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Magnetic liquid double suspension bearing (MLDSB) includes electromagnetic system and hydrostatic system, and the bearing
capacity and stiffness can be greatly improved. It is very suitable for the occasions of medium speed, heavy load, and starting
frequently. Due to the mutual coupling and interaction between electromagnetic system and hydrostatic system, the probability
and degree of static bifurcation are greatly increased and the operation stability is reduced. And flow of bearing cavity, coil
current, oil film thickness, and galvanized layer thickness are the key parameters to ensure operation safe and stable, which has
an important influence on the static bifurcation behavior. So this article intends to establish the coupling model of MLDSB to
reveal the range of parameter combination in the case of static bifurcation. The influences of different parameter groups on the
singularity characteristics, phase trajectory, x − t curves, and suction basin of the single DOF bearing system are analyzed. The
result shows that there are nonzero singularities and static bifurcation occurs when ε2 > 0 or δ2 > 0. As the flow of bearing
cavity, coil current, oil film thickness, and galvanized layer thickness changes in turn, the singularities will convert between
stable focus, unstable focus, stable node, and saddle point, and then the stable limit cycle may be generated. The attractiveness of
singularity will change greatly with the flow of the bearing cavity and coil current changes slightly in the case of small current or
large flow. The minimal change of galvanized layer thickness will lead to the fundamental change of the final stable equilibrium
point of the rotor, while the final equilibrium point is slightly affected by the oil film thickness. This study can provide a
reference for the supporting stability of MLDSB.

1. Introduction

Hydrostatic bearing is introduced into electromagnetic bear-
ing to form MLDSB, and its supporting form is electromag-
netic suspension with hydrostatic pressure auxiliary. It has
the advantages of nonmechanical contact, high supporting
capacity and stiffness, and operation stability and then the
service life can be efficiently improved. So it is suitable for
deep-sea exploration, hydropower generation, and other
domains, especially medium-low speed, heavy load, and fre-
quent starting occasion [1].

MLDSB is composed of a bracket, a motor, a coupling, a
shaft, two journal bearings, an axial bearing, a motor, and a
journal motor as shown in Figure 1.

MLDSB can take full advantage of electromagnetic bearing
and hydrostatic bearing. On the premise of not affecting the
electromagnetic force, the hydrostatic force can be added into
theMLDSB to realize real-time double supporting, and its bear-
ing capacity and supporting stiffness are improved greatly [2].

The radial element of MLDSB is composed of step shaft,
magnetic sleeve, supporting chamber, magnetic pole, inlet pipe,
shell, coil, outlet, and so on as shown in Figures 2 and 3 [3].
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The control principle of MLDSB is shown in Figure 4.
Constant-flow supply model is adopted in the hydrostatic
supporting system, and proportional velocity regulating
valves connecting the upper and lower supporting cavities
are connected by differential module. PD control is adopted
in electromagnetic supporting system, and upper and lower
coils are connected through differential connection module.
When the rotor is radial offset by external interference, its
displacement is adjusted by the hydrostatic supporting sys-
tem and electromagnetic system, and then it returns to the
equilibrium position gradually.

Due to the coupling and interference between the nonlin-
ear electromagnetic system and the nonlinear hydrostatic
system, the probability and complexity of static bifurcation
are improved, and the reliability and operation stability of
MLDSB can be decreased sharply [4]. So many scholars had
studied the static bifurcation behavior of electromagnetic
suspension bearing and achieved fruitful results.

Wang et al. [5] established the mathematical model of
two DOF system under harmonic base motion based on the
magnetic force model which can induce bistable phenomena.
By the Routh-Hurwitz criterion, the static bifurcation of
equilibration points is analyzed for the dimensionless gov-
erning equations. The results show that the amplitude-
frequency curves of the system are in hard characteristic,
while the amplitude variations of the displacement of the pie-
zoelectric cantilever beam with mass ratio and stiffness ratio
are in soft characteristic.

Hai and Liu [6] used a unified time-delayed feedback
control method to control the spatial static bifurcation of 2-
D discrete dynamical systems. The results show that this
method can determine and then control the spatial static
bifurcation of 2-D discrete dynamical systems by transferring
the existing bifurcation or by producing a new fork-shaped,
trans-critical, or saddle node bifurcation.

Pu and Hu [7] studied the magneto-elastic principal res-
onance bifurcation and chaos of rotating annular plates in
magnetic fields. The results show that the magnetic field
deters the occurrence of multivalue phenomena. With the
decreasing of the external force frequency, the rotating speed,
and the magnetic induction, and with the increasing of the
external force, the system’s heteroclinic orbits break more
easily, meanwhile, chaos or almost periodic motion of the
system is induced.

Luo et al. [8] studied the nonlinear vibration of the rotor
system supported by two bearing and excited by electromag-
netic force. The results show that the trends of motion of the
rotor system in the two displacements are similar. The
motions of periodic, pe9 + riod-doubling, and quasiperiodic
alternately appear in the operation of the rotor system, and
low oil film viscosity is more secure for the rotor system.

Zhao [9] analyzed the nonlinear dynamics phenomenon
of cantilever crane. The Lagrange method was used to build
the system equation, and the singularity theory was taken
to get the bifurcation condition and the normal form of the
problem.

Peng [10] established a nonlinear vibration model of
parametrically excited stiffness, using the multiple-scale
method to solve the amplitude-frequency equation of 1/2
harmonic resonance about the system. The reason that the
strip surface appears chatter or vibration marks was found
that is caused by the dynamic behaviors such as period,
period-3 motion, and chaos of the rolling mill.

To sum up, the current researches only focus on the
bifurcation behavior of electromagnetic suspension bearing,
while the structure of MLDSB is essentially different from
the conventional electromagnetic suspension bearing, and
its internal supporting mechanism and behavior law of static
bifurcation is more complex. Meanwhile, the design and
operation parameters (flow of bearing cavity, coil current,
oil film thickness, and galvanized layer thickness) are the pre-
mise and foundation of high-performance bearing and stable
suspension of MLDSB and have a significant influence on the
static bifurcation behavior of MLDSB. So the coupling model
of MLDSB is established to explore the internal influence of
design and operation parameters on the singularity charac-
teristics, phase trajectory, and suction basin of a single DOF
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Figure 1: Overall view of MLDSB.
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Figure 2: Full profile of radial bearing.
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supporting system, and then the reference can be provided
for the design and supporting stability of MLDSB.

2. Bifurcation Range of Design Parameters

Taking the vertical single DOF supporting system as the
research object (it includes upper and lower supporting units,
rotors, and so on as shown in Figure 5), the dynamic model
can be established [11].

_x = y,

_y = 1
m
〠
2

i=1
−1ð Þi+1 F1 + F2ð Þ,

8><
>:

ð1Þ

where F1 = Fq,0ðy − 1Þ/½1 + ðl/h0Þ + ð−1Þiðx/h0Þ cos θ�
3
,

F2 = Fi,0½1 + ð−1Þi+1ic/i0/1 + ð−1Þix/h0 cos θ�
2
.

The design parameters of MLDSB are shown in Table 1.

The design and operation parameters include flow q0 of
bearing cavity, coil current i0, oil film thickness h0, and galva-
nized layer thickness l.

2.1. Bifurcation Range of Parameter Group (i0, q0). From the
definition of bifurcation, it can be seen that the system will
not bifurcate when equation (2) has a unique solution, while
the system will bifurcate when equation (2) has multiple
solutions [12]. The boundary point of static bifurcation can
be obtained by solving equations. And then based on the
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Figure 4: Single DOF support regulation principle of MLDSB.
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Figure 5: Force diagram of single DOF supporting system.

Table 1: Design parameters of MLDSB.

Symbols Variable names Sizes

A Length of supporting cavity 100mm

B Width of supporting cavity 20mm

a Width of sealing belt 6mm

b Width of sealing belt 4mm
�B Flow coefficient 4.3611

μ Dynamic viscosity 1:3077 × 10−3 Pa•s
m Mass of rotor 100 kg

μ0 Permeability of air 4π × 10−7 H/m
Ae Area of supporting cavity 1504mm2

Ab Extrusion area 1056mm2

As Area of pole 1000mm2

θ Angle 22.5°

N Number of turns 60

A1 Area of pole 1000mm2

i0 Initial current 0.5~ 2.0A
q Flow of supporting cavity 0 ~ 2 × 10−4 m3/s
h0 Oil film thickness 10~90μm
l Galvanized layer thickness 0~90 μm
Kp Proportionality coefficient -70

Kd Differential coefficient 0.03
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practical meaning of parameters, the bifurcation range of the
system parameters is obtained. Assume that h0 = 30 μm, l =
0 μm. According to the definition of singularity, the existence
condition of singularity is _x = 0 and _y = 0 [12], then

y = 0,

−
1
m
〠
1

i=0
−1ð Þi F1 + F2ð Þ = 0:

8><
>:

ð2Þ

The design parameters in Table 1 were substituted into
equation (2), and the coordinates of the singularities were
obtained as follows:

x0, y0ð Þ = 0, 0ð Þ,
x1,1, y1ð Þ = ffiffiffiffi

ε1
p , 0ð Þ,

x1,2, y1ð Þ = −
ffiffiffiffi
ε1

p , 0ð Þ,
x2,1, y2ð Þ = ffiffiffiffi

ε2
p , 0ð Þ,

x2;;2, y2
� �

= −
ffiffiffiffi
ε2

p , 0ð Þ,

8>>>>>>>><
>>>>>>>>:

ð3Þ

where, εi = 5:2697 × 10−28/184i0 − 63ðα + ð−1Þi−1 ffiffiffi
β

p Þ, i
= 1, 2

α = 3:6052 × 1024q0 + 5:4219 × 1020i20 − 6:3562 × 1019,
β = 2:9397 × 1041i40 − 4:0261 × 1041i30 + 3:9094 × 1045i20q0

+ 2:0677 × 1041i20 + 8:0312 × 1045i0q0 − 4:7198 × 1040i0
− 3:2081 × 1045q0 + 4:0401 × 1039 + 1:2997 × 1049q20:

ð4Þ

From equation (3), it can be seen that there is a zero sin-
gularity (0, 0) and four nonzero singularities (x1,1, 0), (x1,2, 0),
(x2,1, 0), and (x2,2, 0) in MLDSB system.

The relationships among x1,1, q0, and i0 are shown in
Figure 6, and x1,1 = −x1,2. The displacement x1,1 and x1,2 are
beyond the actual thickness range of the oil film, so the singu-
larities ðx1,1, 0Þ and ðx1,2, 0Þ can be ignored without practical
meaning [13].

According to equation (3), static bifurcation occurs and
singularity ðx2,1, 0Þ and ðx2,2, 0Þ exists when ε2 > 0, and then
the range of parameter combinations is shown in Figure 7.

2.2. Bifurcation Range of Parameter Group ðh0, lÞ. Similarly,
assume that i0 = 1:2A, q0 = 5:4370 × 10−8 m3/s. The parame-
ters in Table 1 are substituted into equation (2) to obtain the
singularities as follows.

x0, y0ð Þ = 0, 0ð Þ,
x1,1, y1ð Þ =

ffiffiffiffiffi
δ1

p
, 0

� �
,

x1,2, y1ð Þ = −
ffiffiffiffiffi
δ1

p
, 0

� �
,

x2,1, y2ð Þ =
ffiffiffiffiffi
δ2

p
, 0

� �
,

x2,2, y2ð Þ = −
ffiffiffiffiffi
δ2

p
, 0

� �
,

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð5Þ

where δi = −0:5h20ðh0 + lÞ2/γ2½α7 + ð−1Þi+11:33 × 1036ffiffiffiffiffi
β3

p �, i = 1, 2

α7 = 4:67 × 1027h0l4 + 4:67 × 1027h40l + 9:34 × 1026h50
+ 9:34 × 1026h20l3 + 9:34 × 1026h30l2,

β2 = −9:01 × 10−17h70l3 − 1:56 × 10−16h60l4 − 1:89 × 10−16h50l5

− 1:58 × 10−16h40l6 − 9:01 × 10−17h30l7,

γ2 = 1:16 × 1028h60l + 3:49 × 1028h50l2 + 5:81 × 1028h40l3

+ 5:81 × 1028h30l4 + 3:49 × 1028h20l5 + 1:16 × 1028h0l6:
ð6Þ

Similarly, from equation (5), it can be seen that there
are only three meaningful singularities ð0, 0Þ, ðx2,1, 0Þ, and
ðx2,2, 0Þ, static bifurcation occurs and singularity ðx2,1, 0Þ
and ðx2,2, 0Þ exists when ε2 > 0, and then the range of
parameter combinations is shown in Figure 8.
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3. Singularity Characteristics of Single DOF
Supporting System

3.1. Singular Points Characteristic under Parameter Groups
ði0, q0Þ. Equation (1) was rewritten in the following form.

P x, yð Þ = y,

Q x, yð Þ = −
1
m
〠
1

i=0
−1ð Þi F1 + F2ð Þ:

8><
>:

ð7Þ

Jacobian matrix A of x and y can be obtained from equa-
tion (7).

A =

∂P
∂x

∂P
∂y

∂Q
∂x

∂Q
∂y

0
BBB@

1
CCCA =

0 1
∂Q
∂x

∂Q
∂y

0
@

1
A: ð8Þ

The characteristic equation of matrix A [14] can be
expanded as follows:

A − λEj j = λ2 − pλ + q = 0, ð9Þ

where p = ∂Q/∂y, q = −∂Q/∂x.

3.1.1. Characteristics of Zero Singularity. The singularity ð0,
0Þ was substituted into equation (9) to obtain as follows.

p = 415:99i0 − 597:17,
q = −2:8349 × 106i20 + 970644i0 + 5:655 × 1010q0,
Δ = p2 − 4q:

8>><
>>:

ð10Þ

According to equation (10), the changing curves of p, q,
and△ can be obtained as shown in Figure 9 (q coincides with
△ to form a curve).

According to Figure 9, the coordinate system is divided
into four regions:

(1) In area 1, p < 0, q < 0, △<0, and the singularities are
stable focus

(2) In area 2, p > 0, q > 0, △<0, and the singularities are
unstable focus

(3) In area 3, p > 0, q < 0, △>0, and the singularities are
saddle points

(4) In area 4, p < 0, q < 0, △>0, and the singularities are
saddle points

3.1.2. Characteristics of Nonzero Singularities. Similarly, sin-
gularity ðx2, 0Þ was substituted into equation (9) to obtain
curves of p, q, and △ as shown in Figure 10.
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According to Figure 10, the coordinate system is divided
into five regions (the curve q is similar to a part of the curve
△, the above two can be approximately regarded as a curve).

(1) In area 1, p > 0, q > 0, △<0, and the singularities are
unstable focus

(2) In area 2, p < 0, q > 0, △<0, and the singularities are
stable focus

(3) In area 3, p < 0, q > 0, △>0, and the singularities are
stable focus

(4) In area 4, nonzero singularities are not existing

(5) In area 5, nonzero singularities are not existing

3.2. Singularity Characteristics under Parameter Group ðh0, lÞ
. Similarly, the singularity characteristics under the parame-
ter group ðh0, lÞ are analyzed.
3.2.1. Characteristics of Zero Singularity. Singularity ð0, 0Þ
was substituted into equation (9) to obtain p, q, and△ as fol-
lows:

p = 4:49 × 10−7
h0 + lð Þ2 −

1:61 × 10−11
h30

,

q = 5:99 × 10−4
h0 + lð Þ2 −

1:10 × 10−7
h0 + lð Þ3 + 2:49 × 10−12

h40
,

Δ = p2 − 4q:

8>>>>>>><
>>>>>>>:

ð11Þ

According to equation (11), the curves of p, q, and△ can
be obtained as shown as Figure 11 (q coincides with △ to
form a curve).

According to Figure 11, the coordinate system is divided
into four regions:

(1) In area 1, p < 0, q > 0, △<0, and the singularities are
stable focus

(2) In area 2, p > 0, q > 0, △<0, and the singularities are
unstable focus

(3) In area 3, p > 0, q < 0, △>0, and the singularities are
saddle points

(4) In area 4, p < 0, q < 0, △>0, and the singularities are
saddle points

3.2.2. Characteristics of Nonzero Singularities. The singularity
ðx2, 0Þ was substituted into equation (9) to obtain the curves
of p, q, and △ as shown in Figure 12.

As can be seen from Figure 12, the coordinate system is
divided into four areas:

(1) In area 1, the singularities are not existing

(2) In area 2, p > 0, q > 0, △<0, and the singularities are
unstable focus

(3) In area 3, p < 0, q > 0, △<0, and the singularities are
stable focus

(4) In area 4, the singularities are not existing

4. Phase Trajectories and Attractivity of Single
DOF Supporting System

4.1. Phase Trajectories and Attractivity under Parameter
Groups ði0, q0Þ

(1) Assume that i0 = 1:0A, q0 = 0:3 × 10−4 m3/s, phase
trajectories, and x − t curves can be obtained by
fourth-order Runge-Kutta method [15] as shown in
Figures 13 and 14

The phase trajectories of initial point (1:5 × 10−5, -0.02)
and (1:5 × 10−5, 0.02), respectively, surround and approach
stable focuses (0:76 × 10−5, 0) and (−0:76 × 10−5, 0). Both of
them reach balance after 0.03 s adjustment, and the rotor
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can be suspended stably as shown in Figures 13 and 14. How-
ever, the balance position is not the expected center of rota-
tion [16].

(2) Assume that i0 = 1:0A, q0 = 1 × 10−4 m3/s, and the
phase trajectories and x − t curves [17] are shown in
Figures 15 and 16
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Figure 17: Phase trajectories under i0 = 1:6A, q0 = 0:25 × 10−4 m3/s.
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Figure 18: x − t curves under i0 = 1:6A, q0 = 0:25 × 10−4 m3/s.
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Figure 19: Phase trajectories under i0 = 1:8A, q0 = 1:2 × 10−4 m3/s.
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Figure 20: x − t curves under i0 = 1:8A, q0 = 1:2 × 10−4 m3/s.

−1.5 −0.5 0.5 1.5
−0.02

−0.01

0.00

0.01

0.02

V
el

oc
ity

 y
/(

m
/s

)

Displacement x(m)

×10−5

(a) (x0 = 0:5 × 10−5, v0 = −0:005)

−0.02

−0.01

0.00

0.01

0.02

V
el

oc
ity

 y
/(

m
/s

)

−1.5 −0.5 0.5 1.5
Displacement x(m)

×10−5

(b) (x0 = 0:5 × 10−5, v0 = 0:005)

Figure 21: Phase trajectories under i0 = 1:6A, q0 = 1:0 × 10−4 m3/s.
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Figure 22: x − t curves under i0 = 1:6A, q0 = 1:0 × 10−4 m3/s.
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Figure 23: Phase trajectories under i0 = 1:8A, q0 = 1:6 × 10−4 m3/s.
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Figure 24: x − t curves under i0 = 1:8A, q0 = 1:6 × 10−4 m3/s.
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The phase trajectories of initial point (1:5 × 10−5, -0.02)
and (1:5 × 10−5, 0.02) both surround and approach the sta-
ble focus (0, 0). Both of them reach balance after 0.05 s
adjustment, and the rotor can be suspended stably as
shown in Figures 15 and 16. The balance position is the
expected center of rotation, and the phase trajectories of
different initial points eventually approach the same stable
focus.

(3) Assume that i0 = 1:6A, q0 = 0:25 × 10−4 m3/s, and
phase trajectories and x − t curves are shown in
Figures 17 and 18

The phase trajectory of point (−1:5 × 10−5, 0.02) rap-
idly approaches stable focus (0:76 × 10−5, 0), while the
phase trajectory of point (2:63 × 10−5, 0) gradually sur-
rounds and approaches stable focus (2:63 × 10−5, 0).
Both of them reach balance after 0.0012 s adjustment,
and the rotor can be suspended stably as shown in
Figures 17 and 18. However, the balance position is
not the expected center of rotation, and the phase tra-
jectories of different initial points eventually approach
different stable focus.

(4) Assume that i0 = 1:8A, q0 = 1:2 × 10−4 m3/s, and
phase trajectories and x − t curves are shown in
Figures 19 and 20

According to Figures 19 and 20, the rotor oscillates in
equal amplitude, and the phase trajectories form a limit
cycle.

In order to verify the stability of the limit cycle, the
initial point inside the limit cycle was selected to simulate
the phase trajectories and x − t curves as shown in
Figures 21 and 22.

According to Figures 21 and 22, the phase trajectories of
the inner initial point gradually diverge and finally approach
a limit cycle, so the rotor cannot be suspended stably in this
case [18].

(5) Assume that i0 = 1:8A, q0 = 1:6 × 10−4 m3/s, and
phase trajectories and x − t curves are shown in
Figures 23 and 24

According to Figures 23 and 24, the rotor oscillates
in equal amplitude, and phase trajectories form a limit
cycle [19].
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Figure 25: Phase trajectories under i0 = 1:8A, q0 = 1:6 × 10−4 m3/s.
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In order to verify the stability of the limit cycle, the
initial point inside the limit cycle was selected to simulate
the phase trajectories and x − t curves as shown in
Figures 25 and 26.

According to Figures 25 and 26, the phase trajectories of
inner initial points gradually diverge and finally approach a
limit cycle, so the rotor cannot be suspended stably in this
case.

With the gradual change of i0 and q0, different initial
positions of the rotor are attracted to different stable singu-

larities. Basins of attraction under different parameter groups
are shown in Figure 27. The red and green areas are, respec-
tively, attracted to singularity ðx2,1, 0Þ and ðx2,2, 0Þ.

According to Figure 27, singularity positions to which
rotor is eventually attracted depend not only on initial veloc-
ity and initial displacement but also on coil current i0 and
flow of bearing cavity q0. When i0 is small, the attraction of
singularities will change greatly with i0 change slightly. When
q0 is large, the attraction of singularities will change greatly
with q0 change slightly.
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Figure 27: Basins of attraction under different parameters.
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Figure 28: Phase trajectories under h0 = 5:0 × 10−5 m, l = 5:0 × 10−5 m.
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Figure 29: x − t curves under h0 = 5:0 × 10−5 m, l = 5:0 × 10−5 m.
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Figure 30: Phase trajectories under h0 = 8:0 × 10−5 m, l = 2:0 × 10−5 m.
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Figure 31: x − t curves under h0 = 8:0 × 10−5 m, l = 2:0 × 10−5 m.
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Figure 32: Phase trajectories under h0 = 8:0 × 10−5 m, l = 1:0 × 10−5 m.
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Figure 33: x − t curves under h0 = 8:0 × 10−5 m, l = 1:0 × 10−5 m.
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4.2. Phase Trajectories and Attractively under Parameter
Group ðh0, lÞ

(1) Assume that h0 = 5:0 × 10−5 m, l = 5:0 × 10−5 m, and
the phase trajectories and x − t curves are shown in
Figures 28 and 29

According to Figures 28 and 29, the phase trajectories of
initial point (−1:5 × 10−5, -0.02) and (1:5 × 10−5, 0.02) both
surround and gradually approach the stable focus (0, 0). Both
of them reach balance after 0.12 s adjustment, and the rotor
can be suspended stably. And the balance position is the
expected center of rotation [20].

(2) Assume that h0 = 8:0 × 10−5 m, l = 2:0 × 10−5 m, and
the phase trajectories and x − t curves are shown in
Figures 30 and 31

According to Figures 30 and 31, the phase trajectories of
initial point (−1:5 × 10−5, -0.02) and (1:5 × 10−5, 0.004),
respectively, surround and gradually approach different limit
cycles after multiple periodic adjustments. There is no stable
singularity. The rotor cannot be suspended stably, and Hopf
bifurcation may occur in the system [21].

(3) Assume that h0 = 8:0 × 10−5 m, l = 1:0 × 10−5 m, and
the phase trajectories and x − t curves are shown in
Figures 32 and 33

According to Figures 32 and 33, the phase trajectories of
initial point (−1:5 × 10−5, -0.02) and (1:5 × 10−5, 0.004),
respectively, surround and gradually approach different limit
cycles after multiple periodic adjustments. There is no stable
singularity. The rotor cannot be suspended stably, and Hopf
bifurcation may occur in the system [22].
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Figure 34: Phase trajectories under h0 = 6:0 × 10−5 m, l = 0:5 × 10−5 m.
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Figure 35: x − t curves under h0 = 6:0 × 10−5 m, l = 0:5 × 10−5 m.
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(4) Assume that h0 = 8:0 × 10−5 m and l = 1:0 × 10−5 m,
and the phase trajectories and x − t curves are shown
in Figures 34 and 35

According to Figures 34 and 35, the phase trajectory of ini-
tial phase point (−1:50 × 10−5, -0.02) gradually approaches
stable focus (2:49 × 10−5, 0), while initial phase point
(1:50 × 10−5, 0.02) gradually approaches stable focus
(−2:49 × 10−5, 0). Both of them reach balance after 0.4 s
adjustment, and the rotor can be suspended stably. However,
the balance position is not the expected center of rotation [23].

To sum up, the final balance position is affected not only
by the initial phase point but also by oil film thickness h0 and
galvanized layer thickness l. And final balance position of the
same initial phase point will be different under the combined
influence of different h0 and l. Therefore, it is necessary to
simulate basins of attraction under different h0 and l
conditions.

With the change of h0 and l, the characteristics of the
basin of attraction will be changed as well. Basins of
attraction under different parameters are shown in
Figure 36.
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Figure 36: Basin of attraction under different parameters.
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According to Figure 36, the basins of attraction are dis-
tributed symmetrically. The phase points in the red region
will be eventually attracted to the nonzero singularity ðx2,1,
0Þ, while the green region is attracted to singularity ðx2,2, 0Þ
[24]. Moreover, the final stable balance position of the rotor
changes greatly with l change slightly, while the final equilib-
rium point is slightly affected by h0.

5. Conclusion

The paper presents the static bifurcation behavior of
MLDSB affected by design parameters. The singularity
characteristics, phase trajectory, x − t curves, and suction
basin of the single DOF bearing system are analyzed to
verify the accuracy of the theoretical calculation. The con-
clusions are as follows.

(1) Nonzero singularities exist and static bifurcation
occurs when ε2 > 0 or δ2 > 0

(2) With flow of bearing cavity, coil current, oil film
thickness, and galvanized layer thickness changes,
in turn, the singularities will convert between stable
focus, unstable focus, stable node, and saddle point

(3) As current i0, flow q0, oil film thickness h0, and zinc
layer thickness l change, the phase trajectory may
form a stability limit cycle, and the system oscillates
at constant amplitude, which makes it impossible to
achieve stable suspension

(4) The attractiveness of singularity will change greatly
when the flow of bearing cavity and coil current
change slightly in the case of small current or large
flow

(5) The minimal change of galvanized layer thickness
will lead to the fundamental change of the final stable
equilibrium point of the rotor, while the final equilib-
rium point is less affected by the oil film thickness
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