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A new design optimization method is proposed for the problem of high-precision aerodynamic design of multistage axial
compressors. The method mainly contains three aspects: full-blade surface parametrization can significantly reduce the number
of control variables per blade row and increase the degrees of freedom of the leading edge blade angle compared with the
traditional semiblade parametric method; secondly, the artificial bee colony algorithm improved initialization and food source
exploration and exploitation mechanism to enhance the global optimization ability and convergence speed, and a distributed
optimization system is built on the supercomputing platform based on this method; finally, a phased optimization strategy
based on the “synchronous change in multirow blades” is proposed, and expert experience is introduced to achieve a better
balance between exploration and exploitation. The optimization method is applied to the AL-31F four-stage low-pressure
compressor. As a result, the adiabatic efficiency is improved by 0.67% and the surge margin is improved by 3.1% under the
premise that the total pressure ratio and mass flow rate satisfy the constraints, which verifies the effectiveness and engineering
practicality of the proposed optimization method in the field of multistage axial flow compressor aerodynamic optimization.

1. Introduction

Aeroengines and gas turbines are needed for strategic national
development, and one of the core components of aeroengines
and gas turbines is the multistage axial flow compressor. For
the design of multistage axial flow compressors, an aerody-
namic optimization design method can effectively reduce the
dependence on manual experience and greatly improve the
design capability. It is well known that the aerodynamic opti-
mization design of a multistage axial flow compressor has the
characteristics of typical high-dimensionality, expensive cost,
and black box (HEB) [1] problem.With an increase in optimi-
zation control variables, the design space will grow exponen-
tially and fall into the “curse-of-dimensionality.” Therefore,
obtaining the optimized solution within the acceptable time
range of engineering is a frontier problem in the field of aero-

dynamic optimization of multistage axial flow compressors,
which has a very important engineering application value.

Before the year 2000, limited by the computing power at
that time, aerodynamic optimization of the multistage axial
flow compressor was mainly limited to one dimension and
two dimensions [2–5]. With the great improvement in com-
puting power, three-dimensional steady aerodynamic opti-
mization of compressors has been developed rapidly, and a
few three-dimensional unsteady optimization methods have
even been proposed [6]. However, the cost of unsteady calcu-
lation is too large, much simplification is required, the actual
calculation accuracy is limited, and there is no engineering
practicability. At present, research on multistage axial flow
compressors still mainly focuses on three-dimensional steady
optimization. With the development of optimization regard-
ing multidiscipline and high-fidelity problems, the HEB
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problem mentioned above has increasingly become the key
to restrict the design of multistage axial flow compressors.

Traditional methods for solving the HEB problem of
aerodynamic optimization of multistage axial flow compres-
sors can be divided into six categories: (1) screening variables
[7, 8], (2) stage-by-stage optimization [9], (3) spatial decou-
pling [10], (4) surrogate model method [11–15], (5) adjoint
algorithm [16–18], and (6) parametric dimensionality reduc-
tion [19, 20]. Among them, the screening method is only
suitable for examples with obvious bad flow fields but is not
universal. The stage-by-stage optimization process is com-
plex, and the coupling effect of the flow field between the
front and back stages is ignored. The spatial decoupling
method proposed in literature [10] is only suitable for the
case of a weak radial flow but not for a blade with a low aspect
ratio. The surrogate model method is difficult to train in
high-dimensional problems, and the number of samples
needed increases exponentially with the dimensionality, so
the sample training cost is difficult to handle. Although the
adjoint algorithm has the advantage that optimization is
independent of the dimensionality of variables, it easily falls
into local extrema [21] and has defects in handling multicon-
straint multiobjective problems.

The literature [22, 23] notes that one of the most promis-
ing strategies for solving the HEB problem is parametric
mapping dimensionality reduction. For aerodynamic optimi-
zation of multistage axial flow compressors, the aim is to find
a parametric method to reduce the design variables and
achieve dimensionality reduction while retaining as much
of the optimal solution from the original design space as pos-
sible. The traditional parametric method has remarkably
high-dimensional characteristics because each section of the
blade is modeled separately and independently of each other
[24]. An effective method to constrain the control parameters
of each section is the surface parametric method, which was
first applied in outflow aerodynamic optimization and is an
effective dimensionality reduction method [25–28]. Lee
et al. compared B-spline and CST surface methods and con-
cluded that the two parametric methods have their own
advantages and disadvantages and are suitable for different
situations. In 2003, the semiblade surface parametric method
(blade suction surface modification by a Bezier surface) was
applied in the internal flow field of compressors by Burgu-
buru and le Pape [29], which was further developed byWang
and Zhou [30] and Cheng et al. [1]. However, the defect of
this surface parametric method is that only half of the blade
surface is modified, and the influence of the other half surface
on the flow field is ignored. In addition, this method cannot
change the blade angle at the leading edge; this defect plays
an important role in the development of the flow field as it
results in limiting the improvement space of the aerodynamic
performance for blade geometry. In this paper, a full-blade
surface parametric method is presented that regards the
suction surface and the pressure surface as a whole surface
and superimposes the perturbed surface on it. This method
reduces the control variables and realizes an effective dimen-
sionality reduction under the condition of ensuring the
degree of freedom of the leading edge, trailing edge, and
blade body.

Another important part of the optimization process is the
optimization algorithm. To avoid falling into a local extre-
mum, this paper adopts an improved artificial bee colony
(IABC) algorithm with good global optimization ability
[31], which does not depend on the initial solution. In addi-
tion, due to the improvements in initialization, food source
exploration, and exploitation mechanisms from the standard
artificial bee colony [32] (ABC) algorithm, its convergence
speed is improved. Because the evolutionary algorithm has
the advantage that it does not depend on the gradient infor-
mation of the function, it can perform a simultaneous search
of multiple individuals in the design space with the potential
for multitask concurrency. Combined with a commercial
supercomputing platform with powerful parallel capabilities,
the IABC algorithm can greatly reduce the optimization time.

However, because evolutionary algorithms essentially
require many high-fidelity performance evaluations, the
above strategy is still not enough to reduce the computational
cost to an acceptable range. This paper proposes a phased
optimization strategy based on the “synchronous change in
multirow blades,” which can greatly reduce the time cost of
optimization. The core of this strategy is to draw on the
idea of “exploration first, exploitation later” in the optimi-
zation process and divide the entire optimization process
into two phases to effectively reduce the number of itera-
tions required for the spatial search, thereby reducing the
optimization time.

The structure of this paper is as follows: Section 2
shows the optimization method; Section 3 performs the
optimization case verification and analysis; Section 4 draws
a few conclusions.

2. Optimization Method Based on Full-Blade
Surface Parameterization

2.1. Parametric Method. The traditional parametric method
shapes each radial section of the blade separately; on the
one hand, it makes the blade profile difficult to smooth; on
the other hand, it makes the blade control parameters
numerous (a single row of blades can have hundreds of
parameters). To better promote the solution of the HEB
problem of multistage axial compressor aerodynamic optimi-
zation, the surface parametric method with significant low-
dimensional characteristics was selected. This method
understands the blade as a combination of the suction surface
and pressure surface rather than the accumulation of two-
dimensional sections. This paper proposes a full-blade
surface parametric method that is an improvement of the
semiblade surface parametric method [29]. Figure 1 shows
the construction process of the method. The blade is opened
radially from the leading edge to form an unfolded surface,
and the Bezier perturbed surface is superimposed to form a
new unfolded surface. Then, the new unfolded surface is
stitched at the leading edge in the radial direction to generate
a new blade. The parametric method can be divided into the
following four steps:

(1) The blade opens radially at the leading edge, forming
an unfolded surface
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(2) Chord length parameterization is applied. Because
the three-dimensional surface of the physical space
and the unit Bezier surface are to be superimposed,
the coordinates of each point of the blade in the phys-
ical space need to be converted to the unit plane in
the calculation space, and ξ and η are the axes of
the computational space. The formula for chord
length parameterization is as follows:

ξi,j =
∑i

m=1lm
T lj

, ð1Þ

ηi,j =
∑j

n=1Ln
T Li

, ð2Þ

where i ∈ ð1, npÞ and j ∈ ð1, nsÞ; np and ns refer to the number
of data points of a section and the total number of sections,
respectively; T lj refers to the sum of the chord lengths of
each segment of the jth section in the η direction; T Li refers
to the sum of the chord lengths of the ith section in the ξ
direction; lm is the mth chord length of the jth section in
the η direction; and Ln is the nth chord length of the ith
section in the ξ direction

(3) Bezier perturbed surface generation is applied. The
perturbed surface is defined by the following formula:
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where R
!
refers to the change value of each point on the per-

turbed surface; Pk,l is the ðm + 1Þ × ðn + 1Þ control points of
the perturbed surface; Bm

l ðvÞ and Bn
kðuÞ refer to the Bernstein

basis functions calculated by equation (4); v and u refer to the
independent coordinate variables of the perturbed surface,
and its variation range is ½0, 1�; and Cn

k is the combination
number calculated by equation (5)

(4) The R
!
value of each point of the obtained perturba-

tion surface is superimposed on the circumferential
direction of the corresponding point of the unfolded
surface, thereby generating a new blade
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Figure 1: The construction process of parametric method.

3International Journal of Aerospace Engineering



The full-blade surface parametric method is a new
surface parametric method that retains the high-order
smoothness characteristic while improving the existing semi-
blade surface parametric method, which is mainly manifested
in the following two points:

(1) Since the full-blade surface parametric method com-
bines the suction surface and the pressure surface as a
whole, it can take into account the influence of the
suction surface and pressure on the aerodynamic per-
formance while not significantly increasing the num-
ber of control variables, and the low-dimensional
characteristics are maintained well. The control
parameters of a single blade row can be reduced to 16

(2) The full-blade surface parametric method increases
the degree of freedom of the geometric variation at
the leading edge. The semiblade surface parametric
method lacks the freedom of the blade angle at the
leading edge, so it has certain restrictions on the
geometric exploration function. Figure 2 shows a
schematic diagram of the point distribution of the
full-blade parametric method. The yellow point is a
free active point, and the blue point is a limited active
point; that is, all the blue points need to keep chang-
ing synchronously so that the leading edge of the
suction pressure can be smoothly connected

2.2. Optimization Algorithm. For the purpose of searching for
the global optimal solution of the multistage axial flow com-
pressor, an evolutionary algorithm with global search ability
is adopted. Since evolutionary algorithms do not require
the gradient information of function values, multiple individ-
uals can be concurrent, which can greatly reduce the optimi-
zation time. Among various evolutionary algorithms, the
ABC [32] algorithm has a better optimization accuracy and
convergence speed. In this paper, the ABC algorithm is devel-
oped through an initialization mechanism, a food source
exploration, and an exploitation mechanism, and its sche-
matics are shown in Figure 3.

The IABC [31] algorithm involves employed bees,
onlooker bees, and detector bees. At the beginning, the
employed and onlooker bees constitute the entire bee colony,
and the number of bees is divided equally between these
types. The food source in the schematic refers to a set of fea-
sible solutions, and the food source concentration refers to
the fitness of the feasible solutions. The detailed steps of the
IABC algorithm are as follows:

(1) Food source initialization. To obtain as much design
space information as possible from as few sample
points as possible, instead of the random initializa-
tion mechanism in the standard ABC algorithm, the
optimal Latin square experiment method [33] is
utilized to initialize the distribution of the food
source, and the feasible solution Xiði = 1, 2, 3,⋯,NÞ
of ND-dimensional vectors is generated

(2) The concentration of the initial food source is calcu-
lated, the best value is recorded, and the concentra-

tion is ranked according to the food source. The
first half of the food source’s fitness is taken as the
target of the employed bees, and the rest is left to
the onlooker bees

(3) According to formula (1), all bees explore the vicinity
of the initial source and calculate the concentration of
the food source. When the concentration of the new
food source is greater than that of the original one,
the original food source will be replaced by the better
one. If the opposite is true, the bees will continue
to explore

V j
i = Xj

i + ξji X j
i − Xj

k

� �
+ 1:5λj

i X j
best − Xj

i

� �
, ð6Þ

where V j
i refers to the jth component of the food source

location of the ith bee, j ∈ f1, 2,⋯,Dg ; k ∈ f1, 2,⋯,N/2g,
i ∈ f1, 2,⋯,N/2g and k ≠ i ; ξji and λ

j
i are random numbers

between ½−1, 1� ; and Xj
best is the best food source location

in the general information of the food source

(4) Onlooker bees explore the food source. The onlooker
bees use the Russian roulette rule to select food
sources, as shown in formula (2); that is, the food
source is selected with a probability proportional to
the concentration of the food sources determined
by the employed bees and is explored in the vicinity
according to formula (3). If the concentration of the
obtained food source is higher than the concentration
of the original food source, the original food source is
replaced, and if not, the exploration is continued

P =
f Xið Þ

∑Ne
m=1 f Xmð Þ

,

V j
Neib
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best

= Xj
Neib
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best

+ ξji X j
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� �
,
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where the value of Ne is N/2, referring to the number of
employed bees. P refers to the probability of selecting a cer-
tain food source; f ðXiÞ refers to the concentration of the ith
and f ðXmÞ refers to the mth food sources; ðXj

NeibÞbest refers
to the food source position that has the largest concentration
in the adjacent area; and ðV j

NeibÞbest refers to the location of
the new food source of onlooker bees. The Chebyshev dis-
tance formula is used to calculate the best point in the neigh-
borhood, which is shown in formula (4):

d i, tð Þ = lim
q⟶+∞

〠
D

j=1
Xj
i − Xj

t

��� ���q
 !1/q

, ð8Þ

where j ∈ f1, 2,⋯,Dg and dði, tÞ is the Chebyshev distance
between Xi and Xt .

The neighborhood of Xi is determined by formula (5),
which means that if the Chebyshev distance between Xi
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and Xt is less than or equal to the product of r (the neighbor-
hood radius) andmdi (the average Chebyshev distance), then
Xt locates in the neighborhood of Xi; otherwise, it does not:

d i, tð Þ ≤ r ∗mdi, t ∈ S,

d i, tð Þ ≥ r ∗mdi, t ∉ S,

(
ð9Þ

wheremdi is the average Chebyshev distance between Xi and
the entire onlooker bee population, S is the neighborhood of
Xi, and r is the radius of the neighborhood. When r is 1, the
algorithm has the best convergence.

ðXNeibÞbest is calculated by

fit XNeibð Þbest
� �

=max fit XNeibð Þ1
� �

, fit XNeibð Þ2
� �

,⋯,fit XNeibð ÞS
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,

ð10Þ

where fitðÞ refers to the individual fitness of each bee.
For the purpose of testing the performance of the above

algorithm, the ABC algorithm and the genetic algorithm
[34] (GA) are used for comparative analysis.

The algorithm parameters of IABC and ABC are set the
same, and the total number of bee colonies is 200, among
which the number of employed bees is 100, the number of
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Figure 2: Schematic diagram of the point distribution of the full-blade parametric method.
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onlooker bees is 100, the maximum number of explorations
is 100, and the maximum number of iterations is 200. The
GA algorithm has 200 chromosomes and 200 iterations and
a crossover probability of 0.8 and mutation probability of
0.005. Since these algorithms are probabilistic algorithms,
the result of each calculation is uncertain, so the average min-
imum value of 30 independent cycles is used for comparison.
The comparison results are shown in Table 1.

Table 1 shows that the IABC algorithm has obvious
advantages for the first three benchmark functions. The min-
imum value obtained is approximately 10 orders of magni-
tude smaller than that for the other two algorithms. For the
Rosenbrock function, the ABC algorithm is optimal, but the
IABC algorithm is at the same level, and the disadvantage is
not obvious. For the Zakharov function, the GA is optimal,
but the IABC algorithm is suboptimal by less than an order
of magnitude; hence, the disadvantage is acceptable.

Figure 4 shows the convergence history of these bench-
mark functions. It can be seen that IABC has a better and fas-
ter convergence performance in the first four benchmark
function tests than the other algorithms.

2.3. Optimization Strategy. Engineering optimization often
does not require an optimal solution, but only an optimized
solution that is better than the original one. In this case, a
certain optimization strategy is needed to shorten the optimi-
zation cost. The advanced parametric methods and optimiza-
tion algorithms introduced in Sections 2 and 3 reduce the
dimensionality of the optimization task for the multistage
axial compressor, thus reducing the optimization calculation
cost to a certain extent. However, considering the high cost of
the high-fidelity numerical calculation of multistage axial
compressors, it is necessary to further adopt an appropriate
optimization strategy to complete the optimization task within
the acceptable time range of the project. This article uses a
combination of the following three optimization strategies.

2.3.1. Coarse Grid Optimization and Fine Grid Verification.
The literature [36, 37] notes that the coarse mesh has been
able to capture the near wall viscosity, so coarse and fine
meshes can predict the same trend of performance variation
during optimization. Although the computing power of com-
puter is improving, it is still insufficient for the high-precision
design optimization of multistage axial compressor. There-
fore, it is still necessary to adopt certain optimization strate-
gies to reduce the time consumption of single flow field
calculation. “Coarse mesh optimization, fine mesh verifica-
tion” is a common and effective strategy to reduce the time
consumption of single flow field calculation. The flow field
calculation in the optimization process uses a coarser grid,
and after obtaining the optimization solution, a fine grid is

used to check the calculation to obtain the optimized solution
under the high-fidelity flow field calculation.

2.3.2. Multitask Concurrent Parallel Computing Based on the
IABC Algorithm and Supercomputing Platform. Since
evolutionary algorithm optimization does not depend on
the gradient information of the function, it naturally pos-
sesses multitask concurrent computing capabilities. Using
China’s advanced “Taihu Lake Supernatural Light” super-
computing platform, a multitask concurrent optimization
system based on the IABC algorithm is built, which can
reduce the optimization time considerably. Figure 5 shows
a schematic diagram of the multitask concurrent system
based on the IABC algorithm and the supercomputing plat-
form. On the user’s computer, the initial blade is used as
the input of the program to start the optimization algorithm;
initialize the food source distribution; iteratively conduct
employed bee, onlooker bee, and detector bee optimization;
and record the location of the best food source for each bee
colony generation (i.e., the optimal solution for each genera-
tion). If the loop exit condition has not been met, then the
loop is continued. In any loop iteration, the initial food
source, employed bees, onlooker bees, and detector bees all
adopt a concurrent mechanism, so the login node needs to
be started as an intermediary. Since there is an upper limit
for supercomputing concurrence, the number of concurrent
bee colonies must be limited to Max_Run; that is, Max_
Run bees are concurrently processed. After counting one
bee, the next new bee is started to join the parallel. The pro-
cess of concurrent bees is shown on the user’s computer as
Max_Run. New geometry files are generated through the
parametric model and then placed in the corresponding
Max_Run new engineering task folder. At the login node,
multitask files are generated through scripts, and then, mul-
titask files are assigned. The function of the multitask file is
to start a remote computing node to perform concurrent
computing. On the computing node, each task runs indepen-
dently and must complete three steps, namely, grid genera-
tion, flow field calculation, and postprocessing analysis. On
the login node, the script responsible for regularly detecting
the status of the computing node runs at all times. If an engi-
neering task in the computing node ends, performance
results will be written in donelist.txt, and a line of donelist.txt
will be added. At this time, by regularly synchronizing done-
list.txt on the user’s computer and the login node, the opera-
tion status on the local user’s computer is known, and a
decision on whether to dispatch a new bee can be made.
Eventually, the entire optimization cycle reaches the set
number of iteration steps and exits the cycle to obtain the
optimized blade for this case.

Table 1: Performance comparison of the IABC, GA, and ABC algorithms based on 5 benchmark functions [35].

Minimum Griewank Sphere Rastrigin Rosenbrock Zakharov

GA 1:05E00 2:42E − 02 3:08E + 01 1:94E + 02 8:20E + 01

ABC 3:91E − 01 4:30E − 03 1:95E + 01 2:53E + 01 2:35E + 02

IABC 2:98E − 10 3:38E − 12 4:12E − 10 2:71E + 01 1:55E + 02
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2.3.3. Phased Parameterization Strategy. To find the closest
possible global optimal solution of the design space within
the limited number of iterations, it is necessary to further
study the exploration and exploitation strategy of the design
space. The IABC algorithm mentioned in the third section
uses a Latin square distribution instead of a random distribu-

tion, which can improve the efficiency of space exploration in
the initialization phase, but it has not yet been able to affect
the efficiency of the exploration and exploitation of the
design space in the optimization process. To solve this prob-
lem, drawing on the sample training in the surrogate model
and the idea of “exploration first, exploitation later” of the
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Figure 4: Comparison of the convergence history of the three algorithms based on the 5 benchmark functions.
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evolutionary algorithm, this paper proposes a phased optimi-
zation strategy based on the “synchronous change in multi-
row blades”; that is, the aerodynamic optimization process
of the multistage axial compressor is divided into two phases,
as Figure 6 shows.

The first phase: the “synchronous change in multirow
blades” strategy is adopted; that is, for the purpose of explor-
ing the design space at a large step, each blade row of the
multistage axial compressor is modified in the same way
and by the same amount. After the optimization reaches a
certain number of steps, which is determined according to
the designer’s experience, the decision of when to end the
first phase of the optimization exploration is made, and the
optimized blade of the first phase is obtained. The first phase
focuses on the exploration of the design space.

After the first phase, the optimization process comes to a
temporary end and the existing optimization results are ana-

lyzed to identify the most promising blade rows and corre-
sponding blade regions (largest loss in this area). These
blade rows and blade regions are selected for the second
phase of automatic optimization. In this analysis and selec-
tion process, the experience of the designer is incorporated.

The second phase: it is the independent optimization of
the above selected potential blade rows. The aim is to build
on the results of the first phase of exploration to enable fur-
ther exploitation of the corresponding design space to obtain
better performing blade shapes.

The phased optimization strategy based on the “synchro-
nous change in multirow blades” can play a practical role in
the aerodynamic optimization of multistage axial compres-
sors for the following two reasons:

(1) The optimized solution only exists in a few small local
areas in the huge design space. In the evolutionary
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Figure 6: Optimization strategy diagram.
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Figure 7: Comparison of the experimental and calculated values of the compressor performance at the design speed.
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algorithm, the change in each blade row in each opti-
mization iteration is very small, and it is difficult to
quickly explore the design space. If only the number
of variables of each optimization in the algorithm is
increased, then it is easy to increase the possibility of
the mutual cancellation of the effects of different vari-
ables, but it is also difficult to quickly explore the
space. The “synchronous change in multirow blades”
strategy can increase the pace of exploration and
greatly increase the probability of finding the opti-
mized solution neighborhood within a limited num-
ber of iterations

(2) After the first phase, the designer’s experience is
utilized to analyze the flow field so that fewer optimi-
zation variables need to be used for targeted optimi-
zation exploitation in the second phase, avoiding
invalid exploration of the design space and improv-
ing the optimization efficiency

3. Optimization Case Verification and Analysis

3.1. Optimization Object. The optimization example used in
this paper to verify the effectiveness of the above optimiza-
tion method is the AL-31F four-stage axial low-pressure

compressor, with a total of ten rows of blades, as shown in
Figure 7. The inlet is a guide vane, and the outlet is tandem.
The reason for using a tandem blade in the last stage of the
stator blade is to ensure that the outlet airflow is along the
axial direction and at the same time to avoid large separation.
If only one stator blade is used, the blade-camber angle of
that stator blade will be too large, and thus, the airflow will
be prone to large separation at the back of the blade, causing
great losses and even stalling and surging. Compared with
the performance of international advanced low-pressure
compressors, as shown in Table 2, it can be seen that the aver-
age stage pressure ratio, adiabatic efficiency, and surge margin
of the AL-31F four-stage low-pressure compressors have a
certain gap compared with other advanced low-pressure
compressors. Therefore, there is some room for improvement
in the AL-31F’s aerodynamic optimization design.

3.2. Numerical Method Verification. A CFD numerical simu-
lation uses the Fine module of NUMECA to solve the three-
dimensional Reynolds average N-S equation in finite volume
form. The Autogrid5 module of NUMECA is used to gener-
ate the grid, and the grid topology of the flow passage and
blade is established automatically. In this test case, the model
without tip clearance and the Spalart-Allmaras one-equation
turbulence model are adopted. The time discretization is

Table 2: Performance comparison between the AL-31F low-pressure compressor and advanced international low-pressure compressors.

Low-pressure compressor Total pressure ratio Number of stage Average pressure ratio Adiabatic efficiency Surge margin (%)

AL-31F 3.6 4 1.377 0.81 14.9

F100-PW-100 3.1 3 1.458 0.81 22

F100-PW-229 3.2 3 1.473 0.81 22

F110-GE 3.1 3 1.458 0.825

F404-GE-400 ≥3.7 3 ≥1.547 0.83

Inlet:
total pressure 101325 Pa
total temperature 293.15 K
air flow axial direction

Tip:
non-slip adiabatic wall

Outlet:
average static
pressure

Rotor/stator interface:
non-reflecting 2D

Rotation speed: 10,200 rpm

Outlet tandem blade

Inlet guide vane

S0

R1
S1

S2
S3

S4 S5

R2
R3

R4

Figure 8: Calculation domain and boundary condition setting for four-stage low-pressure compressor.
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solved by the fourth-order explicit Runge-Kutta method,
while the false oscillation near the shock discontinuity and
other small oscillations are controlled by the central differ-
ence scheme and artificial viscosity. To accelerate calculation
convergence, the local time step, the implicit residual fairing,
and multigrid technique are utilized.

The calculation domain and boundary condition setting
for four-stage low-pressure compressor are shown in
Figure 8. The total temperature at the inlet boundary is
293.15K, the total pressure is 101,325Pa, and the inlet air
flow direction is axial. The boundary of the solid wall is adi-
abatic and slip-free. Given the back pressure at the outlet
boundary, by gradually adjusting the outlet back pressure
during the calculation process, it will advance towards the

near stall point and the blocking point. The near stall point
is the condition before calculating divergence that arises from
increasing the back pressure of the design point, and the
blocking point is the condition before calculating divergence
that arises from reducing the back pressure of the design
point.

Figure 7 shows the comparison between the characteristic
curve of the low-pressure compressor at the design speed
obtained by numerical simulation and the experimental data.
At the design speed, the maximum pressure ratio measured
in the experiment is 4.05, the maximum pressure ratio
obtained by simulation is 4.18, and the simulated value is
3.2% larger than the experimental value. Figure 7(b) illus-
trates that the simulated value of the maximum efficiency is
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Figure 9: Grid independence verification.
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1.5% larger than the experimental value. At the design speed,
the calculated pressure ratio range and efficiency range are
larger than the experimental values, and the flow margin is
small. The simulated design speed margin is 10.2%, and the
experimentally measured margin is 14.9%. However, the cal-
culated characteristic curve of the low-pressure compressor is
consistent with the trend of the experimental curve, which
proves the validity of the numerical simulation method.

To make the verification results more credible, grid inde-
pendence verification is performed on the optimized objects.
Figure 9(a) shows the grid of the three-dimensional blade,
Figure 9(b) shows the B2B grids of hub section, and
Figure 9(c) shows the calculation performance of four sets
of grids under a backpressure of 300,000 Pa. The mesh qual-
ity satisfies the near wall condition y+ < 2. As seen from
Figure 9(c), when the number of single channel grids in each
row of blades reaches approximately 1 million, the changes in
efficiency and pressure ratio are very small, so it is reasonable
to believe that the third set of grids (on average, 930,000 per
single passage of a blade) has met the grid independence
requirements. However, by considering further shortening
the optimization time, the “coarse grid optimization, fine grid
verification” strategy is adopted, in which the first set of grids
(average 250,000 per single passage of a blade) is used in the
optimization process and the third set of grids is used for the
flow field calculation of the optimization results.

3.3. Optimization Framework Construction. Figure 10 shows
the optimization process. First, the flow field of the initial
blade is calculated. If the performance does not meet the
requirements, it enters into the optimization cycle. The IABC
algorithm is adopted, which includes four steps: initializa-
tion, exploration of employed bees, exploration of onlooker
bees, and establishment of detector bees. Each step will pro-
duce a corresponding number of new food sources, and each

food source position represents a new set of control parame-
ters. A new blade is generated under the full-blade surface
parametric control method, and then, mesh generation, flow
field calculation, and performance analysis are carried out for
the new blade. If the requirements are met, the optimization
will exit the cycle, and the optimized blade will be obtained;
otherwise, the iterative optimization of the cycle will be con-
tinued. Usually, the decision regarding when to exit the cycle
should depend on the designer’s experience.

3.4. Optimization Settings and Result Analysis. The three
optimization strategies described in Section 4 are combined
to conduct the optimization task of the four-stage low-
pressure compressor in two phases.

3.4.1. The First Phase: Optimization Based on the “Synchronous
Change in Multirow Blades.”

(1) Optimization Goals and Constraints in the First Phase.
From the comparison of the above numerical simulation
and experimental results, it can be seen that the efficiency
and surge margin of the design speed of the AL-31F four-
stage low-pressure compressor still have room for improve-
ment. Therefore, the optimization objective of the first phase
is mainly to maximize the efficiency of the design point, tak-
ing into account the surge margin improvement. According
to the author’s optimization experience, when 340,000 Pa of
back pressure near the stall point is selected as the optimiza-
tion condition and the adiabatic efficiency under the back
pressure is taken as the objective function of the optimization
process, an optimization solution that can improve the
design point efficiency and surge margin can be obtained
under the condition that only one flow field calculation is
carried out in each optimization iteration. The flow rate con-
straint changes within 1%, and the total pressure ratio does
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not decrease, and the setting of the objective function and
constraint conditions in the actual optimization process is
shown in

maximize f xð Þ
with respect to x

subject to TPR − TPRori ≥ 0
mass‐massori

massori

����
���� ≤ 1:0%

xLi ≤ xi ≤ xUi ,

ð11Þ

where eff refers to the adiabatic efficiency under opti-
mized conditions; TPR and TPRori refer to the total pressure
ratio in the optimization process and the total pressure ratio
of the original compressor, respectively; mass and massori
refer to the flow rate in the optimization process and the flow
rate of the original compressor, respectively; minus is the
minimum value given by experts; and xi refers to the optimi-
zation variable, whose lower and upper limits are xLi and xUi ,
respectively. The solutions that do not satisfy the constraints
are directly excluded from the IABC program, and the next
generation of bees will not converge towards this food source,
or the probability of convergence towards this source is
almost zero. In this way, the function of constraint can be
realized in an unconstrained algorithm.

The formulas for TPR, eff , and SM are as follows:

TPR =
Pout
Pin

,

eff =
TPR k−1ð Þ/k − 1
Tout/T in − 1

,

SM =
TPRs/masss

TPR0/mass0
− 1

	 

× 100%,

ð12Þ

where Pout and Pin are the total pressure ratios at the outlet
and inlet, respectively; k is the specific heat ratio; Tout and
T in are the total temperature at the outlet and inlet, respec-
tively; SM refers to the comprehensive surge margin; and
TPRs and TPR0 refer to the total pressure ratios at the surge
point and design point, respectively.

(2) Optimization Settings in the First Phase. The full-blade
surface parametric method is utilized, and all the blade rows
are changed synchronously, with 16 design variables per row.
The four parameters controlling the leading edge are within
[-5.0, 5.0]mm, and the 12 parameters controlling the blade
body geometry are within [-6.0, 6.0]mm. In the IABC opti-
mization algorithm, the population size is 100, and the num-
ber of iterations is 8. The maximum number of mines is 3,
which means that the maximum number of times the next
generation of bees can explore at a particular previous gener-
ation of food source cannot exceed three times. That is, if the
calculated fitness is smaller than the original one three times

in a row, a new food source needs to be generated randomly
again. On the supercomputing platform, approximately 850
calculations were carried out, and among them, the effective
point was approximately 800 (the invalid points that did
not meet the constraints were removed). Each optimization
task needs 27 cores in parallel, and up to 24 tasks can be per-
formed concurrently (when the task is not queued after
supercomputing). The optimization time of each optimiza-
tion task is 30min; this process takes approximately 30 hours
in total.

(3) Optimization Results and Comparative Analysis in the
First Phase. Table 3 shows the performance of the four-
stage low-pressure compressor at the design point with the
design speed. It can be seen that under the premise of the
“synchronous change in multirow blades” strategy in the first
phase, the optimized blade meets the constraints of the flow
and pressure ratio, and the efficiency increases by 0.48%
and the surge margin 4.8%.

As shown in Figure 11, the static pressure and Mach
number distribution in the hub, middle, and tip sections of
the optimized solution in the first phase are presented. The
losses in the R3 and R4 flow fields are not shown because they
are not significant. It is illustrated that the positive incidence
angles of airflow of R1 and R2 at the hub and middle sections
are too large; the airflow at the leading edge is accelerated,
thus increasing the shock wave intensity; and the maximum
Mach number at the middle reaches 1.4, leading to a corre-
sponding large loss at the tip section. At the same time, it
can also be noted that there are two other relatively large
low-speed areas: one is the tip trailing edge of S1 and the
other is the outlet of S5 at the tip, thus causing corresponding
loss. Therefore, these areas should be the target of the exploi-
tation optimization in the second phase.

3.4.2. The Second Phase: Optimization Based on
Exploitation Strategy

(1) Optimization Objectives and Constraints in the Second
Phase. According to the flow field analysis of the optimized
blade in the first phase, the control variables of the leading
edge at the hub and the middle of R1 and R2, the leading edge
at the tip of R3, the leading edge at the tip of S1, and the blade
body at the middle and tip of S5 are selected as the design

Table 3: Performance at the design point before and after
optimization in the first phase.

Design
point

Mass flow
(kg/s)

Total
pressure
ratio

Adiabatic
efficiency

Surge
margin

Original
blade

112.1 3.54 0.8207 10.2%

Optimized
blade

112.7 3.55 0.8255 15%

Relative
change

+0.54% +0.28% +0.48% +4.8%
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variables of the second phase. The rest of the blade row is
fixed to the optimized blade obtained in the first phase.

The optimization objectives, conditions, and constraints
of the second phase are the same as those in the first phase.

(2) Optimization Parameter Settings in the Second Phase.
After the flow field calculation and analysis of the optimized
geometry obtained in the first phase, a total of five rows of
blade geometry of R1, R2, R3, S1, and S5 are selected as opti-
mized in the second phase. To reduce the optimization
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Figure 11: Static pressure and Mach number distribution at the hub, middle, and tip sections in the first phase.
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Figure 12: Continued.
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Figure 12: Distribution diagram of the control points of each selected blade in the second phase.

Table 4: Time consumption comparison of different optimization methods.

Number of control
parameters

Number of flow field
calculations

Single flow field
calculation time

Whether
concurrent

Total time cost

Direct evolutionary
optimization methods

>100 >10000 30min
No >5000 h
Yes >421 h

Surrogate model method >100 3000 30min
No >1500 h
Yes >126

DOE method >100 2000 30min
No >1000 h
Yes >84 h

Method proposed in
this paper

Phase 1: 16
Phase 2: 25

Phase 1: 850
Phase 2: 1000

30min Yes 30 h + 48 h = 78 h
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variables for R1, R2, R3, and S1, the leading edge control
parameters are optimized to reduce the positive incidence
angle. To reduce the optimization variables for S1 and S5,
the blade body is controlled in addition to the leading edge
variables. Refer to Figure 12 for the specified control variables
of each row: all the green points are leading edge control
points, which are variable in the radial direction, but the four
points of the same row must keep pace to avoid distortion at
the leading edge; all the red points are blade-independent
control points, and all the black points are fixed points.

In the second phase, the optimization parameters are set
as follows: the full-blade surface parametric method is still
adopted, with a total of 25 optimization variables. The 3 con-
trol parameters of the leading edge of R1 and R2 and the 2
control parameters of the leading edge at the hub of R3 all
change within the range [-6.0, 0.0]mm. The variation range
of the 8 control parameters of S1 and 9 control parameters
of S5 is within [-6.0, 6.0]mm. The number of iterations is
10, the size of the bee colony in the IABC optimization algo-
rithm is 100, and the maximum number of exploitations is 3.
On the supercomputing platform, a total of approximately
1,000 calculations are performed, and the number of effective
points is approximately 980 (without the invalid points vio-
lating the constraints). Each optimization task requires 27
cores in parallel, and a maximum of 24 tasks can be per-
formed concurrently (under the condition that the tasks are
not queued up). The optimization time of each optimization

task is 30min, and the optimization takes approximately 48
hours in the second phase.

The time consumption of the optimization method pro-
posed in this paper is compared with the conventional
method in Table 4. From Table 4, it can be seen that the
proposed optimization method can greatly reduce the
number of control variables in the optimization process, thus
greatly reducing the times of flow field calculations required.
At the same time, the optimization time can be reduced by
an order of magnitude due to the construction of a
supercomputing-based concurrent system. Although the
optimization time of the DOE (design of experiment) method
is not too long, it only has the function of global exploration
and does not have the ability of local exploitation. The
proposed method in this paper has the shortest optimization
consumption time among several methods.

(3) Comparative Analysis of the Optimization Results in the
Second Phase. Since a single-objective optimization (adiabatic
efficiency) is adopted in the second phase, it cannot find a
solution that is superior to the optimized solution found in
the first phase in terms of adiabatic efficiency and the surge
margin in the results. According to the designer’s experience
and needs, the point where the adiabatic efficiency is most
improved and the surge margin is slightly decreased is selected
as our final optimized solution. Table 5 shows a performance
comparison of the optimization design point before and after
optimization in the second phase. It can be seen from the table

Table 5: Performance comparison before and after optimization at the design point in the two phases.

Design point Mass flow (kg/s) Total pressure ratio Adiabatic efficiency Surge margin

Original blade 112.1 3.54 0.8207 10.2%

Optimized blade of the first phase 112.7 3.55 0.8255 15%

Optimized blade of the second phase 112.2 3.55 0.8274 13.3%

Relative change +0.08% +0.28% +0.67% +3.1%
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Figure 13: Comparison of the performance between the optimized blade and original blade in the second phase.
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Figure 14: Continued.
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that after two phases of optimization, the mass flow rate and
pressure ratio at the design point of the optimized blade are
almost unchanged, while the adiabatic efficiency increases by
0.67% and the surge margin 3.1%. Comparing the optimiza-
tion results of the first phase and the second phase, it can be
seen that the adiabatic efficiency of the design point in the
second phase increases by 0.19%, while the surge margin
decreases by 1.7%.

Figure 13 shows a performance comparison between the
optimized blade of the second phase and the original one.
The change in the flow rate of the four-stage low-pressure
compressor after optimization is almost 0. This is a common
situation in multistage axial flow compressors. This situation
indicates that although the back pressure is changing, there is
a flow rate restriction in one or more stages in the multistage
compressor, probably due to the fact that it has stalled there.
We tend to expand the flow surge margin by adjusting the
angle of multiple rows of stator blades in the normal operat-
ing condition of a multistage axial compressor. Our optimi-
zation process does not consider the adjustment of the
angle of the stator blades, so it appears as a straight line on
the pressurizer characteristic graph. The optimized blade
can maintain a high flow rate even under higher back pres-
sure and thus improve its surge margin.

Each blade row changed before and after optimization.
Figure 14 shows the geometric comparison of R1, R2, R3,
R4, S1, S2, and S5 before and after optimization. Among

them, R4 and S2 underwent only one optimization, and the
rest of the blade deformations that underwent only one
optimization were similar to them. R1, R2, R3, S1, and S5
underwent two optimizations.

From Figures 14(d) and 14(f), it can be seen that the hub
and tip shape of the optimized R4 becomes thinner and the
blade-camber angle increases slightly; the leading edge part of
the middle airfoil is basically unchanged, while the blade angle
at the trailing edge increases slightly; thus, the blade-camber
angle increases slightly; while the optimized S2 is the opposite
of R4, after optimization, the hub and tip airfoils of S2 become
thicker and the blade-camber angle becomes smaller, while the
blade-camber angle of the middle airfoil decreases slightly.

From Figure 14(a), it can be seen that the hub blade-
camber angle of R1 slightly increases, and the middle and
tip airfoils do not change much with only a slight normal
shift. From Figures 14(b) and 14(c), it can be seen that the
hub blade-camber angle of the optimized R2 and R3
increases significantly and the leading edge blade angle
decreases. The middle airfoil is similar to the hub, except that
the degree is reduced.

For S1, the optimized blade-camber angle at the hub,
middle, and tip regions was reduced, most significantly at
the tip regions, as shown in Figure 14(e). For S5, the
optimized blade-camber angles at the hub and the tip were
significantly reduced, most significantly at the tip, and the
blade-camber angle at the middle increased, as shown in
Figure 14(g).
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Figure 14: Geometric changes before and after optimization.

19International Journal of Aerospace Engineering



Ma 0 0.1

1.4

0.8

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

0

1.4

0.8
0.2

(a) Hub of the original R2 (b) Hub of the optimized R2

1.4
0

1.2
0.2

(c) Hub of the original R3 (d) Hub of the optimized R3

1.4 1.4

(e) Midspan of the original R3 (f) Midspan of the optimized R3

Ma

0.4
0.4

0.4 0.36 0.32
0.24

0.28
0.28

0 0.04 0.08 0.12 0.16 0.2 0.24 0.28 0.32 0.36 0.4

(g) Tip of the original S5 (h) Tip of the optimized S5

Figure 15: Comparison of the relative Mach number at the hub of R2, R3 and at the tip of S5 before and after optimization.

20 International Journal of Aerospace Engineering



Axial direction

St
at

ic
 p

re
ss

ur
e

1.5 2 2.5 3 3.5

0.5

1

1.5

2

2.5

3

3.5

S2

S0
R1

S1

R3

R2

S3

S5R4 S4

Opt
Ori

(a) Hub

Axial direction

St
at

ic
 p

re
ss

ur
e

1 1.5 2

0.5

1

1.5

2

2.5

3

3.5

R3
S0

R1 S1

S5

R2
S2

S3
R4

S4

Opt
Ori

(b) Middle

Axial direction

St
at

ic
 p

re
ss

ur
e

0.5 1 1.5
0.5

1

1.5

2

2.5

3

3.5

S2

S0
R1

S1
R3

R2

S3

S5

R4
S4

Ori
Opt

(c) Tip

Figure 16: Comparison of the static pressure distribution before and after optimization.

21International Journal of Aerospace Engineering



(4) Comparative Analysis in the Second Phase. The flow field
before and after optimization should be compared and ana-
lyzed. However, it is difficult to highlight the details of the
local flow field if all of them are displayed indiscriminately.
Therefore, in order to better reveal the reason for the perfor-
mance improvement of the optimized blade, typical blade
rows are chosen for flow field analysis. The flow field changes
in the four rotor blades are similar, and the flow field details
of the typical blade row regions are selected to show and ana-
lyze the changes before and after optimization. Figure 15
shows a comparison of the relative Mach number distribu-
tion at the hub, midspan, and tip of R2, R3, and S5.
Figure 16 illustrates the static pressure distribution of each
row of blades at the hub, midspan, and tip. Combined with
Figures 14–16, it can be seen that although the blade-
camber angle of the hub and mid airfoil shapes of the
optimized R2 and R3 becomes larger, the inverse pressure
gradient near the trailing edge is reduced due to the change
in load and slightly thinner thickness, resulting in a signifi-
cant reduction in the airflow separation area at this location
and a reduction in the airflow loss there. The situation of R3
is basically the same as that of R2. As seen from Figures 15(g)
and 15(h), as the blade-camber angle of the optimized tandem
S5 tip is reduced, the back pressure gradient near the trailing
edge is reduced, and hence, the low-speed region caused by air-
flow mixing at the trailing edge of S5 is significantly reduced.

As a result, the flow in the channel is smoother, thereby reduc-
ing the airflow loss in the S5 outlet area.

The limit streamlines on the suction side of R1, R2, R3,
and R4 are shown in Figure 17. From Figures 17(a)–17(d),
it can be seen that for R1 and R2, the changes before and after
optimization are not significant; for R3, there are large
changes before and after optimization. The closed separation
area at the tip of the optimized R3 is significantly reduced
after optimization, thus reducing the corresponding loss. In
addition, the separation line of the optimized R3 is shortened
in the radial direction and thus reduce the radial separation
area. At the same time, it can be observed that the optimized
R3 will be attached again after separation, and then, a second
separation line will be formed, reducing the separation area
along the flow direction and thus reducing the corresponding
separation loss. For R4, the optimized R4 has an additional
reflux region at the tip, which increases the loss at the tip.
For R4, original R4 has an additional reflux region at the
tip, which increases the loss at the tip.

Figure 18 shows the entropy distribution at midspan and
tip section before and after optimization, from which it can
be seen that the entropy value of the airflow is significantly
lower after optimization (such as regions A, B, C, D, E, and
F), which indicates a smoother airflow and a corresponding
reduction in losses.
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Figure 17: Comparison of limit streamlines on the suction surfaces before and after optimization.
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Based on the above analysis, it can be seen that after two
phases of optimization, the R2 and R3 blade has a reduced
reverse pressure gradient near the trailing edge at the hub
and middle, resulting in a significant reduction in the separa-
tion area after the shock wave, and a separation bubble for
reattachment is formed under these conditions (shown as
optimized R3), thus reducing the corresponding loss and
improving the efficiency. The reverse pressure gradient near
the trailing edge of the S5 blade is also reduced due to the
reduction of the blade-camber angle at the tip, narrowing
the low-speed area near the trailing edge and downstream
and reducing the corresponding airflow loss.

4. Conclusion

This paper proposes a new optimization method for high-
fidelity global optimization of multistage axial compressors
based on the full-blade surface parameterization. The new
method is applied to the optimization of the AL-31F four-

stage low-pressure compressor aerodynamics. The following
conclusions are drawn:

(1) Compared with the traditional parametric method, the
full-blade surface parametric method can effectively
reduce the dimensionality and promote the solution
of the HEB problem for a multistage axial flow
compressor. At the same time, compared with the
semiblade surface parametric method, the full-blade
surface parametric method increases the degree of free-
dom of the blade angle change, therefore enhancing the
probability of the existence of an optimal solution

(2) After verifying on the benchmark function, the IABC
algorithm is shown to have better optimization per-
formance than the GA and ABC algorithms. The
initialization method and exploration mechanism
are applicable to the multipeak problem of multistage
axial compressor optimization
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Figure 18: Comparison of entropy distribution at the midspan and tip section before and after optimization.
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(3) The phased optimization strategy based on the
“synchronous change in multirow blades” achieves
a good balance between global exploration and local
development. By introducing expert experience, the
exploration of an invalid design space by optimiza-
tion algorithms is avoided, and the optimization
efficiency is greatly improved

(4) The new optimization method based on the full-
blade parameterization can be successfully applied
to the AL-31F four-stage low-pressure compressor.
When the flow and pressure ratio meet the con-
straints, the adiabatic efficiency and surge margin
are increased by 0.67% and 3.1%, respectively

Abbreviations

HEB: High dimensionality, expensive cost, and black box
PDE: Partial differential equations
CST: Class-shape function transformation
IABC: Improved artificial bee colony
ABC: Artificial bee colony
GA: Genetic algorithm
3D: Three dimensional
Ori: Original
Opt: Optimized
mm: Millimeter
rad: Radian
TPR: Total pressure ratio
eff: Efficiency
SM: Surge margin
DOE: Design of experiment
Max_Run: The maximum number of tasks that can be

concurrent at one time.
Nomenclature
ξ: Chordwise direction
η: Spanwise direction
np: Number of data points
ns: Total number of sections
T lj: Sum of the chord lengths of each segment of the

jth section in the η direction
T Li: Sum of the chord lengths of the ith section in the

ξ direction
lm: The mth chord length of the jth section in the η

direction
Ln: The nth chord length of the ith section in the ξ

direction

R
!
: The change value of each point on the perturbed

surface
Pk,l: ðm + 1Þ × ðn + 1Þ control points of the perturbed

surface
Bm
l ðvÞ: Bernstein basis functions

Bn
kðuÞ: Bernstein basis functions

v, u: Independent coordinate variables of the per-
turbed surface

Cn
k : Combination number

Xi: Feasible solution
V j

i : The jth component of the food source location
of the ith bee

ξji : Random numbers

λ j
i : Random numbers

Xj
best: The best food source location in the general

information of the food source
Ne: Number of employed bees
P: Probability of selecting a certain food source
f ðXiÞ: Concentration of the ith food sources
f ðXmÞ: Concentration of the mth food sources
ðXj

NeibÞbest: Food source position that has the largest
concentration in the adjacent area

ðV j
NeibÞbest: The location of the new food source of onlooker

bees
dði, tÞ: Chebyshev distance between Xi and Xt
mdi: Average Chebyshev distance between Xi and the

entire onlooker bee population
r: Radius of the neighborhood
fitðÞ: Individual fitness of each bee
Pout: The total pressure ratios at the outlet
Pin: The total pressure ratios at the inlet
Tout: The total temperature at the outlet
T in: The total temperature at the inlet.
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