulse is performed at the apogee after Δvp. The optimiza-
tion model is described as follows:

find x = Δv0, T0, Δvp, Δva
	 


min J xð Þ = Δa∙w1+Δe∙w2+ΔΩ∙w3

s:t:xL < x < xU ,

8>><
>>: ð15Þ

where x = fΔv0, T0, Δvp, Δvag is the optimization variable;
Δa, Δe, andΔΩ are the error of the orbit radius, error of
eccentricity, and error of RAAN at the insertion point,
respectively; w1,w2,w3 are the corresponding weights; and
xL = x − ½1:5 × ð10−6 km/sÞ, 3MJD2000, 0:03 km/s, 0:03 km/s
� and xU = x + ½1:5 × ð10−6 km/s, 3MJD2000, 0:03 km/s, 0:03
km/s� are the lower bound and upper bound of the optimi-
zation variable, respectively.

The second optimization intends to minimize the error
of the argument of latitude at the insertion point Δu by opti-
mizing the velocity increment at the start of the construction
phase Δv0 in a small interval ðΔv0 − 0:0015 km/s, Δv0 −
0:0015 km/sÞ using the sequential quadratic programming
algorithm. Since the amplitude of latitude rapidly changes,
the small change at the starting point causes a large differ-
ence in amplitude of latitude after a long propagation, while
the RAAN and orbital height are less sensitive to small
changes at the starting point. Thus, adding Δu in the objec-
tive function of the first optimization causes difficulties in
convergence. By reoptimizing Δv0, Δu is significantly
reduced, while Δa, Δe, and ΔΩ do not greatly change. There-
fore, optimizing Δv0 twice will facilitate the convergence and
optimality of all parameters.

Finally, the satellites inject at t = 7396 through the last
two impulses ΔvL1, ΔvL2 calculated based on the Lambert
transfer under the J2 perturbation. If the total fuel consump-
tion is greater than 20 kg, which is the predefined fuel mass
of the competition, the weights w1,w2,w3 should be modi-
fied until convergence. The sequence of the five-impulse
transfer and the target errors of each impulse are shown in
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Figure 16: The cross-plane deployment strategy.
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Table 7. Figure 17 shows the design process of the transfer of
each satellite.

Taking satellite #15 as an example, which is the first sat-
ellite in the third orbital plane, the five-impulse transfer pro-
cedure is presented in Table 8. Satellite #15 departs from
piggyback launch #33, and the total velocity increment is
0.632 km/s. The transfer process is shown in Figure 18,
where the blue and red orbits are the piggyback launch

and target orbit, respectively, the impulses are labeled by
black dots, the arrows denote the directions of the velocity
increments, and the grey parts are the natural drift periods
of the satellite.

6. Conclusions

This work presents a synthetic method of designing a con-
stellation for regional coverage under a constrained deploy-
ment approach. In summary, this work has three steps.
First, the search space is reduced by estimating the coverage
region for the target cities and the reachable position of the
potential piggyback launches. Second, two optimization
models are constructed for constellation configuration opti-
mization. In particular, the continuous optimization model
contributes to numerical convergence to the optimal solu-
tion with fewer satellites. Third, the five-impulse transfer
and cross-plane deployment strategies make a significant
contribution to economical constellation construction. The
solution was ranked first in Problem B of the 9th China Tra-
jectory Optimization Competition.
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