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Control and path planning are two essential and challenging issues in quadrotor unmanned aerial vehicle (UAV). In this paper, an
approach for moving around the nearest obstacle is integrated into an artificial potential field (APF) to avoid the trap of local
minimum of APF. The advantage of this approach is that it can help the UAV successfully escape from the local minimum
without collision with any obstacles. Moreover, the UAV may encounter the problem of unreachable target when there are too
many obstacles near its target. To address the problem, a parallel search algorithm is proposed, which requires UAV to
simultaneously detect obstacles between current point and target point when it moves around the nearest obstacle to approach
the target. Then, to achieve tracking of the planned path, the desired attitude states are calculated. Considering the external
disturbance acting on the quadrotor, a nonlinear disturbance observer (NDO) is developed to guarantee observation error to
exponentially converge to zero. Furthermore, a backstepping controller synthesized with the NDO is designed to eliminate
tracking errors of attitude. Finally, comparative simulations are carried out to illustrate the effectiveness of the proposed path
planning algorithm and controller.

1. Introduction

In recent years, UAV has been used in various applications,
such as infrastructure management [1], logistics delivery
[2], and estimation of aboveground biomass of mangrove
ecosystems [3]. The implementation of UAV in all these
applications requires it to follow a predefined path. In addi-
tion, to achieve path tracking, a good control system should
be provided. Therefore, path planning with automatic obsta-
cle avoidance and control are two essential tasks in UAV.

Research on UAV control has been extensively reported
in the literature. In [4], a proportional-integral-derivative
(PID) controller is designed to accomplish altitude and atti-
tude tracking for a quadrotor helicopter. A fuzzy PID control
method is proposed in [5], where the fuzzy rules are

employed to automatically adjust the three parameters of
PID controller. In [6, 7], an active disturbance rejection con-
trol (ADRC) scheme is developed to achieve trajectory track-
ing of a quadrotor UAV. PID and ADRC are model-free
control strategies, which have an advantage of a simple con-
trol structure. However, it is difficult to tune the parameters
of these two controllers.

In [8], an adaptive sliding mode control (SMC) is inves-
tigated to stabilize a quadrotor system subject to unknown
external disturbance. [9] presents a continuous SMC
approach to follow the predefined trajectories in position
and attitude channels for a four-rotor UAV. An adaptive
finite-time attitude tracking algorithm is applied to a quadro-
tor in the presence of uncertainty and disturbance in [10]. In
[11], a disturbance observer is integrated to H∞ technique to
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realize hovering control of a quadrotor. The robustness of
such a method has been verified by experiments. In [12],
the differential flatness is used in tracking control of transla-
tional and rotational movements of an UAV system consid-
ering modeling uncertainty and disturbance. An adaptive
linear quadratic control strategy is proposed in [13] to stabi-
lize three attitude angles of a quadrotor. To achieve trajectory
following of position and attitude subsystems, a nonlinear
disturbance observer- (NDO-) based backstepping controller
is proposed in [14], where the NDO is utilized to estimate
external disturbance.

The bioinspired algorithms have been applied to path plan-
ning of UAV. In [15], a chaotic artificial bee colony (ABC)
method is developed to design a path in complex environ-
ments. In [16], an ant colony optimization (ACO) algorithm
is proposed to achieve trajectory planning for a UAV. [17] pre-
sents a particle swarm optimization (PSO) algorithm to address
path planning of UAV. Genetic algorithm (GA), as a popular
optimization algorithm, has been employed to plan a path in
UAV [18]. Furthermore, a comparison of GA and PSO for
real-time path planning of UAV is carried out in [19], where
the results indicate that, under the consideration of statistical
significance, the trajectories produced by GA are superior com-
pared to that produced by PSO when using the same encoding.
In [20, 21], a grey wolf optimizer is used to search a feasible and
effective path for a UAV. An improved fruit fly optimization
algorithm is introduced in [22] to address the problem of path
planning of multiple UAVs in 3D complicated environments
with online changing tasks. In [23], a flower pollination algo-
rithm based on neighborhood global learning is employed to
complete route planning of a UAV. [24] offers an evolutionary
algorithm based on a novel separate evolution strategy to plan
an optimized path for a single UAV. Furthermore, a con-
strained differential evolution is put forward to achieve path
planning of a UAV in [25].

Besides the aforementioned bioinspired intelligent algo-
rithms, there are many effective strategies to solve the prob-
lem of path planning of UAV. [26] studies a distributed
multiagent path planning algorithm for quadrotors in
dynamic environments. An energy-based path planning
framework is used to improve flight endurance for a solar-
powered UAV in [27]. A multiobjective path planning is pre-
sented in [28] to design a feasible path for a UAV, where
safety is considered in the proposed algorithm. [29] intro-
duces a path planning system based on an elliptical tangent
model to reduce computational burden for a quadrotor
UAV in an unknown unstructured outdoor environment.
In [30], a ground feature-oriented approach is investigated
to generate a suitable path for UAVmapping. Two path plan-
ning algorithms are designed in [31], one of which is based
on the exact penalty method and successive convex approxi-
mation, and the other adopts a heuristic approach. In addi-
tion, [32] presents an improved A-star algorithm to
generate a path for target tracking of a UAV. In [33], a Vor-
onoi diagram-based multiple UAV path planning method is
proposed to cooperatively attack multiple targets in a static
environment. An improved rapidly exploring random tree
(RRT) algorithm is introduced in [34] to realize 3D path
planning of a UAV.

As an efficient path planning algorithm, APF has been
applied to some scenarios, such as mobile robots [35, 36]
and automated vehicles [37]. The traditional APF (TAPF)
has two shortcomings, i.e., local minimum and unreachable
goal. To address these problems, the repulsive potential func-
tion of TAPF is replaced by Gaussian function in [38]. How-
ever, UAV still might fall into a local minimum using the
improved APF in [38] when obstacle is on the line connect-
ing current position and target position. Moreover, when
multiple obstacles are around target and repulsive gain is
large, the resultant repulsive forces might be equal to attrac-
tive force, in which case UAV could not approach target.
Motivated by the above analysis, a novel APF based on paral-
lel search is proposed for path planning of UAV in this paper.

The main contributions of the paper are summarized as
follows:

(1) A parallel search algorithm is proposed to address
local minimum and unreachable target with obstacles
nearby in TAPF

(2) Compared with existing results of path planning
algorithms [34, 39, 40], a shorter path and less time
consumption are obtained using the proposed
algorithm

(3) Compared with ADRC [6, 7], better tracking perfor-
mance is obtained by the proposed controller based
on NDO with exponential convergence when follow-
ing the planned path

The remainder of this paper is organized as follows. In
Section 2, TAPF is introduced and the problems of local min-
imum and unreachable goal of TAPF are analyzed. In Section
3, a novel APF based on parallel search is presented. Section 4
introduces the design of the observer and controller of the
quadrotor. In Section 5, comparative simulations are con-
ducted to verify the effectiveness of the proposed algorithm
and controller. Section 6 concludes the work.

2. TAPF Applied to Path Planning of UAV

2.1. TAPF. APF is a virtual potential field in space, which con-
sists of attractive potential field generated by target position
and repulsive potential field generated by obstacle. The UAV
automatically plans a path to destination under the influence
of attractive potential field and repulsive potential field.

Let Pcurðxcur, ycurÞ and Ptarðxtar, ytarÞ represent the cur-
rent position and target position of the UAV, respectively.
Then, the attractive potential field is given by

Ua Pcurð Þ = 1
2 kada Pcur, Ptarð Þ2, ð1Þ

where ka is a positive gain and daðPcur, PtarÞ is the minimum
distance between current position and the target position, in
a 2D case defined as

da =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xcur − xtarð Þ2 + ycur − ytarð Þ2

q
: ð2Þ
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Input: the current position Pcurðxcur , ycurÞ of UAV, target position Ptarðxtar , ytarÞ, obstacles position;
Output: The path to the target;

Calculate da;
Update path matrix M⟵ Pcur;
whileda > c (c is a small positive constant) do

Calculate attractive force Fa, using (2) and (5);
Calculate repulsive force Fri, using (4) and (6);
Calculate the components of attractive force along the x and y directions, respectively;
Calculate the components of repulsive force along the x and y directions, respectively;
Calculate the next point on the path Pnext according to the resultant of attractive force and repulsive force;
Update M⟵ Pnext;

end while

Algorithm 1: Path planning algorithm based on TAPF
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Figure 1: Scenario 1: the local minimum of TAPF with a single obstacle.
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Figure 2: Scenario 1: the local minimum of TAPF with multiple obstacles.
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Let Pobiðxobi , yobiÞ denote position of the ith obstacle,
where i ∈N + . Then, the repulsive potential field of the ith
obstacle is defined as

Uri Pcurð Þ =
1
2 kri

1
dri Pcur, Pobið Þ −

1
d0

� �2
dri ≤ d0,

0 dri > d0,

8><
>:

ð3Þ

where kri and d0 are positive constants and driðPcur, PobiÞ is
the minimum distance between current position and the ith
obstacle, in a 2D case defined as

dri =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xcur − xobi
� �2 + ycur − yobi

� �2r
: ð4Þ

It is worth noting that d0 in (3) shows the influence range
of the repulsive potential field of obstacle. Obviously, the
attractive potential field is global, while the repulsive poten-
tial field is local. Furthermore, the attractive force from the
target is obtained by (1)

Fa Pcurð Þ = kada Pcur, Ptarð Þ: ð5Þ

Meanwhile, the repulsive force of the ith obstacle is
obtained from (3):

Fri Pcurð Þ = kri
1
dri

−
1
d0

� � 1
dri

� �2
dri ≤ d0,

0 dri > d0:

8><
>: ð6Þ

Therefore, the path planning for UAV based on the
TAPF algorithm is shown in Algorithm 1.
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Figure 3: Scenario 1: the unreachable goal of TAPF.
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Figure 4: Scenario 2: the unreachable goal of TAPF.
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2.2. Local Minimum. The local minimum is an inherent dis-
advantage of TAPF. When the attractive force and repulsive
force reach a balance, the UAV would encounter a trap of a
local minimum, which means that the UAV stops moving
towards target, as shown in Figures 1 and 2, where Fa and
Fr represent the attractive force and resultant repulsive force
at the current position, respectively, and Fri, i = 1, 2, repre-
sents repulsive force of the ith obstacle. It is evident that a
single obstacle or multiple obstacles may cause UAV to fall
into a local minimum when a balance of the attractive force
and repulsive force is reached.

2.3. Unreachable Target. Another shortcoming of TAPF is
that the goal might be inaccessible for UAV, when obstacles
are near the target, as shown in Figures 3 and 4, where Obsi
, i = 1,⋯, 8, denotes the ith obstacle. In fact, the attraction
of the goal to UAV is gradually decreasing, as the UAV
approaches destination from (5), while the repulsive force
of obstacles to UAV is gradually increasing. Therefore, the
UAV fails to plan a path to destination using TAPF.

3. Novel APF Based on Parallel Search

To address the problems of the local minimum and unreach-
able goal of TAPF, a novel parallel search-based APF algo-
rithm is proposed to achieve path planning of a UAV. Such
an algorithm consists of two key ideas. The first idea is that
UAV moves around the nearest obstacle when it encounters
a local minimum, as shown in Figure 5, from which it is
observed that dr3 is smallest. To avoid collision with other
obstacles, the UAV makes a circular motion with radius dr3

around the third obstacle. Then, the balance of the attractive
force and repulsive force will be broken once the UAVmoves
a step around the third obstacle, which would guide the UAV
to escape from the local minimum under the APF
framework.

The second idea of the proposed algorithm is that when
the goal is unreachable for the UAV, the movement around
the nearest obstacle and the detection of obstacle between
the current position and target position will be performed
in parallel. Two examples in Figures 6 and 7 are used to fur-
ther illustrate this idea.

In Figure 6, L1 represents a line that goes through the
current position of UAV and target position. When the
target is unreachable for UAV, the points on the line L1
will be scanned continuously to find the intersection
points of the line L1 and the obstacle. If the number of
intersection points is equal to zero, it means the UAV
can move directly to the target.

In the following, we will explain the scenario in Figure 7,
where L2 represents a line that goes through the current posi-
tion of UAV and target position and �L denotes a line con-
necting the current position of UAV and the obstacle. It is
obvious that the number of intersection points of L2 and
the obstacle is greater than zero. In these circumstances, the
UAV moves firstly along the line �L to the point AðxA, yAÞ.
Then, the UAV moves to the point D around the first obsta-
cle with radius RA, where

RA =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yob1 − yAð Þ2 + xob1 − xAð Þ2

q
: ð7Þ

Finally, the UAV successfully reaches the destination
along the feasible path L3. It is worth noting that the detec-
tion of the obstacle between the current position and target
position will also be performed simultaneously when UAV
is at point B or C.

In summary, the flow of the proposed algorithm is shown
in Algorithm 2.

Remark 1. In simulation, it is easy to judge the local mini-
mum and the unreachable goal, since the obstacle position
and the target position are known. However, the obstacle
position may be unknown in real experiments. Therefore,
the UAV firstly moves one step around the nearest obstacle
within the scanning range of sensor of UAV when it cannot
continue moving towards the target. If the current position
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Figure 6: Example 1: the parallel search strategy for UAV when the
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is a local minimum, the balance of forces will be broken and
the UAV will escape this trap. Otherwise, the UAV moves to
an unreachable target.

4. Controller Design Based on NDO

4.1. Mathematical Model of Quadrotor UAV. To track the
planned path in 2D space, only the attitude angles need to
be regulated. Therefore, attitude dynamics of the quadrotor
subject to external disturbances are introduced here.

€ϕ =
Jy − Jz
� � _θ _φ − Jr _θΩ + LFϕ

Jx
+ �dϕ,

€θ = Jz − Jxð Þ _ϕ _φ + Jr _ϕΩ + LFθ

Jy
+ �dθ,

€φ =
Jx − Jy
� �

_ϕ _θ + f Fφ

Jz
+ �dφ,

ð8Þ

where ½ϕ, θ, φ� are altitude, roll angle, pitch angle and yaw
angle of quadrotor, respectively; Fχ, χ = ϕ, θ, φ are the con-
trol inputs of the system; L, f , Jr , Jn, n = x, y, z denote the dis-
tance from rotor center to mass center, force to moment
factor, inertia of each propeller, inertias of the quadrotor
around x-, y- and z-axes, respectively; andΩ is the difference
in angular speed of the rotors on the diagonal of the quadro-
tor. The terms �dϕ, �dθ, and �dφ denote the effect of wind on the
translational and rotational subsystems of the quadrotor in

the form of external disturbances. Compared with brushless
motor, the propeller of quadrotor is very light; therefore,
the terms Jr _θΩ/Jx and Jr _ϕΩ/Jy are ignored here.

4.2. Assumptions. To make the subsequent analysis rigorous,
the following assumption is given.

Assumption 1. It is assumed that the disturbances change
slowly, i.e., _dϕ = _dθ = _dφ = 0.

Assumption 2. In the design of controller for the quadrotor,
to avoid any singularity, we set −π/2 < ϕ < π/2 and −π/2 < θ
< π/2.

4.3. Observer Design. Some of the involved disturbance
components in (8) are redefined as dϕ = Jx�dϕ, dθ = Jy�dθ,

and dφ = Jz�dφ. To compensate for external disturbance, a
NDO with exponential convergence is proposed. Define
observation error as

~dχ = dχ − d̂χ, ð9Þ

where d̂χ is the estimate of dχ with χ = ϕ, θ, φ. Consider-
ing Assumption 1, the derivative of observation error ~dχ
in (9) in attitude channel is obtained by

_~dχ = − _̂dχ: ð10Þ

Input: the current position Pcurðxcur, ycurÞ of UAV, target position Ptarðxtar, ytarÞ, obstacle position;
Output: the path to the target;

Calculate da;
Update path matrix M⟵ Pcur
whileda > cdo

Calculate attractive force Fa, using (2) and (5);
Calculate repulsive force Fri, using (4) and (6);
Calculate the components of attractive force along the x and y directions, respectively;
Calculate the components of repulsive force along the x and y directions, respectively;
Calculate the next point on the path Pnext according to the resultant of attractive force and repulsive force;
Update matrix M⟵ Pnext;
Calculate d1 = jMj −Mj−3j;
if local minimum then

Find the obstacle closest to the current position, then calculate the distance R between the obstacle and current
position, and moves around the obstacle with radius R;

end if
if goal unreachable then

Search for obstacles between the current position and the target position;
if Figure 6then

The UAV moves directly to target along L1;
else

The UAV moves to the point A along �L, then calculates RA and moves around obstacle1 in Figure 7 with
radius RA to the point D. Finally, the UAV reaches the target from D.

end if
end if

End while

Algorithm 2: A novel APF algorithm based on parallel search for path planning of UAV
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Figure 8: Scenario 1: the result of path planning of the proposed algorithm.

30

30

25

25

20
Obs1

Obs2

Obs3
Obs10

Obs9
Obs8

Obs7

Obs6
Obs5

Obs4
Target

20

15

15

x (m)

y (
m

)

10

10

5

5
0

0

Figure 9: Scenario 2: the result of path planning of the proposed algorithm.
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Figure 10: Scenario 3: the result of path planning of the proposed algorithm in a complex environment.

7International Journal of Aerospace Engineering



Then, the NDO in attitude channel is designed as

_xχ = Pχ Wj − Y j

� �
− Pχd̂χ,

d̂χ = xχ + Pχ Jn _χ,
ð11Þ

where j = 1, 2, 3, n = x, y, z, W1 = ðJz − JyÞ _θ _φ, Y1 = LU2,

W2 = ðJx − JzÞ _ϕ _φ, Y2 = LU3, W3 = ðJy − JxÞ _ϕ _θ, Y3 = f U4,
xχ is an auxiliary variable, and Pχ is a positive gain.

Theorem 2. If Assumption 1 holds and the observer is
designed as (11), then the observation error ~dz in (9) will expo-
nentially converge to zero.

Proof. See Appendix. ☐

Remark 3.Note that d̂χ is not the direct estimates of �dχ in (8)

from (9). If we define d̆χ = d̂χ/ε, ε = Jx, Jy , Jz , then d̆i denote

the estimates of �dχ in (8).

4.4. Controller Design. To address the problem of tracking
control in the attitude channel, a backstepping scheme is pro-
posed. We define the tracking error of attitude as

eχ = χd − χ, ð12Þ

Table 1: The simulation parameters in Figures 8–10.

Parameter Figure 8 Figure 9 Figure 10

Start position (0,0) (0,0) (0,0)

Target position (24,24) (24,24) (32,32)

Obstacle1 position (16,16) (13,16) (10,9)

Obstacle2 position (22,24) (16,13) (11,16)

Obstacle3 position (23,25) (20.5,23.5) (18,14)

Obstacle4 position (24.7,25.2) (23,25) (17,24)

Obstacle5 position (25.5,24) (24,26.5) (24,22)

Obstacle6 position (25,22.5) (25.2,25.2) (28,30)

Obstacle7 position × (26.5,24) (29,28)

Obstacle8 position × (25.3,22.5) (31,28)

Obstacle9 position × (24,21) ×
Obstacle10 position × (23,23) ×
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Figure 12: Scenario 2: the result of path planning of the four
algorithms with an obstacle.
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Figure 13: Scenario 1: the result of path planning of the four
algorithms with multiple obstacles.
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Figure 11: Scenario 1: the result of path planning of the four
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where χd is the desired altitude signal. Then, the attitude con-
troller is designed as

Fχ = Rj +Gj cχ1 _eχ + €χd + eχ + cχ2eχ1
� �

+Qj, ð13Þ

where R1 = ððJz − JyÞ/LÞ _θ _φ, G1 = Jx/L, Q1 = d̂ϕ/L, R2 = ððJx
− JzÞ/LÞ _ϕ _φ, G2 = Jy/L, Q3 = d̂θ/L, R3 = ððJy − JxÞ/LÞ _ϕ _θ, G3
= Jz/f , Q3 = d̂φ/f , cχ1, cχ2 > λχ/2 with λχ being a positive
constant, and

eχ1 = − _χ + cχ1eχ + _χd: ð14Þ

Theorem 4. Under Assumption 1 and Assumption 2, for the
altitude dynamics in (8), if the control input Fχ is designed
as (13), then the tracking error for desired attitude is guaran-
teed to converge to zero exponentially, i.e., eχ ⟶ 0 as t⟶
∞.

Proof. See Appendix. ☐

5. Simulation

5.1. Comparison with TAPF. The simulation parameters
including the start position, target position, and obstacle
positions in Figures 8–10 are listed in Table 1. To demon-
strate the effectiveness of the proposed path planning frame-
work to deal with the traps of local minimum and
unreachable goal of TAPF in Figures 1–4, simulations are
carried out, as shown in Figures 8 and 9, where we can
observe that the UAV can plan a feasible path to the destina-
tion with obstacle avoidance. Furthermore, the proposed
algorithm is verified in complex environments with multiple
obstacles in Figure 10.

5.2. Comparison with BUG1, BUG2, and RRT. Considering
the characteristics of the proposed algorithm, BUG1,
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Figure 14: Scenario 2: the result of path planning of the four algorithms with multiple obstacles.

Table 2: The simulation parameters in Figures 11–14.

Parameter Figure 11 Figure 12 Figure 13 Figure 14

Start position (0,0) (0,0) (0,0) (0,0)

Target position (24,24) (24,24) (36,36) (36,36)

Obstacle1 position (16,15) (12,13) (9,9) (9,10)

Obstacle2 position × × (14,14) (14,16)

Obstacle3 position × × (19,18) (20,10)

Obstacle4 position × × (24,23) (20,20)

Obstacle5 position × × (31,30) (29,17)

Obstacle6 position × × × (28,28)

Obstacle7 position × × × (35,34)
Table 4: Path length of the four algorithms in Figures 11–14.

Algorithm Figure 11 Figure 12 Figure 13 Figure 14

Proposed 35.8800m 35.5200m 56.1371m 56.6288m

BUG1 37.1662m 38.5924m 62.7243m 65.8486m

BUG2 36.3676m 37.3622m 64.2180m 63.2446m

RRT 56.2966m 44.4007m 66.2756m 91.0735m

Table 3: Time consumption of the four algorithms in Figures 11–
14.

Algorithm Figure 11 Figure 12 Figure 13 Figure 14

Proposed 0.0567 s 0.0554 s 0.0748 s 0.0947 s

BUG1 0.0829 s 0.0736 s 0.1292 s 0.1419 s

BUG2 0.0701 s 0.0714 s 0.1210 s 0.1260 s

RRT 0.7150 s 0.2022 s 1.1637 s 0.5662 S
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BUG2, and RRT, and to fairly compare their abilities of
path planning, the obstacles of different shapes are placed
around the line connecting the start point and the target
point.

The simulation parameters including the start position,
target position, and obstacle positions in Figures 11–14 are
shown in Table 2. Furthermore, the comparisons with the
three path planning algorithms, namely, BUG1, BUG2, and
RRT, are presented in Figures 11–14. Figures 11 and 12
show the results of path planning of UAV with a single
obstacle, while the results of path planning of UAV with
multiple obstacles are shown in Figures 13 and 14. From
the results, the feasible path to the target with obstacle
avoidance can be obtained when the proposed algorithm,
BUG1, BUG2, and RRT are applied to path planning of
the UAV, respectively. Table 3 shows the time consump-
tion of the four algorithms. It is obvious that in either
the environment with a single obstacle or with multiple
obstacles, the time consumption of the proposed algorithm
is the least. The path length in Figures 11–14 are listed in
Table 4, from which we find that compared with paths
generated by BUG1, BUG2, and RRT, a shorter path is
obtained using the proposed algorithm. For the environ-
ment with a single obstacle, the shape of obstacle has a
greater effect on the length of path provided by BUG1
and BUG2. Meanwhile, RRT has the worst performance

in terms of time consumption and path length. Also, the
UAV cannot reach the target accurately when RRT is
applied to the UAV.

Overall, compared with BUG1, BUG2, and RRT, the pro-
posed algorithm has advantages in time consumption and
path length, which means that less time and energy are
required to reach the target for the UAV.

5.3. Trajectory Tracking. The physical parameters of quadro-
tor are set as follows: L = 0:4m, Jx = 0:16 kgm2, Jy = 0:16
kgm2, Jz = 0:32 kgm2, and f = 0:05m. The initial attitude of
the quadrotor is set as 0rad. Furthermore, to follow the
planned path, the desired attitude angles need to be
addressed. Figure 11 is used as an example here, whose
desired attitude states are calculated as follows: dϕ = 0, dθ1 =
1, dθ2 = 0, dφ1 = 0:785, dφ2 = 1:415, dφ3 = 2:597, dφ4 = 1:537,
dφ5 = 1:865, dφ6 = 1:617, dφ7 = 1:514, dφ8 = 1:399, dφ9 =
1:288, dφ10 = 1:181, dφ11 = 1:011, dφ12 = 0:985, dφ13 = 0:813,
dφ14 = 0:78, dφ15 = 0:737, dφ16 = 0:669, dφ17 = 0:607, dφ18 =
0:552, dφ19 = 0:506, and dφ20 = 0:47. It should be noted that
(1) the yaw angle is used to adjust the forward direction
of the quadrotor, and the pitch angle is used to control
the forward speed of the quadrotor, while the roll angle is
required to maintain at 0rad and (2) when the yaw angle
is trying to maintain one of the above states, a desired pitch

4

2

0

–2
0 5 10 15 20

Time (s)

25 30 35

d
𝜙
, d

𝜙
 (r

ad
/s

2 )
2

1

0

–1
0 5 10 15 20

Time (s)

25 30 35

d
𝜃
, d

𝜃
 (r

ad
/s

2 )

1.5

1

0

–0.5
0 5 10 15 20

Time (s)

25 30 35

d
φ
, d

φ
 (r

ad
/s

2 )

0.5

Disturbance
Observation

Figure 15: Estimations of external disturbances.
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angle of 0:1rad will be tracked and when the yaw angle is
switched between the two states, the desired pitch angle is
set as 0rad. In addition, the disturbances in attitude chan-
nels are given as

dϕ =

0:4t − 0:2, 0 ≤ t < 6,
2:2, 6 ≤ t < 14,
−0:1t + 3:6, 14 ≤ t < 20,
−0:t + 5:6, 20 ≤ t < 33,

8>>>>><
>>>>>:

ð15Þ

dθ = cos π

6 t
� �

+ 0:4, ð16Þ

dφ =
1, 0 ≤ t < 5 or 10 ≤ t < 15⋯,
0, 5 ≤ t < 10 or 15 ≤ t ≤ 20⋯:

(
ð17Þ

To verify the effectiveness of the proposed NDO, the
time-varying disturbance with different frequencies are
injected into the quadrotor system. The estimations of
external disturbances are shown in Figure 15, where we
can see that the disturbances (15), (16), (17) can be esti-
mated, even if the derivatives of the disturbances are
assumed to be 0 in the design of the disturbance observer.

However, the disturbance estimations of the pitch and yaw
channels have small fluctuations.

The corresponding tracking results for the desired sig-
nals are presented in Figure 16. Obviously, tracking and
frequent switching of so many states raise a challenging
problem for the quadrotor controller, especially in the
pitch and yaw channels. However, compared to ADRC,
the proposed controller has better tracking performance.
In addition, in the roll channel, oscillation is generated
in the initial stage, and a large spike is produced at the
20th second when ADRC is applied to the quadrotor,
while a smoother tracking performance is provided by
the proposed controller.

6. Conclusion

In this paper, a novel APF algorithm based on parallel
search is proposed for path planning of a UAV. An algo-
rithm for moving around the nearest obstacle is synthe-
sized into APF to avoid the trap of local minimum. A
parallel search algorithm is presented to address the prob-
lem of an unreachable target. Furthermore, to achieve
tracking of planned trajectory of quadrotor UAV subject
to external disturbance, a backstepping control strategy
with a NDO is designed. The comparative simulations
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Figure 16: Tracking results for reference inputs.
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are performed to verify the effectiveness of the proposed
path planning algorithm and the proposed controller.

Appendix

A. Proof of Theorem 2

Proof. From the second equation in (11), one has

_̂dχ = _xχ + Pχ Jn€χ: ðA:1Þ

Substituting the first equation to (A.1) yields

_̂dχ = Pχ Wj − Y j + Jn€χ
� �

− Pχd̂χ: ðA:2Þ

Considering the relationship dχ = Jn�dχ and applying
(8)–(17) (A.1), (A.2), we have

_̂dχ = Pχ dχ − d̂χ
� �

= Pχ
~dχ: ðA:3Þ

Combining (10), the dynamic equation of observation
error is obtained:

_~dχ + Pχ
~dχ = 0: ðA:4Þ

Solving (A.4), we get

~dχ tð Þ = ~dχ t0ð Þe−Pχt , ðA:5Þ

where ~dχðt0Þ is the initial value of the observation error. (A.5)
indicates that the observation error ~dχ will exponentially

converge to zero as t⟶∞, i.e., d̂χ will exponentially con-
verge to dχ as t⟶∞ under Assumption 1.

This completes the proof. ☐

B. Proof of Theorem 4

Proof. The whole proof is divided into two steps.
Step 1. We define a Lyapunov function candidate

Vχ1 =
1
2 Jne

2
χ: ðB:1Þ

The time derivative of Vχ1 is

_Vχ1 = Jneχ _eχ: ðB:2Þ

Substituting (12) and (14) to (17), (A.1)–(B.2), it is
obtained that

_Vχ1 = Jneχ _χd − _χð Þ = Jneχ eχ1 + _χ − cχ1eχ − _χ
� �

= −Jncχ1e
2
χ + Jneχeχ1:

ðB:3Þ

Step 2. We define the following Lyapunov function can-
didate

Vχ = Vχ1 +
1
2 Jne

2
χ1: ðB:4Þ

The time derivative of Vχ is

_Vχ = _Vχ1 + Jneχ1 _eχ1: ðB:5Þ

Combining (14) and (B.3), (B.5) can be rewritten as

_Vχ = −Jncχ1e
2
χ + Jneχeχ1 + Jneχ1 −€χ + cχ1 _eχ + €χd

� �
: ðB:6Þ

Substituting (8) into (B.6), we get

_Vχ = −Jncχ1e
2
χ + Jneχeχ1 + Jneχ1

Rj

Gj
−

Fχ

Gj
+ �dχ + cχ1 _eχ + €χd

 !
:

ðB:7Þ

Substituting the attitude controller (13) into (B.8) yields

_Vz = −Jncχ1e
2
χ + Jneχeχ1 + Jneχ1 −eχ − cχ2eχ1 +

1
Jn

dχ − d̂χ
� �� �

= −Jncχ1e
2
χ − Jncχ2e

2
χ1 + eχ1 dχ − d̂χ

� �
:

ðB:8Þ

The term dχ − d̂χ will vanish from Theorem 2 as t⟶∞
. Hence, according to (B.1), (B.4) and the relationship cχ1,
cχ2 ≥ λχ/2, (B.8) is further derived as

_Vχ = −Jncχ1e
2
χ − Jncχ2e

2
χ1

= −λχVχ − cχ1 −
λχ
2

� �
Jne

2
χ − cχ2 −

λχ
2

� �
Jne

2
χ1≤−λχVχ:

ðB:9Þ

Solving (B.9), it is obtained

Vχ tð Þ ≤Vχ 0ð Þe−λχt , ðB:10Þ

where Vχð0Þ is the initial value of VχðtÞ. From (B.10), it is
concluded that eχ will exponentially converge to zero as t
⟶∞.

This completes the proof. ☐
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