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A common assumption in SAR image formation and processing algorithms is that the chirp rates of the transmitted and received
radar signals are exactly the same. Dechirp processing is also done based on this common assumption. In real scenarios, the chirp
rate of the received signal is different from that of the transmitted signal due to several reasons. In case the difference between the
chirp rates of the transmitted and received signals is obvious, the demodulation and compression of the received pulse are not
carried out precisely and defocusing the targets and the output images of the SAR processor results. In the present paper, a
new technique is proposed to improve the image formation quality of SAR by exploiting chirp rate estimation methods. Based
on the proposed technique, the chirp rate of the received signal is estimated, and then, dechirp is carried out by using a time-
reversed complex conjugate filter constructed based on the estimated chirp rate. In this stage, the existing chirp rate estimation
algorithms can be used. The quality of the output image is assessed using PSLR as a quantitative criterion and the average
number of point target extension pixels along the azimuth direction. Simulation results indicated that the smaller the average
number of point target extension pixels along with azimuth and the higher the PSLR average is, the better the output image
quality would be. Therefore, output images obtained from the proposed method by exploiting chirp rate estimation algorithms
would have a better quality with a higher PSLR average (14.1 and 13.6) and also the lower average number of point target
extension pixels along the azimuth directions (2.1 and 4.9) than the common method with PSLR average (8.3) and an average
number of point target extension pixels along the azimuth direction (7.1).

1. Introduction

Considering the principle restrictions of the optical imaging
systems with respect to the climate, the acceptable resolution
of the image, the limitation of taking images during the day-
time, and other challenges formed the idea of using the radar
systems. Synthetic aperture radars (SARs) are extensively
used for high-resolution space borne and airborne applica-
tions for monitoring the weather, climate change, and earth
resource mapping. Phased array imaging radars employ long
antennas to generate a fan beam that illuminates the ground
below. Track resolution of these radars is determined by the
beam width, while the across resolution is determined by the
pulse length. Antenna dimensions and mass of such radars
need to be confined, especially in airborne and space-borne
systems. This can severely limit the antenna aperture of the
radar and, hence, degrade its resolution. This limitation is

nowadays circumvented using signal processing techniques
in synthetic aperture radars (SARs). The SAR system is
mounted on a moving platform such as an aircraft or a sat-
ellite to achieve high-resolution images. In fact, SAR radar
uses an antenna with small real dimensions, which distrib-
utes waves along with the platform movement trajectory
and then receives the return echoes from the respective area.
After receiving the return echo from the ground surface, it
starts a special process to take images from the area. Thus,
the main characteristic of the hardware operation of SAR
is its movement over the area and transmitting and receiving
the waves, so that it can process the signals after receiving
enough echoes. Thus, the small antenna of the radar oper-
ates similarly to a large one. The synthetic aperture radar is
considered a high-resolution imaging radar. The SAR imag-
ing resolution is acceptable and significant with respect to
both range and azimuth [1–10]. Chirp signal is one of the
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most useful signals in the field of wireless communication;
the frequency of which varies with time [11–16]. When in
the specific state that the chirp signal frequency is linear with
respect to time, it is called linear frequency modulation
(LFM) [17]. Due to their widespread role in the frequency
domain, LFM signals are of considerable use in radar, Sonar,
ISAR, communications, ultrasound, geodesy, and many
other areas. The imaging of moving targets using SAR is a
specific application. The LFM is determined through two
of its main parameters, i.e., central frequency and chirp rate.
Many studies have been done for detecting and estimating
the LFM parameter. Many algorithms have been proposed
for estimating LFM signal parameters. One of its special
and significant applications regarding the estimation of the
chirp signal parameters in the radar processing algorithm
is the synthetic aperture radar (SAR). For instance, when
imaging the moving targets, finding the position and accu-
rate focus on the moving target requires exact information
regarding the chirp signal phase parameters, which is deter-
mined using two parameters of signal phase (chirp rate and
central frequency) of the target’s movement [18–22]. Due to
the SAR platform motion, the return echo is a chirp signal
with an unknown chirp rate. In order to process and form
the final image of SAR, the information about the return
chirp rate is inevitable and necessary. The precise estimation
of the chirp rate is of great importance for precisely forming
the receiver’s matched filter and, finally, improving the focus
and resolution of the final image. In airborne systems, espe-
cially drones, the platform motion compensation is carried
out. However, the precision of the motion compensation is
limited to the precision of navigation systems on the plat-
form (GPS and INS). Most of the time, it results in a residual
error. A common assumption in the proposed algorithms in
the references for the SAR image formation and processing
is that the chirp rates of the radar’s transmitted and received
signals are precisely the same. Carrying out the dechirp pro-
cessing is based on this common assumption. While in the
real scenarios, due to different reasons such as vibrations
of the platform or lack of precise calibration of the systems,
the chip rate of the received signal will be different from that
of the transmitted signals. Therefore, in case the difference
between the chirp rates of the transmitted and received sig-
nals is obvious, the demodulation and compression of the
received pulse are not carried out precisely; thus, the targets
and output images of the SAR processor are defocused. The
aim of this paper is to enhance the image formation quality
of SAR by exploiting chirp rate estimation methods. As
shown, by using desirable chirp rate estimators, it is possible
to estimate the chirp rate more accurately and, as a result, to
achieve better focus of the SAR image. This work describes a
novel technique to improve the image formation quality of
SAR. The chirp rate of the received signal is estimated, and
then, dechirp is carried out by using time-reversed complex
conjugate filter constructed based on the estimated chirp
rate. In this stage, the existing chirp rate estimation algo-
rithms can be employed. Afterwards, the output image qual-
ity is assessed using the PSLR as the quantitative criterion
and lower average number of point target extension pixels
along the azimuth direction which is compared to the com-

mon method. The paper is organized as follows. Section 2
discusses the process of SAR, and in Section 3, two different
algorithms for estimating the chirp rate are described. The
algorithm is expressed in Section 4, and the proposed tech-
nique is expressed in Section 5. The results of the simulation
are provided in Section 6. The conclusion is explained in
Section 7.

2. SAR Processing

The image resolution is considered an important parameter
among the applications of imaging. The resolution in the
azimuth directionρa is equal to the radar aperture Ls, i.e.,
multiplication of the beam width β and the distance to a tar-
get R. The beam width is determined by the ratio of the
wavelength λ and the antenna length D. Therefore, the reso-
lution in the azimuth direction ρa increases with shorter
wavelength and bigger antenna size [5]:

ρa = Ls =
λ

D
R, ð1Þ

where λ is the wavelength, D is the radar antenna length in
flight direction, and R is the distance of the target away from
radar. Geometric expression of the resolution in the azimuth
direction and the beam width in R distance are displayed in
Figure 1.

The transmitted signal by the SAR radar is always a LFM
pulse or chirp, which is stated as follows:

S tð Þ = rect
t
τp

 !
× ej2π f0t+1/2Kt2ð Þ: ð2Þ

In the above relation, rect signifies a rectangular window
function; the value of which on the span of τp equals one and
equals zero on any other position. f0 parameter indicates the
radar carrier frequency which is modulated by the frequency
rate of K (LFM modulation). The return echo signal from
the target equals the following:

R

𝜌a = Ls

D

Figure 1: Geometric expression of the resolution in the azimuth
direction [5].
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Se tð Þ = rect
t − τ

τp

 !
× ej2πf0 t−τð Þ × ej2πK t−τð Þ2 , ð3Þ

where τ is the delay of the transmit and return signal of the
radar and depends on the distance of the radar from the
target.

τ =
2r
c
≈
2R
c

1 +
x2

2R2

� �
, ð4Þ

where x is the location of the radar in the movement trajec-
tory. In fact, the radar transmits a train of the LFM modu-
lated pulse with the pulse repetition interval PRI = 1/PRF
which PRF is the pulse repetition frequency. Therefore,
the echo signal is stated as a two-dimensional signal as
follows:

Se x, tð Þ = rect
t − 2R/cð Þ

τp

 !
× ej 2πf0t− 4πR/λð Þð Þ × e −j2π/λRð Þx2

× ejπK t− 2R/cð Þð Þ2 :

ð5Þ

The received echo train demodulation that is displayed
by Seðx, tÞ will be as follows:

Se x, t : Rð Þ = rect
t
τp

 !
× e−j 4πR/λð Þ × ejπK t− 2R/cð Þð Þ2 × e −j2π/λRð Þx2 :

ð6Þ

Equation (6) signifies the response (echo) of SAR radar
from the point target with R parameter as the shortest dis-
tance between the radar and the target [5]. The following is
the impulse response of SAR:

h x, t ; Rð Þ = e−j 4πR/λð Þ × τpe
−jπKt2 sin π t/ρrð Þð Þ

π t/ρrð Þ
× Lse

j2π/λRð Þx2 sin π x/ρað Þð Þ
π x/ρað Þ ,

ð7Þ

where rðtÞ�! is the distance vector and is defined as follows:

r tð Þ�! =r 0ð Þ��!
+V

!
t +

1
2
A
!
t2, ð8Þ

where V
!

and A
!

are the vectors of velocity and acceleration
of the platform, respectively. The following is the distance
vector domain:

r tð Þ�! ≈r 0ð Þ��!
+

r 0ð Þ��!��� ��� × V
!��� ���

r 0ð Þ��!��� ��� t +
r 0ð Þ��!��� ��� × A

!��� ��� + V
!��� ���2

2 r 0ð Þ��!��� ��� t2: ð9Þ

The Doppler frequency created by the relative move-
ment between the radar and the target equals the following:

f d tð Þ = 1
2π

×
dφ tð Þ
dt

= −
2
λ
×

r 0ð Þ��!��� ��� × V
!��� ���

r 0ð Þ��!��� ��� −
2
λ
×

r 0ð Þ��!��� ��� × A
!��� ��� + V

!��� ���2
2 r 0ð Þ��!��� ��� t

= f dc + f drt:

ð10Þ

Equation (10) indicates that the Doppler signal is, in
fact, a frequency modulated pulse, in which f dc is the
Doppler centroid frequency and f dr is the Doppler fre-
quency rate (ramp of frequency variation with respect to
time). In accordance with the theory of linear systems,
SAR is a linear system comprising two match filters of
range and azimuth. The SAR input is the received (echo)
data by the radar, and its output is the processed image.
RDA has a better quality than other algorithms among
the SAR processing algorithms. Using RCMC is one of
the distinguished properties of this algorithm. In this algo-
rithm, the received energy from the point targets with the
equal range, which are placed in the separate azimuth
positions, is transferred to similar positions in the azimuth
frequency domain. The steps of RDA implementation are
displayed in Figure 2 as blocks.

3. Different Chirp Rate Estimation Algorithms

Two different algorithms employed in the present paper for
chirp rate estimation, suggested in References [23, 24], are
explained in this section.

3.1. Chirp Rate and Instantaneous Frequency Estimators for
Frequency Modulation Signals. In Reference [23], the new
chirp rate and instantaneous frequency estimators for fre-
quency modulation signals were introduced, which were
used for designing new recursive versions of vertically syn-
chrosqueezed short-time Fourier transform (STFT) using
the method explained before [25]. As discussed by Fourer
et al. [23], it is assumed that the locally analysed signal is
approximated with a Gaussian modulated linear chirp.

xðtÞ = AxðtÞejϕxðtÞ, with AxðtÞ = Axe
−ðt−txÞ2/ð2T2

xÞ, ϕxðtÞ =
φx + ωxt + αxt

2/2, andj2 = −1.
According to the definition, derivation of xðtÞ can be

stated as follows:

dx
dt

tð Þ = d
dt

ln Ax tð Þð Þð Þ + j
dϕx
dt

tð Þ
� �

x tð Þ, ð11Þ

dx
dt

tð Þ = qxt + pxð Þx tð Þ: ð12Þ

With qx = −1/T2
x + jαx and px = tx/T2

x + jωx. The term
qxt + px = −ðt − txÞ/T2

x + jðαxt + ωxÞ is often called instanta-
neous complex frequency [26, 27], and its imaginary part
is the instantaneous frequency of the signal. Differentiable
analysis window hðtÞ is considered to define the short-time
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Fourier transform (STFT) for xðtÞ with Fh
xðt, ωÞ. In this case,

the result will be as follows:

Fh
x t, ωð Þ =

ð
R
x uð Þh t − uð Þ∗e−jωudu

= e−jωt
ð
R
x t − uð Þh uð Þ∗ejωudu:

ð13Þ

The partial derivative of this term with respect to time
can be written as follows:

∂Fh
x

∂t
t, ωð Þ =

ð
R
x uð Þ dh

dt
t−uð Þ∗e−jωudu

= −jωFh
x t, ωð Þ + e−jωt

ð
R

dx
dt

t − uð Þh uð Þ∗ejωudu:
ð14Þ

If ðqxðt − uÞ + pxÞxðt − uÞ is placed, instead of ðdx/dtÞðt
− uÞ, then,

FDh
x t, ωð Þ = −qxF

τh
x t, ωð Þ + qxt + px − jωð ÞFh

x t, ωð Þ: ð15Þ

If we differentiate again with respect to t, then, the result
will be as follows:

FD2h
x t, ωð Þ = −qxF

τDh
x t, ωð Þ + qxt + px − jωð ÞFDh

x t, ωð Þ: ð16Þ

And in general, for n ≥ 1 is as follows:

∂nFh
x

∂tn
t,wð Þ = FDnh

x t, ωð Þ = −qxF
τDn−1h
x t, ωð Þ

+ qxt + px − jωð ÞFDn−1h
x t, ωð Þ:

ð17Þ

Assuming that amplitude is constant, frompx = jωx, qx
= jαx, and Equation (15), we can conclude that

FDh
x t, ωð Þ = −jαxF

τh
x t, ωð Þ + j αxt + ωx − ωð ÞFh

x t, ωð Þ: ð18Þ

By multiplying by Fh
xðt, ωÞ∗ and considering the real

part, we can obtain the chirp rate estimator on the basis
of the first derivative of STFT (in case of nonzero
denominator).

bαK1
x t, ωð Þ = Re FDh

x t, ωð ÞFh
x t, ωð Þ∗� �

Im Fτh
x t, ωð ÞFh

x t, ωð Þ∗� � : ð19Þ

This equation that is extracted from the analytical
results obtained in the special problem of the Gaussian
window in [28, 29] provides a chirp rate estimator for
each analytical window of h (unbiased in case T2x⟶
∞). According to Equation (17), all types of chirp rate
estimators can be derived on the same principle:

bαKn
x t, ωð Þ =

Re FDnh
x t, ωð ÞFDn−1h

x t, ωð Þ∗
� 	

Im FτDn−1h
x t, ωð ÞFDn−1h

x t, ωð Þ∗
� 	 : ð20Þ

Regarding the estimators using time derivatives, if the
amplitude is not assumed to be constant as before, Equa-
tions (15) (16) can be considered as one system of two lin-
ear equations with two variables of qxt + px − jω and qx .
The response of this system (in case of a nonzero denom-
inator) obtains the qx estimator and imaginary part of a
new chirp rate estimator:

q̂ t2ð Þ
x t, ωð Þ = FD2h

x t, ωð ÞFh
x t, ωð Þ − FDh

x t, ωð Þ2
FDh
x t, ωð ÞFτh

x t, ωð Þ − FτDh
x t, ωð ÞFh

x t, ωð Þ ,

bα t2ð Þ
x t, ωð Þ = Im q̂ t2ð Þ

x t, ωð Þ
� 	

:

ð21Þ

In general, if a similar process is operated on Equa-
tions (15) and (17), all types of chirp rate estimators can
be achieved:

RDA with accurate
SRC:

Raw radar data

Azimuth FFT

RCMC

Azimuth compression

Compressed data

Range compression
without IFFT

SRC option 2 and range
IFFT

Azimuth IFFT and
look summation

Figure 2: The block diagram for implementing RDA [1].
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q̂ tnð Þ
x t, ωð Þ = FDnh

x t, ωð ÞFh
x t, ωð Þ − FDn−1h

x t, ωð ÞFDh
x t, ωð Þ2

FDn−1h
x t, ωð ÞFτh

x t, ωð Þ − FτDn−1h
x t, ωð ÞFh

x t, ωð Þ
,

bα tnð Þ
x t, ωð Þ = Im q̂ tnð Þ

x t, ωð Þ
� 	

:

ð22Þ

Considering that ∂Fh
x/∂ω = jðFτh

x ðt, ωÞ − tFh
xðt, ωÞÞ,

then, by deriving Equation (15) with respect to ω, the
results will be as follows:

FτDh
x t, ωð Þ + Fh

x t, ωð Þ = −qxF
τ2h
x t, ωð Þ + qxt + px − jωð ÞFτh

x t, ωð Þ:
ð23Þ

In general, differentiating derivation of Equation (15)
n − 1 times (for n ≥ 2) with respect to ω, then,

Fτn−1Dh
x t, ωð Þ + n − 1ð ÞFτn−2h

x t, ωð Þ
= −qxF

τnh
x t, ωð Þ + qxt + px − jωð ÞFτn−1h

x t, ωð Þ:
ð24Þ

If Equations (15) and (23) are considered as one sys-
tem of linear equations, one qx estimator and one chirp
rate estimator will be obtained:

q̂ ω2ð Þ
x = FτDh

x t, ωð ÞFh
x t, ωð Þ + Fh

x t, ωð Þ2 − Fτh
x t, ωð ÞFDh

x t, ωð Þ2
Fτh
x t, ωð Þ2 − Fτ2h

x t, ωð ÞFh
x t, ωð Þ

,

bα ω2ð Þ
x = Im q̂ ω2ð Þ

x t, ωð Þ
� 	

:

ð25Þ

Generally, a whole class of chirp rate estimators can be
obtained from Equations (15) and (24):

q̂ ωnð Þ
x =

Fτn−1Dh
x + n − 1ð ÞFτn−2h

x

� 	
Fh
x − Fτn−1h

x FDh
x

Fτn−1h
x Fτh

x − Fτnh
x Fh

x

,

bα ωnð Þ
x = Im q̂ ωnð Þ

x t, ωð Þ
� 	

:

ð26Þ

The classical spectroscopy assignment and synchros-
queezing use the time and frequency assignment operators
in accordance with the definition [25, 30–33]:

~t t, ωð Þ = t −
Fτh
x t, ωð Þ
Fh
x t, ωð Þ with t̂ t, ωð Þ = Re ~t t, ωð Þ� �

, ð27Þ

bω t, ωð Þ = Im ~ω t, ωð Þð Þwith ~ω t, ωð Þ = jω +
FDh
x t, ωð Þ
Fh
x t, ωð Þ :

ð28Þ
By using Equations (15), (27), and (28), the results will

be as follows:

bω t, ωð Þ = αxt̂ t, ωð Þ + ωx +
1
T2
x

Im
Fτh
x t, ωð Þ
Fh
x t, ωð Þ

 !
: ð29Þ

When the frequency amplitude is constant, if we mul-
tiply Fτh

x ðt, ωÞ∗ by Equation (18) and consider its real part,
then,

b_ϕK1

x t, ωð Þ = ω −
Re FDh

x t, ωð ÞFτh
x t, ωð Þ∗� �

Im Fh
x t, ωð ÞFτh

x t, ωð Þ∗� � : ð30Þ

In comparison to Equation (28), b_ϕK1

x ðt, ωÞ is an instanta-
neous frequency estimator at time of t, while bωðt, ωÞ is an
instantaneous frequency estimator at time t̂ðt, ωÞ
,b_ϕx ð̂tðt, ωÞ, ωÞ. With the same principle, all the instantaneous
frequency estimators can be obtained from Equation (15):

b_ϕKn

x t, ωð Þ = ω −
Re FDnh

x t, ωð ÞFτDn−1h
x t, ωð Þ∗

� 	
Im FDn−1h

x t, ωð ÞFτDn−1h
x t, ωð Þ∗

� 	 : ð31Þ

By combining Equations (15) and (16), the qxt + px − jω
estimator is achieved; the imaginary part of which results in
an instantaneous frequency estimator. It can be generalized
to any order from Equations (15) and (24) (in case of the non-
zero denominator).

b_ϕ t2ð Þ
x t, ωð Þ = ω + Im

FD2h
x Fτh

x − FτDh
x FDh

x

FDh
x Fτh

x − FτDh
x Fh

x

 !
,

b_ϕ tnð Þ
x t, ωð Þ = ω + Im

FDnh
x Fτh

x − FτDn−1h
x FDh

x

FDn−1h
x Fτh

x − FτDn−1h
x Fh

x

 !
:

ð32Þ

By combining Equations (15) and (24), another class of
instantaneous frequency estimator is obtained as follows:

b_ϕ ωnð Þ
x t, ωð Þ = ω + Im

Fτn−1Dh
x + n − 1ð ÞFτn−2h

x

� 	
Fτh
x − Fτnh

x FDh
x

Fτn−1h
x Fτh

x − Fτnh
x Fh

x

0@ 1A:

ð33Þ

The results stated that regarding the unbiased instanta-
neous frequency estimators can be employed for estimating
the instantaneous frequency of a signal component, which is
located in the vicinity of a TF point ðt, ωÞ. Furthermore, it
can be used for extracting an improved synchrosqueezing pro-
cess, called vertical synchrosqueezing. This process operates
based on a general signal reconstruction formula [25]:

x t − t0ð Þ = 1
h t0ð Þ∗

ð
R
Fh
x t, ωð Þejω t−t0ð Þ dω

2π
: ð34Þ

For each t0 where hðt0Þ ≠ 0, the vertically synchros-
queezed STFT can be defined as follows [34, 35].

VSFhx t, ωð Þ =
ð
R
Fh
x t, ω′
� 	

ejω′ t−t0ð Þδ ω − b_ϕx t, ω′
� 	� 	

dω′:

ð35Þ
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In which b_ϕxðt, ωÞ is one of the proposed instantaneous
frequency estimators. This expression is totally different from
the classical synchrosqueezed STFT. Since in that expressionb_ϕxðt, ω′Þ is used instead of bωðt, ω′Þ, its squared modulus
results in a precise TFR which can be inverted as follows:

x̂ t − t0ð Þ = 1
h t0ð Þ∗

ð
R
VSFhx t, ωð Þ dω2π : ð36Þ

In which the intervals of integration can be limited to the
vicinity of a signal ridge to carry out mode extraction [36].
In order to assess their sensitivity in relation to the model inef-
ficiencies, the log amplitude and phase are assumed to be
third-order polynomial [23]:

ln Ax tð Þð Þ = ln Axð Þ − t − txð Þ2
2T2

x

− ΔA
t − txð Þ3
6T2

x

,

ϕx tð Þ = φx + ωxt +
αxt

2

2
+
Δϕt

3

6
:

ð37Þ

Thus, Equations (12) and (15) will be transformed
intoðdx/dtÞðtÞ = ðrxt2 + qxt + pxÞxðtÞ, with rx = −ΔA/2T2

x + jð
Δϕ/2Þ, qx = −ðð1 − ΔAtxÞ/T2

xÞ + jαx,px = −ðð2tx − ΔAt
2
xÞ/ 2T2

xÞ
+ jωx, and

FDh
x t, ωð Þ = rxF

τ2h
x t, ωð Þ − 2rxt + qxð ÞFτh

x t, ωð Þ
+ rxt

2 + qxt + px − jω
� �

Fh
x t, ωð Þ:

ð38Þ

Differentiating Equation (38) with respect to t and ω
results as follows:

FD2h
x = rxF

τ2Dh
x − 2rxt + qxð ÞFτDh

x + rxt
2 + qxt + px − jω

� �
FDh
x ,
ð39Þ

FτDh
x + Fh

x = rxF
τ3h
x − 2rxt + qxð ÞFτ2h

x + rxt
2 + qxt + px − jω

� �
Fτh
x :

ð40Þ
Equations (38), (39), and (40) can be considered as a set of

three linear equations, with three variablesrx,2rxt + qx, and rx
t2 + qxt + px − jω. In case of a nonzero denominator, the imag-
inary parts of the response of this system will result in robust
estimators from angular jerk Δϕ for the instantaneous chirp
rate and instantaneous frequency.

3.2. Efficient Algorithm for Estimating the Parameters of a
Chirp Signal. In [24], an efficient algorithm was suggested
for estimating different parameters of a chirp signal in the
presence of the stationary noise. The main advantage of this
algorithm is that by starting from the reasonable initial
values for the frequency and frequency rate, only in four
stages, estimations will be generated that are asymptotically
equal to LSE. As discussed by Lahiri et al. [24], the chirp sig-
nal in the presence of additive noise is modelled as follows:

y nð Þ = A0 cos α0n + β0n
2� �

+ B0 sin α0n + β0n
2� �

+ X nð Þ, n = 1,⋯,N ,
ð41Þ

where A0 and B0 are the nonzero values with restriction A2
0

+ B2
0 ≤M for constant M. α0 and β0 signify the frequency

and frequency rate, respectively, and their values range
between zero and π. XðnÞ is a stationary noise sequence,
which is as follows:

X nð Þ = 〠
∞

j=−∞
a jð Þε n − jð Þ, 〠

∞

j=−∞
a jð Þj j ≺∞, ð42Þ

where fεðnÞg is a sequence of independent and identically
distributed (i.i.d) random variables with zero mean and var-
iance σ2. LESs of unknown parameters of Equation (41) can
be obtained by minimizing SðΘÞ with respect to variable
Θ = ðA, B, α, βÞ.

S Θð Þ = 〠
N

n=1
y nð Þ − A cos αn + βn2

� �
− B sin αn + βn2

� �� �2
= Y −W α, βð Þ

A

B

" #" #T
Y −W α, βð Þ

A

B

" #" #
,

ð43Þ

where Y = ðyð1Þ,⋯, yðNÞÞT is the N × 1 data vector and W
ðθÞ is the matrix N × 2, as demonstrated as follows:

W θð Þ =

cos α + βð Þ sin α + βð Þ
cos 2α + 4βð Þ sin 2α + 4βð Þ

⋮ ⋮

cos Nα +N2β
� �

sin Nα +N2β
� �

2666664

3777775: ð44Þ

If the values of α and β are known, LSEs of A0 and B0
can be obtained as ÂðθÞ and B̂ðθÞ, in which θ = ðα, βÞ and

A∧ θð Þ, B∧ θð Þð ÞT = WT θð ÞW θð Þ� �−1
WT θð ÞY : ð45Þ

Thus, LSEs of α0 and β0 can be obtained by minimizing the
value of Qðα, βÞ with respect to α and β, in which

Q α, βð Þ = S Â θð Þ, B̂ θð Þ, α, β� �
= YTW θð Þ WT θð ÞW θð Þ� �−1

WT θð ÞY :
ð46Þ

After determining the LSEs of α0 and β0 called bα andbβ ,
the value of the LSEs of A0 and B0 can be simply achieved as

Âðbα , bβÞ andB̂ðbα , bβÞ, respectively. Kundu and Nandi [37]
obtained the properties of LSEs to be as follows. LSEs of
the unknown parameters of Equation (41) with the compat-
ible corresponding parameters and asymptotic distribution
are as follows:
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N1=2 Â − A0
� �

,N1=2 B̂ − B0
� �

,N3/2 bα − α0ð Þ,N5/2 bβ − β0

� 	� 	
⟶
d

N4 0, 4cσ2〠
� 	

,

ð47Þ

where c =∑∞
j=−∞aðjÞ2 and⟶d symbol indicate the distribu-

tion convergence, N4ð0, 4cσ2∑Þ indicates a 4-variable nor-
mal distribution with zero mean vector, the dispersion
matrix is 4cσ2∑, and

〠 = 1
A0

2 + B0
2

1
2

A0
2 + 9B0

2� �
−4A0B0 18B0 −15B0

−4A0B0
1
2

9A0
2 + B0

2� �
−18A0 15A0

18B0 −18A0 96 −90

−15B0 15A0 −90 90

266666664

377777775
:

ð48Þ

If ~α is an α0 estimator, such that ~α − α0 = opðNð−1−δ1ÞÞ for
some δ1 ≻ 0, and ~β is a β0 estimator, such that ~β − β0 = op
ðNð−2−δ2ÞÞ for some δ2 ≻ 0. Hence, an improved estimator
can be obtained as follows:

e~α = ~α +
48
N2 Im

Pα
N

QN

� �
, ð49Þ

with

Pα
N = 〠

N

n=1
y nð Þ n −

N
2

� �
e−i ~αn+~βn2ð Þ,

QN = 〠
N

n=1
y nð Þe−i ~αn+~βn2ð Þ:

ð50Þ

Accordingly, an improved estimator of β0 can be
achieved as follows:

e~β = ~β +
45
N4 Im

Pβ
N

QN

 !
, ð51Þ

with

Pβ
N = 〠

N

n=1
y nð Þ n2 −

N2

3

� �
e−i ~αn+~βn2ð Þ, ð52Þ

and QN is defined in the same as Equation (50). The
following theorems provide a justification for improved
estimators.

Theorem 1. If ~α − α0 = opðNð−1−δ1ÞÞ for δ1 ≻ 0, then,

(a) e~α − α0 = opðNð−1−2δ1ÞÞ if δ1 ≤ 1/4

(b) N3/2ðe~α − α0Þ⟶d Nð0, σ2
1Þ if δ1 > 1/4

In which σ21 = 384cσ21/ðA0
2 + B0

2Þ is the asymptotic vari-
ance of the LSE of α0.

Theorem 2. If ~β − β0 = opðNð−2−δ2ÞÞ forδ2 ≻ 0, then,

(a) e~β − β0 = opðNð−2−2δ2ÞÞ if δ2 ≤ 1/4

(b) N5/2ðe~β − β0Þ⟶d Nð0, σ22Þ if δ2 ≻ 1/4

In which σ22 = 360cσ21/ðA0
2 + B0

2Þ is the asymptotic vari-
ance of the LSE of β0.

Theorem 3. If ~α − α0 = opðNð−1−δ1ÞÞ and ~β − β0 = opðNð−2−δ2ÞÞ
, then, for δ1 ≻ 1/4 and δ2 ≻ 1/4, there is CovðN3/2ðe~α − α0Þ,
N5/2ðe~β − β0ÞÞ⟶ 360cσ2

1/ðA0
2 + B0

2Þ.

The efficient estimators can be obtained using the above
method and by starting from the initial guesses ~α and ~β by
the convergence rate ~α − α0 = opðN−1Þ and ~β − β0 = opðN−2Þ,
respectively. In accordance with Rice and Rosenblatt in Refer-
ence [38], it is concluded that if it can be demonstrated that the

RDA with accurate SRC:

Power radar data

Range compression
without the IFFT 

Azimuth FFT

SRC option 2 and
range IFFT 

RCMC

Azimuth compression

Azimuth IFFT and look
summation 

Compressed data

Chrip rate estimation

Figure 3: The block diagram of range-Doppler algorithm (RDA)
containing the block proposed (the proposed plan).
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Nð~α − α0Þ⟶ 0 and N2ð~β − β0Þ⟶ 0 are established for ~α

and ~β, and Qðα, βÞ minimizer, then, when searching over
the grids ðπj/N , πk/N2Þ, j = 1,⋯,N and k = 1,⋯,N2, there
will be such an initial guess. If Θ0 = ðA0, B0, α0, β0Þ is the
value of real parameter and D is a diagonal matrix, such
that D = ð1/ ffiffiffiffi

N
p

, 1/
ffiffiffiffi
N

p
, 1/N

ffiffiffiffi
N

p
, 1/N2 ffiffiffiffi

N
p Þ. Note that (see

[37])

−S′ Θ0ð ÞD = ~Θ −Θ0

� 	
D−1 DS″ �Θ

� �
D

h i
, ð53Þ

where �Θ defines a point on line joining ~Θ and Θ0.

DS″ �Θ
� �

D⟶ lim
N⟶∞

DS″ Θ0ð ÞD: ð54Þ

Now, Equation (53) gives the following:

~Θ −Θ0

� 	 ffiffiffiffi
N

p
D

� 	−1
= −

1ffiffiffiffi
N

p S′ Θ0ð ÞD
� �

DS″ �Θ
� �

D
h i−1

:

ð55Þ

Besides, −S′ðΘ0ÞD/
ffiffiffiffi
N

p
⟶ 0 manifests that ð~Θ −Θ0Þ

ð ffiffiffiffi
N

p
DÞ−1 ⟶ 0, i.e., Nð~α − α0Þ⟶ 0 and ð~Θ −Θ0Þ

ð ffiffiffiffi
N

p
DÞ−1 ⟶ 0.
The algorithm can be described as follows. The estima-

tion obtained for α0 and β0 at the iteration of i-th is ~αðiÞ

and ~β
ðiÞ
, respectively.

4. Algorithm

(1) First step: Select N1 =N8/9. Consequently, ~αð0Þ − α0

=OPðN−1Þ =OPðN−1−1/8
1 Þ and ~β

ð0Þ
− β0 =OPðN−2Þ

=OPðN−2−1/4
1 Þ.

Perform Equation (49) and Equation (51). Thus, after
the first iteration, ~αð1Þ − α0 =OPðN−1−1/4

1 Þ =OPðN−10/9Þ and
~β
ð1Þ

− β0 =OPðN−2−1/2
1 Þ =OPðN−20/9Þ.

(2) Second step: Select N2 =N80/81. Consequently, ~αð1Þ

− α0 =OPðN−1−1/8
2 Þ and ~β

ð1Þ
− β0 =OPðN−2−1/4

2 Þ.
Perform Equation (49) and Equation (51). Thus, after

the second iteration, ~αð2Þ − α0 =OPðN−1−1/4
2 Þ =OPðN−100/81Þ

and ~β
ð2Þ

− β0 =OPðN−2−1/2
2 Þ =OPðN−200/81Þ.

(3) Third step: Select N3 =N . Consequently, ~αð2Þ − α0

=OPðN−1−19/81
3 Þ and ~β

ð2Þ
− β0 =OPðN−2−38/81

3 Þ.
Perform Equation (49) and Equation (51). Thus, after

the third iteration, there is ~αð3Þ − α0 =OPðN−1−38/81Þ and
~β
ð3Þ

− β0 =OPðN−2−76/81Þ.

(4) Fourth step: Select N4 =N and perform Equation
(49) and Equation (51). Now, you can obtain the
required convergence rate, i.e., ~αð4Þ − α0 =OPðN−3/2Þ
and ~β

ð4Þ
− β0 =OPðN−5/2Þ.

In fact, this iteration-based algorithm is for finding effi-
cient estimators of frequency and frequency rate.

5. Proposed Technique

Due to its high time-bandwidth product, the LFM signal can
simultaneously obtain acceptable resolution and the signal-
to-clutter-plus-noise ratio (SCNR). Therefore, it is the most
applicable signal in different types of SAR radars. In the SAR
radar’s receiver, the time-reversed complex conjugate ver-
sion from the transmitted pulse is multiplied by the received
signal. Thus, it will demodulate and compress it. This pro-
cessing is called dechirp on receive. By doing so, in the
ideal state, the LFM modulation is demodulated and
merely one sinusoidal signal is remained and its frequency
corresponds to the delay of transmission and return of
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Figure 4: Respective geometry for motion of SAR system.

Table 1: Parameters of the respective systems.

Parameter Value Description

h 1e3m Height of platform

θinc 50 degrees Incident angle

c 3e8m/s Propagation speed

PRF 500Hz Pulse repetition frequency

f o 9:6e9Hz Carrier frequency

λ c/f o m Wavelength

τp 3e − 6 sec Chirp pulse duration

BW 180e6Hz Baseband bandwidth

Le 0.1m Antenna length in elevation

θaz 5 degrees Antenna azimuth beam width

vp 50 Platform velocity (m/s)

np 1301 Number of processed pulses

SNR 10 Signal-to-noise ratio
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radar pulse. On the basis of this delay, the range of the tar-
get or the illuminated area can be estimated and employed
in other processing. A common assumption in the pro-
posed algorithms in the references for the SAR image for-
mation and processing is that the chirp rates of the
radar’s transmitted and received signals are precisely the
same. Carrying out the dechirp processing is based on this
common assumption. While in the real scenarios, due to
different reasons such as vibrations of the platform (in
the airborne systems, especially drones) or lack of precise
calibration of the systems, the chip rate of the received sig-
nal will be different from the transmitted signals. The
amount of this difference depends on the intensity of the
above-said factors [39]. Therefore, in case the difference
between the chirp rates of the transmitted and received sig-
nals is obvious, the demodulation and compression of the
received pulse are not carried out precisely and defocusing
the targets and the output images of the SAR processor is
resulted (this problem is demonstrated in Simulation
Result). For instance, in airborne systems, especially
drones, platform motion compensation is carried out.
However, the precision of the motion compensation is lim-
ited to the precision of navigation systems on the platform
(GPS and INS); most of the time, it results in a residual

error. In the present paper, at first, the received chirp rate
is estimated, and then, dechirp is carried out by using
time-reversed complex conjugate filter constructed based
on the estimated chirp rate. In this stage, various existing
chirp rate estimation algorithms can be employed and their
operation quality can be assessed. Here, we used two types
of chirp rate estimation algorithms proposed in [23, 24].
Finally, the quality of the output images of the proposed
technique and the common technique was compared and
assessed (using the chirp rate of the transmitted signal for
dechirp) with the average PSLR as a quantitative criterion
and the average number of point target extension pixels
along with azimuth. As in Figure 3, it is processed to form
the radar output image. So, it is only needed to add the
chirp rate estimation to the block diagram of RDA and
use an additional processing of chirp rate estimation. Sim-
ulation results of the aforementioned method will be pre-
sented in the next section.

6. Simulation Result

In the simulation section, SAR in the strip map imaging
mode is transmitting pulses and receiving the return echoes
from the area surface. The respective geometry for SAR
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Figure 5: (a) Image of the total area. Magnified image of a part of the area. (b) Middle target. (c) Left target. (d) Right target.
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system motion is shown in Figure 4. In this simulation, 9-
point targets are considered as seen in Figure 4. Besides,
RDA [1] is employed for forming the image. It is worth
noting that, in the stage of generating the received signal
by the radar, the 3D vibrations will be applied to the
platform motion. Then, in the processor, the unacceptable
platform motions will be eliminated using MOCO
methods provided in [40]. In Table 1, the values of the
radar’s parameters are illustrated. In Figure 5(a), the sim-
ulation result of SAR image formation from the total area
using the algorithm of [23] is displayed. For instance, if we
zoom on any of the three targets in the middle along with
azimuth, a magnified image of a part of the area is dem-
onstrated in Figure 5, in which Figure 5(b) is the middle
target, Figure 5(c) is the left target, and Figure 5(d) is
the right target. Figure 6(a) indicates the simulation result
of the SAR image formation by employing the algorithm
in [24] from the total area. For instance, if we zoom on
any of the three targets in the middle along with azimuth,
in Figure 6, we can see the magnified image of a part of
the area, in which Figure 6(b) is the middle target,
Figure 6(c) is the left target, and Figure 6(d) is the right
target.

In Figure 7(a), the result of the SAR image formation
simulation of the total area is displayed in the state of using
the chirp rate of the transmitted signal in order to perform
dechirp in the receiver (the common method without chirp
estimation). For instance, if we zoom on any of the three tar-
gets in the middle along with azimuth, we can see the mag-
nified image of a part of the area, in which Figure 7(b) is the
middle target, Figure 7(c) is the left target, and Figure 7(d) is
the right target.

In Table 2, the average of PSLR obtained for 9 targets in
the final images produced by using two different algorithms
described in Section 3 of the paper is provided and com-
pared to the average of PSLR using the common method
(using the chirp rate of the transmitted signal in order to
perform dechirp). Besides in Table 3, the average number
of point target extension pixels along with azimuth in the
images is generated using two different algorithms explained
in Section 3 of the present paper and is provided for 9 targets
and compared to the average number of point target exten-
sion pixels of the common method. The simulation results
indicate that, with the lower average of point target exten-
sion pixels along the azimuth direction and the higher aver-
age of PSLR, the quality of the output image will be better.
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Figure 6: (a) Image of the total area. Magnified image of a part of the area. (b) Middle target. (c) Left target. (d) Right target.
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According to Tables 2 and 3, the proposed technique is
shown to enhance the image formation quality of SAR by
exploiting chirp rate estimation method with higher PSLR
average (14.1 and 13.6) and lower average number of point
target extension pixels along the azimuth direction (2.1
and 4.9) than the common method with PSLR average
(8.3) and average number of point target extension pixels
along the azimuth direction (7.1).

7. Conclusions

This paper proposed a novel technique for enhancing the
image formation quality of SAR by exploiting chirp rate esti-
mation method. Taking into account that carrying out the
dechirp processing is on the basis of this common assump-
tion in the algorithms of processing and formation of SAR
image, the chirp rates of the radar’s transmitted and received
signals are exactly the same. While in the real scenarios, due
to different reasons, the chip rate of the received signal will
be different from the transmitted signal. In case the differ-
ence between the chirp rates of the transmitted and received
signals is obvious, defocusing the targets and the output
images of the SAR processor is resulted. Based on the
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Figure 7: (a) Image of the total area. Magnified image of a part of the area. (b) Middle target. (c) Left target. (d) Right target.

Table 2: Average of PSLR obtained for 9 targets in the final images
produced by using different algorithms.

Algorithm Average PSLR (dB)

Algorithm in [23] 14.1

Algorithm in [24] 13.6

Without chirp estimation
(common method)

8.3

Table 3: Average number of point target extension pixels along
with azimuth for 9 targets in the final images produced by using
different algorithms.

Algorithm
Azimuth target extension

(m)

Algorithm in [23] 2.1

Algorithm in [24] 4.9

Without chirp estimation (common
method)

7.1
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proposed technique, the received signal chirp rate was esti-
mated. Afterwards, by using the time-reversed complex con-
jugate filter constructed based on the estimated chirp rate,
the dechirp was carried out. In this process, different chip
rate estimation algorithms could be used and, as a result,
to achieve better focus of the SAR image. The simulation
results indicated that the quality of the output image pro-
duced by the proposed technique by exploiting chirp rate
estimation algorithms with higher PSLR average and lower
average number of point target extension pixels along the
azimuth direction was better than that of the common
method (using the transmitted signal chip rate in order for
dechirp).
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