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In order to control the vibration of the involute spline coupling in aeroengine well and reduce the fretting wear, a bending–torsion
coupling nonlinear vibration model of the involute spline coupling with the misalignment was proposed, and a dynamic meshing
stiffness function with multiteeth engagement was established. Then, the influence of different misalignment, wear, and rotation
speeds with different misalignment on the nonlinear vibration characteristics of the involute aviation spline coupling was
explored. The result shows that with an increase of the parallel misalignment, the system experienced the state of a single
period, a quasiperiod, multiperiod, and chaos but finally only alternated between the quasiperiod and the chaos state. The
uneven wear of each tooth of the spline displayed a significant influence on the vibration of the spline coupling, and the
influence of the uniform wear was smaller under given conditions here. Furthermore, with an increase of the speed, the larger
the misalignment was, the more times the system entered or left the chaos state were. The model proposed here is found to be
closer to the actual working conditions, and the analysis results can provide more accurate external load conditions for the
prediction of the fretting damage of the spline coupling in aeroengine.

1. Introduction

There should be no relative displacement between the invo-
lute spline couplings of aeroengine. As the involute spline
couplings are not only subjected to a strong external excita-
tion of cycle loads but also the internal excitation introduced
by the time-varying meshing stiffness and the error produced
in the process of manufacturing or assembly while taking off,
cruising, and landing, they exhibit a heavy nonlinear vibra-
tion [1–4]. Especially, for the internal and external spline
shafts, they are misaligned during installation or misaligned
due to heating, loading, and foundation deformation, or
there is a misalignment between the involute spline couplings
before assembly. Generally, there are three kinds of misalign-
ment in the involute spline coupling: parallel misalignment,
angular misalignment, and combined misalignment. The
parallel misalignment means two connected rotor axes are

connected with some parallel offset in the radial direction;
the angular misalignment means two connected rotor axes
are connected with an angle; the combined misalignment
means two connected rotor axis lines have both an angle
and a parallel offset. All types of misalignment can cause
the spline coupling bending, as well as introduce additional
loads to the spline shaft. Then, the loads between the teeth
is redistributed, which results in a strong bending–torsion
coupling nonlinear vibration of the involute spline coupling
in aeroengine [5, 6]. On the one hand, due to the bending tor-
sional coupling nonlinear vibration, the smoothness of sys-
tem transmission will get worse, so there will be much
noise [7]; on the other hand, the fretting will be introduced
between the two contact surfaces. Further, the fretting wear
alters the backlash and the surface roughness of spline teeth,
and then affects the vibration excitation of the system and
intensifies its vibration characteristics of the system [8–10].
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Therefore, there must be some relationship between the fret-
ting wear and the vibration of the spline coupling [11, 12].
Finally, the repeated fretting movement leads to a serious
failure of the fretting wear in the spline coupling of aeroen-
gine [13–16]. At present, there are a large number of studies
on fretting wear and the vibration characteristics of aviation
involute splines, but both of them are two unrelated issues.

In terms of spline coupling vibration, there have been
several studies focused on predicting the free and forced
vibration characteristics of rotor-coupling systems [17–19].
These studies proposed the vibration model of the system
using the finite-element method and analyzed the effect of
the spline force on the stability of the rotor system. Theoret-
ical and experimental analyses were conducted the effects of
vibration parameters on the vibration characteristics and the
stability of the system. However, these studies did not ana-
lyze the influence of the misalignment on the vibration char-
acteristics of the system. Though there are numerous studies
on the effect of the misalignment on the vibration character-
istics of the system, the multiteeth meshing was not in these
works [20, 21]. Consequently, the results are not accurate
enough for the design of aeroengine involute spline cou-
plings. Only Zhang and Cuffaro take into account the mis-
alignment and investigated the vibration characteristics
[22, 23]. Kahraman assumed both the shaft and the gear
(or any other component splined to the shaft) deflect only
at the spline teeth and investigated the vibration characteris-
tics of involute spline couplings [24].

In terms of the fretting wear of the spline coupling, Leen
et al. conducted a study on the characteristic of the friction
contact of the helical spline coupling using the finite-
element method considering the axial load and torque load
and analyzed the influence of the tooth profile modification
on the contact stress, sliding distance, and friction factor of
the spline teeth [25]. Medina and Olver studied the elastic
contact model of the spline coupling based on the boundary
finite-element method and explored the influence of large-
scale design parameters, torque, and eccentricity error on
the contact pressure and the slip distance distribution of
the spline coupling [26]. Mccoll proposed a finite-element
method to calculate the fretting wear based on the modified
Archard’s equation and measured the friction coefficient and
the wear coefficient by using the friction and wear experi-
ment [27]. In 2003, Ding et al. also proposed a numerical
method based on the modified Archard’s equation to simu-
late the fretting wear of a pin disk under the partial sliding
and complete sliding, which not only calculated the surface
contact pressure and the sliding distance but also calculated
the subsurface contact pressure [28]. According to these
analyses, the above studies did not investigate the fretting
wear on the vibration characteristics of bending–torsion
under the internal and external excitation of the system,
and Zhao and others only considered the relationship
between the fretting wear and the vibration displacement
[13, 29, 30].

Therefore, based on the above studies, a bending–torsion
coupling nonlinear vibration model of the involute spline
coupling with a misalignment was proposed; the working
conditions of the parallel misalignment and the displace-

ment on the meshing line in different quadrants of the invo-
lute spline coupling were analyzed, and the meshing stiffness
of a single tooth under an ideal condition with the parallel
misalignment was calculated. Then, the vibration character-
istics of the involute spline coupling in the aeroengine sys-
tem on different parallel misalignment, fretting wear, and
speed rotation were studied. It is of great significance for
controlling the vibration and reducing the fretting wear fail-
ure to study the bending–torsion coupling nonlinear vibra-
tion characteristics of the involute splines considering the
parallel misalignment.

2. Vibration Model of the System considering
the Misalignment

2.1. Establishment of the Vibration Model. The vibration
model of the bending–torsion coupling of the involute spline
coupling in the aeroengine system in the three-dimensional
plane is shown in Figure 1(a). The four concentrated mass
blocks marked as 1, 2, 3, and 4 in Figure 1(a) represent the
prime mover, external spline, internal spline, and load,
respectively. The prime mover with the torsional stiffness
kT1 and the torsional damping cT1 is connected with the
external spline using a massless elastic shaft; the internal
spline with the torsional stiffness kT2 and the torsional
damping cT2 is connected with the load using a massless
elastic shaft; the internal and external splines are connected
with the involute teeth, considering the meshing stiffness
km, meshing damping cm, and clearance ci between the
working teeth profile and clearance c′i and between the non-
working teeth profile. It is further considered that there are
supporting stiffness and supporting damping on the internal
and external splines. kpx1, kpy1, kpx2, kpy2 represent the sup-
porting stiffness of the external spline and the internal spline
along the x and the y coordinate axes, respectively; cpx1,
cpy1, cpx2, cpy2 represent the supporting damping of the exter-
nal spline and the internal spline along the x and the y coor-
dinate axes, respectively; the input torque and the load
torque of the system are Td, TL, respectively.

The vibration model of the bending–torsion coupling of
the involute spline coupling in the aeroengine system in the
two-coordinate plane is shown in Figure 1(b). In Figure 1(b),
the influence of the misalignment is taken into account.

2.2. Analysis of the Working Conditions of the Misalignment.
The misalignment of the involute spline coupling in aeroen-
gine includes parallel misalignment, angular misalignment,
and combined misalignment, as shown in Figures 2–4. As
the vibration of the involute spline coupling is only analyzed
in the xoy plane in this work, the vibration of the z-axis free-
dom is not considered, and the parallel misalignment in the
x and y directions is mainly analyzed. As shown in Figure 3,
the black lines represent the external involute spline and its
coordinate system, and the red lines represent the internal
involute spline and its coordinate system. Here, it is assumed
that the external spline is stationary under the parallel mis-
alignment condition. Therefore, the misalignment is intro-
duced from the movement of the internal spline. From
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Figure 3, it can be inferred that the parallel misalignment is
formed by moving a distance l along a certain coordinate
axis from the initial location. Therefore, in the xoy plane,
the coordinate of the y and x direction misalignment of
the original internal spline can be expressed as follows:

y′2 = y2 + ly, ð1Þ

x′2 = x2 + lx: ð2Þ

2.3. Establishment of Vibration Equations. According to
Newton’s second law, the vibration equations of the spline
coupling in aeroengine are shown in the following equation.

JM€θM + kT1 θM − θ1ð Þ + cT1 _θM − _θ1
� �

= Td

m1€x1 + kp1x1 + cp1 _x1 = Fmx

m1€y1 + kp1y1 + cp1 _y1 = Fmy −m1g

J1€θ1 + kT1 θ1 − θMð Þ + cT1 _θ1 − _θM
� �

= Tm

m2€x′2 + kp2x′2 + cp2 _x′2 = −Fmx

m2€y′2 + kp2y′2 + cp2 _y′2 = −Fmy −m2g

J2€θ2 + kT2 θ2 − θLð Þ + cT2 _θ2 − _θL
� �

= −Tm

JL€θL + kT2 θL − θ2ð Þ + cT2 _θL − _θ2
� �

= −TL,

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

ð3Þ

where x1, y1, and θ1 are the vibration displacements along
the x-axis, y-axis (m), and the torsional displacement around
the axis of the external spline (rad), respectively; x2, y2, and θ2
are the vibration displacements along the x-axis, y-axis (m),
and the torsional displacement around the axis of the internal
spline, respectively (rad); θM and θL are the torsional displace-
ments of the prime mover and loads (rad), respectively; θM
and θ1, θ1 and θ2, and θ2 and θL are all not the same due to
the torsional deformation of the shaft and the spine teeth.
Then, it is assumed that the supporting stiffness and the sup-
porting damping of the external spline and the internal spline
are the same in the x and y directions, respectively. It means
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Figure 1: The vibration model of the bending–torsion coupling of the involute spline coupling: (a) in the three-dimensional plane; (b) in the
xoy plane.
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Figure 2: Diagram of the parallel misalignment.
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Figure 3: Diagram of the angular misalignment.
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Figure 4: Diagram of the combined misalignment.
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kpx1 = kpy1 = kp1,

kpx2 = kpy2 = kp2,

cpx1 = cpy1 = cp1,

cpx2 = cpy2 = cp2:

ð4Þ

Then, the rigid displacement of Equation (5) requires to be
eliminated. Thereafter, Equation (5) is expressed as follows:

€x1 +
kp1
m1

x1 +
cp1
m1

_x1 =
Fmx
m1

€y1 +
kp1
m1

y1 +
cp1
m1

_y1 =
Fmy

m1
− g

€x′2 +
kp1
m2

x′2 +
cp1
m2

_x′2 = −
Fmx
m2

€y′2 +
kp1
m2

y′2 +
cp1
m2

_y′2 = −
Fmy

m2
− g

€Δ1 + kT1
1
J1

+
1
JM

� �
Δ1 + cT1

1
J1

+
1
JM

� �
_Δ1 = −

rbTd
JM

+
rb
J1
Tm

€Δ2 +
kT2
J2

Δ3 −
kT1
J1

Δ1 +
cT2
J2

_Δ3 −
cT1
J1

_Δ1 = −rbTm
1
J1

+
1
J2

� �

€Δ3 + kT2ðÞ
1
J2

+
1
JL

� �
Δ3 + cT2

1
J2

+
1
JL

� �
_Δ3 = −

rbTm
J2

−
rbTL
JL

:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð5Þ

In Equation (5), rb is the radius of the base circle of inter-
nal and external splines (rad). The angular velocity _θM of the
prime mover is considered to be a constant value, and

Δ1 = rb θ1 − θMð Þ
Δ2 = rb θ2 − θ1ð Þ
Δ3 = rb θ2 − θLð Þ:

8>><
>>: ð6Þ

Then, after introducing the dimensionless reference
parameters ω, l, Equation (5) becomes dimensionless:

€�x1 + kp1�x1 + cp1 _�x1 = Fmx1

€�y1 + kp1�y1 + cp1 _�y1 = Fmy1 − �g

€�x′2 + kp2�x′2 + cp2 _�x′2 = Fmx2

€�y′2 + kp2�y′2 + cp2 _�y′2 = Fmy2 − �g

€�Δ1 + kT1�Δ1 + cT1
_�Δ1 = �T1

€�Δ2 + kT23�Δ3 − kT21�Δ1 + cT23
_�Δ3 − cT21

_�Δ1 = −�T2

€�Δ3 + kT3�Δ3 + cT3
_�Δ3 = −�T3:

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð7Þ

In Equation (7),

3. Analysis of the Nonlinear Vibration Force

The component of the total meshing force along the coordi-
nate axis can be obtained by a discrete summation of the

forces along the meshing line of a single pair of teeth. The
total meshing torque is the total meshing force multiplied
by the radius of the base circle rb. The calculation is shown
in following equation:

kp1 =
kp1
m1ω

2 , cp1 =
cp1
m1ω

, kp2 =
kp2
m2ω

2 , cp2 =
cp2
m2ω

kT1 =
kT1
ω2

1
J1

+
1
JM

� �
, kT3 =

kT2
ω2

1
J2

+
1
JL

� �
; cT1 =

cT1
ω

1
J1

+
1
JM

� �
, cT3 =

cT2
ω

1
J2

+
1
JL

� �
kT21 =

kT1
J1ω2 , kT23 =

kT2
J2ω2 ; cT21 =

cT1
J1ω

, cT23 =
cT2
J2ω

L =
l
rb

€�x1 =
€x1
lω2 , _�x1 =

_x1
lω

, �x1 =
x1
l
; €�x2 =

€x2
lω2 , _�x2 =

_x2
lω

, �x2 =
x2
l
;

€�y1 =
€y1
lω2 , _�y1 =

_y1
lω

, �y1 =
y1
l
; €�y2 =

€y2
lω2 , _�y2 =

_y2
lω

, �y2 =
y2
l

€�Δ1 =
€Δ1
lω2 ,

_�Δ1 =
_Δ1
lω

, �Δ1 =
Δ1
l

Fmx1 =
Fmx
m1lω2 ; Fmy1 =

Fmy

m1lω2 ; Fmx2 =
Fmx
m2lω2 ; Fmy2 =

Fmy

m2lω2 ;

�T1 =
rbTm
J1lω2 −

rbTd
JMlω2 ; �T2 = rbTm

1
J1lω2 +

1
J2lω2

� �
; �T3 =

rbTm
J2lω2 −

rbTL
JLlω2 : ð8Þ
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Fmx = −〠
z

i=1
Fni sin φi

Fmy = 〠
z

i=1
Fni cos φi

Tm = rb 〠
z

i=1
Fni,

8>>>>>>>>>><
>>>>>>>>>>:

ð9Þ

where Fni is the meshing force of a single pair of teeth along
the meshing line as shown in the following equation:

Fni = kmgi Δni tð Þ½ � + cm _gi Δni tð Þ½ �: ð10Þ

Here, gi½ΔniðtÞ� is the meshing deformation function. It
is assumed that the initial clearance on both sides of each
tooth of internal and external splines is ci and c′i, respec-
tively (if the center deviation of the spline shaft is not con-
sidered, ci = c′i), and the meshing deformation function
and its differential function (Equations (11) and (12)) are
all piecewise functions.

When there is no fretting wear between the spline teeth,
the meshing deformation function and its differential func-
tion are expressed as follows:

gi Δni tð Þ½ � =
Δni tð Þ − c′i Δni tð Þ > ci′

0 ‐ci ≤ Δni tð Þ ≤ ci′

Δni tð Þ + ci Δni tð Þ<−ci,

8>><
>>: ð11Þ

_gi Δni tð Þ½ � =
_Δni tð Þ Δni tð Þ > ci′&Δni tð Þ<−ci
0 ‐ci ≤ Δni tð Þ ≤ ci′:

(
ð12Þ

However, the involute spline coupling of aeroengine is
accompanied by severe fretting wear during its operation.
When the wear depth is considered, the original backlash
of the spline coupling changes, that is, if the wear depth of
each tooth is hi, i = 1, 2, 3⋯ z, then the initial backlash of
one side on-meshing of the aviation involute spline consid-
ering the fretting wear becomes ci + hi. Hence, the expres-
sion of gi½ΔniðtÞ� becomes

gi Δni tð Þ½ � =
Δni tð Þ − c′i Δni tð Þ > c′i
0 ‐ ci + hið Þ ≤ Δni tð Þ ≤ c′i
Δni tð Þ + ci + hið Þ Δni tð Þ<− ci + hið Þ,

8>><
>>:

_gi Δni tð Þ½ � =
_Δni tð Þ Δni tð Þ > c′i&Δni tð Þ<− ci + hið Þ
0 ‐ ci + hið Þ ≤ Δni tð Þ ≤ c′i:

(

ð13Þ

If the misalignment of the spline shaft is not considered,
ci = c′i, according to the deformation formula of a single
tooth (Equation (11)), the relative displacement on the
meshing line ΔniðtÞ is also required to obtain the vibration
meshing force. Thus, the involute profile is simplified as

trapezoid. It is observed that it is negative while moving
inward the tooth along the meshing line on the working pro-
file and it is positive while moving outward the tooth along
the meshing line on the working profile. All the lengths of
the segment involved below are positive as well. Then, α0
is the pressure angle on the reference circle (rad); z is the
total number of teeth; i is the tooth number (set the tooth
on the x-axis at the initial time as the first pair of teeth,
and the numbers of the rest of the teeth are 1, 2, and 3 in
sequence); ω is the angle velocity (rad/s); t is the time (s);
θ0 is the half angle of the tooth thickness of the reference cir-
cle (rad), θ0 = π/2z; the angle φi between the working profile
and the x direction is defined as follows:

φi = θi − α0: ð14Þ

θi is the angle of a tooth at a certain time which can be
expressed as follows:

θi = 2πi/z + ω0t + θ0 θ0 = π/2zð Þ, ð15Þ

as shown in Figure 5.
The formula of the displacement along the meshing line

is expressed as follows:

Δn1 = −x1 sin φi + y1 cos φi: ð16Þ

It can be concluded that the displacement formulas on
the meshing line of the external and internal splines are
the same for the φi of different quadrants and for different
modes of movement; when considering the misalignment,
they are expressed as follows:

Δn1 = −x1 sin φi + y1 cos φi,

Δn2 = −x′2 sin φi + y′2 cos φi:
ð17Þ

Based on the above discussion, the formula for the rela-
tive displacement on meshing lines between the internal and
external splines without considering the misalignment is
expressed as follows:

y

o

Base diameter

Reference
diameter

M

N
𝜃

1i

𝜃
1i

𝜃
0

𝛼0

𝛼0
𝜑

i

x

Figure 5: Diagram of the related angle.
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Δni tð Þ = Δn2 tð Þ − Δn1 tð Þ + rb θ2 − θ1ð Þ
= x1 − x′2
� �

sin φi − y1 − y′2
� �

cos φi + rb θ2 − θ1ð Þ

= x1 − x′2
� �

sin φi − y1 − y′2
� �

cos φi + Δ2:

ð18Þ

In this work, the influence of the nonlinear vibration
characteristics under the misalignment of the involute spline
coupling system is studied. Therefore, the relative displace-
ment ΔniðtÞ on the meshing line between the involute spline
couplings is calculated considering the misalignment. Then,
the corresponding equations are expressed by Equations
(19) and (20), respectively, as follows:

Δni tð Þ = x1 − x′2
� �

sin φi − y1 − y′2
� �

cos φi + Δ2, ð19Þ

_Δni tð Þ = _x1 − _x′2
� �

sin
2π
z
i + ω0t + θ0 − α0

� �

+ x1 − x′2
� �

ω0 cos
2π
z
i + ω0t + θ0 − α0

� �

− _y1 − _y′2
� �

cos
2π
z
i + ω0t + θ0 − α0

� �
+ y1 − y′2
� �

ω0 sin
2π
z
i + ω0t + θ0 − α0

� �
+ _Δ2:

ð20Þ
4. Meshing Stiffness of the Spline Coupling

4.1. Meshing Stiffness of the Spline Coupling without
Misalignment. It is well known that the loaded position is
located at the pitch circle under ideal condition, as shown
in Figure 6.

First, the length from the root of the tooth to the location
of loading should be evenly divided into an identical micro-
segment, and then each parameter without considering the
transverse vibration is calculated as follows:

The microsegment height is shown in the following:

h′k =
hfk ha2ð Þ

n
, ð21Þ

where k = 1, 2; when it is the external spline, k = 1; when it is

the internal spline, k = 2. The tooth root height hf1 of the
external spline and the tooth top height ha2 of the internal
spline are shown in the following:

hf1 = 0:5 d1 − d1 minð Þ
ha2 = 0:5 d2 max − d2ð Þ,

(
ð22Þ

where d1 is the diameter of the reference circle of the exter-
nal spline, d1 min is the small diameter of the external spline,
d2 is the diameter of the reference circle of the internal
spline, and d2 max is the large diameter of the internal spline.

The thickness of the half tooth of the jth segment for the
external and internal splines is expressed by Equation (23) as
follows (for the external spline, Y j,k is the thickness of the
upper half tooth of the jth segment; for the internal spline,
Y j,k is the thickness of the lower half tooth of the jth
segment):

Y j,k = 0:5
S ⋅ Rj,k

r
± 2Rj,k inv a0ð Þ − inv aj,k

� �� �� �
, ð23Þ

where S is the tooth thickness of the reference circle, r is the
radius of the reference circle, and invða0Þ is the involute
function of a pressure angle of the reference circle; for a
pressure angle of 30°, the formula is shown as follows:

inv a0ð Þ = tan
π

6

� �
‐π
6
: ð24Þ

If invðaj,kÞ is the involute function of the pressure angle
corresponding to the upper surface of the jth segment, it can
be expressed as follows:

inv aj,k
� �

= tan aj,k
� �

‐aj,k,

aj,k = arccos
rb
Rj,k

 !
,

ð25Þ

where rb is the radius of base circle and Rj,k is the upper sur-
face radius of the jth segment.

F

Yj,1

R j
, 1

R j
–1

, 1

Yj–1, 1

h 1

𝜑
(a)

F

𝜑

h 2

R j
, 2Yj, 2

Yj+1, 2

R j
–1

, 2

(b)

Figure 6: Schematic diagram of the loaded involute spline coupling of aeroengine under ideal conditions: (a) schematic diagram of the
loaded external spline; (b) schematic diagram of the loaded internal spline.
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The average areas Aj,k of the upper and lower surfaces of
the jth segment are shown by the following equation:

Aj,1 = L Y j,1 + Y j‐1,1
� �

Aj,2 = L Y j,2 + Y j+1,2
� �

,

(
ð26Þ

where L is the tooth width.
For the external spline, the distance from the pitch cir-

cle to the upper surface of the jth segment can be expressed
as follows:

Sj,1 = r − Rj,1: ð27Þ

For the internal spline, the distance from the pitch
circle to the lower surface of the jth segment is given by

Sj,2 = Rj,2 − r: ð28Þ

The moment of inertia of the jth segment I j,k is
given by

I j,1 =
1
3
L Y j,1

3 + Y j−1,1
3� �

I j,2 =
1
3
L Y j,2

3 + Y j+1,2
3� �
:

8>><
>>: ð29Þ

The elastic modulus is given by

Eμ =
E

1 − μ2
: ð30Þ

For the involute splinemeshing with side, only the tangen-
tial stiffness is considered. The deformation of the axial matrix
and yield extrusion is ignored. Thus, after the bending and
shear flexibility of the single tooth model of the internal and
external splines being obtained, the total flexibility is obtained

Internal spline
profileExternal spline

profile

B
H

I

D
E

A A′

C θiΔx
Δy

Figure 8: Graphic of Led (considering the external spline as an
example, where point A and point A′ are the positions of the
engagement points on the external spline before and after the
movement).

Table 1: vibration parameters of involute spline coupling.

The parameters The value

Moment of inertia at prime mover, JM (kgm2) 7:54 × 10‐3

Load moment of inertia, JL (kgm2) 7:5263 × 10‐3

Moment of inertia of external spline, J1 (kgm
2) 3:4358 × 10‐3

Internal spline moment of inertia, J2 (kgm
2) 3:7321 × 10‐3

Concentrated mass of external spline, m1 (kg) 4:5106

Concentrated mass of internal spline, m2 (kg) 4:5572
Driving torque, Td (Nm) 30.66

Load moment, TL (Nm) 28 (light load)

Support stiffness, kp1, kp2 (N/m) 5 × 106
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Figure 7: Schematic diagram of the loaded spline considering the transverse vibration: (a) schematic diagram of the loaded external spline
considering the transverse vibration; (b) schematic diagram of the loaded internal spline considering the transverse vibration.
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Figure 9: Bifurcation diagrams with the misalignment changing of
the x direction when the misalignment in the y direction is 1 × 10−5
m.
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Figure 10: When the misalignment in the x direction is 2:73 × 10−4 m: (a) relative displacement velocity and (b) the corresponding diagram
of Poincare.
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Figure 11: When the misalignment in the x direction is 2:83 × 10−4 m: (a) relative displacement velocity and (b) the corresponding diagram
of Poincare.
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Figure 12: When the misalignment in the x direction is 3:05 × 10−4 m: (a) relative displacement velocity and (b) the corresponding diagram
of Poincare.

8 International Journal of Aerospace Engineering



by summing them, and then its derivative is obtained. Finally,
the stiffness of the single tooth of the internal and external
splines is obtained.

The formula for calculating the bending flexibility is
expressed by the following equation:

Δb,k =
1
Eμ

cos2φ
3

〠
n

j=1

hk
I j,k

hk
2 + 3Sj,khk + 3Sj,k2

� �"

− YF cos φ sin φ〠
n

j=1

hk
I j,k

hk + 2Sj,k
� �

+ YF
2 sin2φ〠

n

j=1

hk
I j,k

#
,

ð31Þ

where φ is the contact angle of the meshing point, ϕ = α0,
and YF is the thickness of the half tooth of the reference
circle, YF = 0:25πm. The formula for calculating the shear
flexibility is given by

Δs,k =
1:2 cos2φ

G
〠
n

j

hk
Aj,k

: ð32Þ

The total flexibility of a pair of teeth is given by

DT =Db,1 +Db,2 +Ds,1 +Ds,2: ð33Þ

The total tangential stiffness of a pair of teeth is given by

KT =
1
ΔT

: ð34Þ

4.2. Meshing Stiffness of the Spline Coupling with the
Misalignment. However, the position of the meshing point
(i.e., the position of the loading point) will be changed with
the transverse vibration and the parallel misalignment, and
thus, the meshing angle, the height of the microtooth, and
the half-tooth thickness of the microtooth will also be chan-
ged, as well as the stiffness will inevitably change, as shown
in Figure 7.

Therefore, the microsegment height changes into the
following expression:

h′k =
hfk + Led

n
, ð35Þ

where Led is the increment of the root (or top) height of the
external spline and the internal spline along the microsegment

2
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Figure 13: Bifurcation diagrams with changes in the uniform wear
when the misalignment in the x direction is 3:2 × 10−4 m.
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Figure 14: Bifurcation diagrams with changes in the uniform wear
when the misalignment in the x direction is 3:4 × 10−4 m.
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Figure 15: Bifurcation diagrams with changes in the uniform wear
when the misalignment in the x direction is 3:32 × 10−4 m.
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the corresponding diagram of Poincare.
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Figure 18: When the wear is 3:975 × 10−5 m (the misalignment in the x direction is 2:8 × 10−4 m): (a) relative displacement velocity and (b)
the corresponding diagram of Poincare.
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Figure 19: When the wear is 5:168 × 10−5 m (the misalignment in the x direction is 2:8 × 10−4 m): (a) relative displacement velocity and (b)
the corresponding diagram of Poincare.
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direction after the change of the engagement point, which can
be expressed as follows:

Led = Δx cos θi + Δy sin θi: ð36Þ

It is shown in Figure 8.
When considering the existence of the transverse vibra-

tion, for the external spline, the upper and lower surface
radii of the jth segment can be expressed as follows:

Rj,1′ = Rj,1 + Led, ð37Þ

Rj−1,1′ = Rj−1,1 + Led: ð38Þ
For the internal spline, the upper and lower surface radii

of the jth segment are given by

R′j,2 = Rj,2 + Led,

R′j+1,2 = Rj+1,2 + Led,
ð39Þ

Accordingly, for external and internal splines, the dis-
tance from the pitch circle to the upper and lower surfaces
of the jth segment is given by

S‘j,k = r + Led − R‘
j,k: ð40Þ

YF is given by

YF ′ = 0:5
S ⋅ r + Ledð Þ

r
− 2 r + Ledð Þ inv a0ð Þ − inv a0 ′

� �� �� �
,

ð41Þ

where a0 ′ is the pressure angle of ðr + LedÞ:

a0 ′ = arccos
rb

r + Led

� �
: ð42Þ

By substituting Equations (35) and (37)–(42) into the
corresponding calculation equations, respectively, the single

tooth stiffness considering the transverse vibration can be
obtained. Finally, the meshing force of the involute spline
is obtained too.

The rest of the vibration parameters have been described
in an earlier study [5].

5. Nonlinear Vibration Characteristics of the
Involute Spline Coupling

In this work, the calculation process of the torsional stiffness
kT and the torsional damping and meshing damping of the
spline shaft is adapted from a previous study [31]; and the
equivalent diameter of internal and external splines is
30mm for all; the equivalent length of external and internal
splines is 81 and 82 mm, respectively; and the unilateral side
clearance of splines is ci = ci′= 7:95 × 10−5 m. The rest of the
parameters are given in Table 1, the detailed analysis of the
nonlinear vibration characteristics of the system under dif-
ferent working conditions is presented in the next sections.

5.1. The Influence of the Misalignment on the Nonlinear
Vibration Characteristics of the System. In this work, the rel-
ative velocity of a single pair of teeth was analyzed, and it
was assumed that there is no wear between the teeth. The
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Figure 20: When the wear is 5:565 × 10‐5 m (the misalignment in the x direction is 2:8 × 10−4 m): (a) relative displacement velocity and (b)
the corresponding diagram of Poincare.

0.07

0.02
0.01

0.03
0.04
0.05
0.06

0
2 4 6 8 10 12

h1(m)

Δn
 (t

) (
m

/s
)

×10–5

Figure 21: Bifurcation diagrams with changes in the wear when the
misalignment in the x direction is 3:4 × 10−4 m.
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rotational speed is 4000 r/min, and the parallel misalignment
in the y direction is unchanged with the value of 1 × 10−5m,
and then, the nonlinear vibration characteristics of the
system are studied with the misalignment changing in the
x direction. Figure 9 shows the bifurcation characteristics
of the system as the misalignment changes. From the bifur-
cation diagram, it can be seen that when the misalignment in
the x direction is between 2:6 × 10−4m and 2:82 × 10−4m,
the system is in a single period, and Figure 10 shows the
phase diagram and the Poincare section diagram with these
misalignments of x. When the misalignment is 2:83 × 10−4m,
the system is considered to be in a quasiperiodic state, as shown
in Figure 11. After a short period of a single period state, when
the misalignment is 3:05 × 10−4m, the system suddenly enters
a multiperiod state, as shown in Figure 12, and there are some
discrete points in the diagram of the Poincare section. When
the misalignment increases to 3:14 × 10−4m, the system enters
a short period of chaos, until the misalignment is 3:19 × 10−4
m, and the system exits the chaos state and enters a single
period. When the misalignment is 3:33 × 10−4m, the system
returns back to the chaos state again and then returns to the
single cycle motion, until the misalignment increases to 3:6 ×
10−4m, and finally the system enters a long-term chaos, with
the corresponding interval range of 3:6 × 10−4m to 4:18 ×
10−4m. In other words, for the parameters used here, it is not
found that the system exits from chaos. The motion state of
the system is found to be very unstable in this region. For
example, with some misalignment, the system returns to a
single period or a quasiperiod state, but in the misalignment
of 3:6 × 10−4m to 3:79 × 10−4m, the system alternates its state
between the single period, multiperiod, and chaos. In the
misalignment of 3:79 × 10−4m to 4:18 × 10−4m, the system
changes its state between the quasiperiod state and the
chaos state.

It can be concluded that with an increase in the parallel
misalignment, the state of the system becomes more and
more complex from the beginning of the single period and
then changes its state between the single period, quasiperiod,
multiperiod, and chaos state but finally changes its state
between the quasiperiod and the chaos state. The number

of times the system enters and exits the chaos increases obvi-
ously. Therefore, too much misalignment displays a signifi-
cant impact on the motion state of the system, which
makes the system very unstable and then causes damage.

5.2. The Effect of Wear on the Nonlinear Vibration
Characteristics of the System with Different Misalignment

5.2.1. The Situation of the Uniform Wear.When the spline is
worn, the backlash between the teeth changes, which affects
the nonlinear vibration characteristics. Therefore, the non-
linear vibration characteristics with different hi are analyzed
in this work. Here, the rotational speed is 4300 r/min, the
misalignment in the y direction is 0:1 × 10−4m, the support
damping in the x and y directions is 2N s/m for all, and
the torsional damping coefficient is 0.005.

At first, it was assumed that the wear amount of each tooth
is equal. It means in Equation (12), h1 = h2 = h3 ⋯ = hi, and
then the influence of the uniform wear on the nonlinear
vibration characteristics of the system was analyzed. As shown
in Figure 13, when the misalignment in the x direction is
3:2 × 10−4m, the bifurcation diagram of the system is a
straight line under this condition, which indicates that with
an increase in the uniform wear of each tooth, the movement
state of the system is a single cycle, and there are no obvious
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Figure 22: When the wear is 1:59 × 10−5 m (the misalignment in the x direction is 3:4 × 10−4 m): (a) relative displacement velocity and (b)
the corresponding diagram of Poincare.
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Figure 23: Bifurcation diagrams with changes in the wear when the
misalignment in the x direction is 3:7 × 10−4 m.
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changes. When the misalignment in the x direction increases
to 3:4 × 10−4m, the state of the system, as shown in
Figure 14, shows no obvious changes as compared to
Figure 13. However, as shown in Figure 15, when themisalign-
ment in the x direction approaches some specific values (for
example, the misalignment is 3:32 × 10−4m), the system
appears in chaos with an increase in the amount of wear.
However, the increase in the wear amount of the teeth in the
uniformwear shows no obvious effect on the system state with
the working condition given above.

5.2.2. The Situation of the Uneven Wear. In fact, due to var-
ious factors such as the misalignment, mass eccentricity, and
manufacturing error, the load on each spline tooth is not the
same; in addition to the influence of the vibration, the wear
of each spline tooth is not the same consequently. Therefore,
it is necessary to analyze the nonlinear vibration characteris-
tics of the involute spline with the nonuniform wear of each
tooth. In order to simplify the analysis, it is assumed that the
rest of the teeth were not worn; only the first pair of tooth
was worn, which took 0.05 times of clearance with an
increase in the bifurcation parameter; the wear of the first
pair of tooth varied from 0 to 1.5 times of clearance, the
rotational speed is 6000 r/min, the misalignment in the y
direction is 0:1 × 10−4m, the support damping in the x and
y directions is 5N s/m for all, and the torsional damping
coefficient is 0.007. Then, when the misalignment in the x
direction is 2:8 × 10−4m, the bifurcation diagram of the sys-
tem with an increase in the amount of wear is shown in
Figure 16. It can be seen when the wear is in the range of
0–3:578 × 10−5m (i.e., the wear is in the range of 0–0.45
times of the clearance), the system is in a single period state,
as shown in Figure 17; when the wear approaches 3:975 ×
10−5m (i.e., the wear is 0.5 times of the clearance), the sys-
tem appears in a multiple period bifurcation phenomenon,
as shown in Figure 18. From the diagram of Poincare, it
can be seen that there are three points on it, and the system
is in a three-multiple period state; when the amount of wear
is 4:77 × 10−5m (0.6 times of the clearance), the system
returns to the single period state; when the wear increases

to 5:168 × 10−5m (0.65 times of the side clearance), as
shown in Figure 19, there are several discrete points on the
Poincare section, and the system is in a multiperiod state;
and when the wear continues to increase to 5:565 × 10−5m
(0.7 times the clearance) as shown in Figure 20, the system
begins to enter chaos, and the corresponding Poincare sec-
tion is scattered. Then, the chaos interval of the system lasts
to 7:95 × 10−5m (1 time of the clearance), which is mixed
with a single period and a multiperiod state; when the wear
amount increases to 8:348 × 10−5m (1.05 times of the clear-
ance), the system finally returns to the current periodic state
and no longer changes.

Figure 21 shows the bifurcation diagram of the system
with an increase in the amount of wear when the misalign-
ment in the x direction increases to 3:434 × 10−4m. From
this figure, it can be seen that when the wear amount is
7:95 × 10‐6m (0.1 times of the clearance), the system appears
in a two-period bifurcation; when the wear amount is
1:59 × 10−5m (0.2 times of the clearance), the system is in a
three-period state, as shown in Figure 22. Then, the bifurca-
tion of the system increases gradually, and the state of the
system changes from a four-period to a nine-period state.
When the wear amount is 8:745 × 10‐5m (1.1 times of the
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Figure 24: When the wear is 4:77 × 10−5 m (the misalignment in the x direction is 3:7 × 10−4 m): (a) relative displacement velocity and (b)
the corresponding diagram of Poincare.
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Figure 25: Bifurcation diagrams with changes in the rotation
speed.
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clearance), the system enters chaos. Finally, after the bifurca-
tion point (9:142 × 10‐5m) of the multiperiod state, the sys-
tem is in the chaos state all the time.

When the misalignment in the x direction increases to
3:7 × 10−4m, the bifurcation diagram of the system with an

increase in the amount of wear is shown in Figure 23. As
compared to Figures 16 and 21, it indicates that the system
state of Figure 23 is obviously more complex. It can be seen
that with an increase in the amount of wear, the system has
experienced the state of the single period, quasi period,
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Figure 26: When the rotation speed of the system is 4300 r/min: (a) relative displacement velocity and (b) the corresponding diagram of
Poincare.
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chaos, multiperiod, quasiperiod, and multiperiod and chaos
from the initial quasi-periodic state. Within a given range of
bifurcation parameters (i.e., the amount of wear), the system
finally stays in a chaotic state. It can be concluded that the
system behavior is very complex under the condition of large
misalignment; the complex movement form causes the fret-
ting effect on the surface of teeth on spline to intensify,
which significantly increases the fretting wear failure; and
the increase in the amount of wear makes the system move-
ment behavior more complex and thus forms a vicious cycle
that is prone to safety accidents. And, when the wear is
4:77 × 10−5m as shown in Figure 24, the system is getting
into quasiperiod.

5.3. The Effect of the Rotational Speed on the Nonlinear
Vibration Characteristics of the System with Different
Misalignment. When the misalignment in the y direction is
2:4 × 10−4m and in the x direction is 2:7 × 10−4m,
Figure 25 shows the bifurcation situation of the relative
speed of the 22nd teeth on the spline coupling with changes
in the rotation speed. In Figure 25, the rotation speed
increases from 4000 r/min to 8000 r/min with an increment
of 50 r/min. Under this condition of the misalignment, the

state of the system is dominated by a single period motion,
but sometimes quasiperiod, double period, and chaos appear
at some specific speeds. Figure 26 shows the diagram of the
relative displacement velocity on the engagement line and
the diagram of Poincare when the rotation speed of the sys-
tem is 4300 r/min. It can be seen that, in this case, the dia-
gram of the relative displacement velocity is a closed circle,
and the corresponding diagram of Poincare is a single point.
Obviously, it is a single period motion. With an increase in
the rotation speed, the relative velocity on the engagement
line shows an upward trend. When the rotation speed of
the system is 4600 r/min, from Figure 27, it can be seen that
there are a large number of closed curves on the diagram of
Poincare and the system is in a quasiperiodic state. When
the rotating speed continues to increase, the system returns
to the single period state at first, and then the system enters
into the chaotic state quickly when the rotating speed is
4800 r/min, as shown in Figure 28. When the rotating speed
is 5600 r/min as show in Figure 29, the system enters into the
quasiperiodic state again. Moreover, under other rotating
speed conditions, the system is in a single period state.

Figure 30 shows the bifurcation situation of the relative
speed of the 22nd teeth on the spline coupling with changes
in the rotation speed when the misalignment in the y direc-
tion is 2:4 × 10−4m and in the x direction is 2:8 × 10−4m.
From the figure, it can be seen that the system is mainly
quasiperiodic (Figure 31 is one of them), and the relative
vibration speed between spline pairs increases with an
increase in the rotating speed. When the rotating speed is
4200 r/min, 4250 r/min, 4700 r/min, 4900 r/min, 5200 r/min,
and 5650 r/min, the system is in a chaotic state for all, as
shown in Figure 32 (due to the space limitation, only the dia-
gram when the rotation speed of the system is 4200 r/min is
provided in this work).

When the misalignment in the y direction is 2:4 × 10−4m
and in the x direction is 2:9 × 10−4m, Figure 33 shows the
bifurcation situation of the relative speed of the 22nd teeth
on the spline coupling with changes in the rotation speed.
From the figure, it can be seen that the system is still domi-
nated by a quasiperiodic state, but by comparing with
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Figure 29: When the rotation speed of the system is 5600 r/min: (a) relative displacement velocity and (b) the corresponding diagram
of Poincare.
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Figure 30, it can be seen that the number of times the system
enters into and leaves from the chaotic state has increased
obviously. At a specific speed, the system presents a single
period state (such as at a speed of 5450 r/min). Therefore,
from Figures 25, 30, and 33 it can be concluded that, as
the speed continues to increase, the larger the misalignment

is, and the more times the system enters or leaves the chaos
state, which easily causes the system to be damaged due to large
vibration displacement and speed after suddenly entering the
chaos state in the acceleration and deceleration process.

6. Conclusion

In this work, a bending–torsion coupling nonlinear vibra-
tion model of the involute spline coupling with the misalign-
ment was proposed, and a dynamic meshing stiffness
function with multiteeth engagement was established. Then,
the influence of different misalignment and different wear
and rotation speeds with different misalignment on the non-
linear vibration characteristics of the involute aviation spline
coupling was explored. From the above analysis, the follow-
ing conclusions are drawn:

(1) For the involute spline coupling without the fretting
wear, with an increase in the misalignment, the sys-
tem gradually becomes unstable, and the number of
entering and leaving chaos increases, which easily
damages the spline system. However, for the involute
spline coupling system with the fretting wear, when
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Figure 31: When the rotation speed of the system is 4100 r/min: (a) relative displacement velocity and (b) the corresponding diagram of
Poincare.
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the fretting wear of each tooth is even, it shows a lit-
tle effect on the behavior of the system

(2) And, when the fretting wear on each tooth increases
evenly, the load on each tooth has not changed
much, so the excitation generated by the system is
not obvious. However, while only one tooth is worn,
the increase in the fretting wear of this tooth induces
a load difference between this tooth and the rest of
the teeth, and then the spline coupling system
exhibits lager internal excitation as well as produces
complex vibration behavior. This is very detrimental
to the stability of the system. Additional, the increase
in the misalignment also complicates the vibration of
the system under the same fretting wear condition

(3) Furthermore, the increase in themisalignment suddenly
increases the number of the state changes as the rotating
speed increases. As it is well known, for the mechanical
system, the system inevitably experiences increase and
decrease in the speed in the process of starting and stop-
ping.When the amount of themisalignment is too large,
the system frequently changes its state, so it is easy to
induce the large vibration displacement and speed. It
demonstrates serious security risks.

Abbreviations

kT1: Torsional stiffness of external spline
cT1: Torsional damping of external spline
kT2: Torsional stiffness of internal spline
cT2: Torsional damping of internal spline
km: Meshing stiffness
cm: Meshing damping
ci: Working teeth profiles
c′i: Nonworking teeth profiles
kp1: Supporting stiffness of external spline
kp2: Supporting stiffness of internal spline
cp1: Supporting damping of external splines
cp2: Supporting damping of internal splines
Td : Input torque
TL: Loading torque
x1: Vibrational displacements along the x-axis of

external spline
y1: Vibrational displacements along the y-axis of

external spline
θ1: Torsional displacement around the axis of the

external spline
x2: Vibrational displacements along the x-axis of

internal spline
y2: Vibrational displacements along the y-axis of

internal spline.
θ2: Torsional displacement around the axis of the

internal spline.
θM : Torsional displacements of the prime motor
θL: Torsional displacements of the load
rb: The radius of the base circle of internal and

external splines (rad)

_θM : Constant angular velocity for the prime mover
w: Nondimensionalizing parameters
l: Nondimensionalizing parameters
Fmx : Components of the dynamic force along the x
Fmy : Components of the dynamic force along the y
m1: Mass of external spline
m2: Mass of internal spline
JM : Moment of inertia of prime mover
JL: Moment of inertia of load
J1: Moment of inertia of external splin
J2: Moment of inertia of internal spline
g: Gravitational acceleration
Δ: Deflection
L: Tooth width
Td: Input torque
Tm: Meshing torque
TL: Load torque
Fni: Meshing force of a single pair of teeth along the

meshing line
gi½ΔniðtÞ�: Meshing deformation function
ΔnjðtÞ: Equation of relative displacement
hi: Wear depth of each tooth
α0: Pressure angle of the reference circle
z: Number of teeth
i: The tooth number
t: Time
θ0: Half angle of the tooth thickness
θi: Rotation angle of each tooth
φi: Anglebetween the active toothprofile and thex-axis
ω0: Angular velocity
hf 1: The tooth root height
ha2: The tooth top height
d1: The diameter of the reference circle of the

external spline
d1 min: The small diameter of the external spline
d2: The diameter of the reference circle of the

internal spline
d2 max: The large diameter of the internal spline.
Y j,k: The thickness of the upper half tooth of the jth

segment
S: The tooth thickness of the reference circle
r: The radius of the reference circle
invða0Þ: The involute function of a pressure angle of the

reference circle
Rj,k: The upper surface radius of the jth segment
αj,k: Pressure angle between the upper surface and

tooth profile of the jth segment
Aj,k: The average areas
φ: The contact angle of the meshing point
hk: Tooth height of each segment
YF : The thickness of the half tooth of the reference circle
Led: The increment of the root (or top) height of the

external spline
I j,k: Section moment of inertia of the jth segment
Eμ: Elastic modulus
E: Young’s modulus.
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